随机过程讲义全套

合集下载

(完整版)随机过程知识点汇总

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。

若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。

随机过程论(第3版)PPT完整全套教学课件

随机过程论(第3版)PPT完整全套教学课件
在独立增量过程中有一类很重要的特例一稳定过程,它满足条件:存在a>0(a称为此稳定 过程的阶),使对∀c>0恒有
04 马 氏 过 程
马氏过程
定义14(马氏过程)
成立。式(1.17)又称为马氏性。 特别地,
马氏过程
命题1.2
成立。
证明 当
时,式(1.17)显然蕴含式(1.18);另外,用测度论典型
证明
可见Y是一元正态分布。
Gauss 系
命题1.6
证明
Gauss 系
命题1.7

Gauss 系
命题1.7
于是 这就可得到 于是
Gauss 系
命题1.8
于是 这就可得到 于是 这就证明了 (a),(b)可采用同样的方法证明。
Gauss 系
命题1.9
于是 这就可得到 而式(1.28)左侧等于
Gauss 系
第二章
鞅论初步
随机过程论
上鞅、下鞅的概
01 念 、 简 单 性 质 与
分解定理
1.概念与简单性质
设在概率空间
上有一个非降的σ-代数族
和实随机过程
条件2’)还蕴含 证明1)令
马氏过程
定理1.3(Tulcea定理)
2)证明P( · )在δ上是完全可加的。
1° 为书写方便,我们先定义以下m-步转移概率测度。设
马氏过程
定理1.3(Tulcea定理)

再令 由
马氏过程
定理1.3(Tulcea定理)
2° 用归纳法来证明存在 由于
当K=-1时,式(1.27)可写成
Kolmogorov定理给出了由有限维联合分布族构造(Ω,ƒ)上测度P的方法。
1.Kolmogorov定理

北大随机过程随机游动讲义

北大随机过程随机游动讲义

随机游动1.随机游动模型设有一个质点在x 轴上作随机游动,在t=0时在x 轴的原点,在t=1,2,3,…时沿x 轴正方向或反方向移动一个单位距离,沿正方向移动一个单位距离的概率为p ,沿反方向移动一个单位距离的概率为q=1-p 。

质点随机游动构成一个离散时间、离散状态的随机过程。

记质点在第n 步时的状态为L ,2,1,0,=n n η,¾ 样本空间:{……-3,-2,-1,0,1,2,3……} ¾ 初始态:00=η¾ 一步转移概率:经过一步从状态i 转移到状态j 的概率1110ij p j i p q p j i otherwise =+⎧⎪==−=−⎨⎪⎩2.随机游动模型的分析¾ 经过n 步以后的位置特征 ¾ 经过n 步返回原点的概率 ¾ 经过n 步第一次返回原点的概率 ¾ 第一次返回原点所需的平均时间 ¾ 迟早返回原点的概率 ¾ 多次返回原点的概率 ¾ 经过n 步达到+1的概率 ¾ 第1次通过最大值2.1 经过n 步以后的位置特征:概率分布、统计特征质点在第n 步时的状态为L ,2,1,0,=n n η,? 经过时间n ,质点距离原点的距离为m 的概率P{n η=m}n η是一个随机变量,它的可能取值是:{}n n n n n ,1,,1,,0,1,,2,1,−−−−−L L若质点移动n 步后到达m n =η 的位置,则所有的移动中,正方向移动2mn +步,反方向移动2mn −步,因此: 一维概率分布:{}222m n m n n q p m n n m P −+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛+==η, m=-n,-n+2,-n+4,……,n-2,n ;n m ≤均值:∑==nk k n 1ξη;其中k ξ为每一步的移动,{}{},n ,,q,k ξP p,ξP k k L 2111==−==={}{}{}q p 1)(*11*1E −=−=+==k k k ξP ξP ξ{}{})(n 11q p E E E nk k n k k n −==⎭⎬⎫⎩⎨⎧=∑∑==ξξη,[]∑∑∑∑∑∑=======⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅=n k n l l k n k n l l k n k nl l k nE E E E 1111112}{ξξξξξξη考虑到l k ≠,[][][]()2q p E E E l k l k −=⋅=ξξξξ;l k =,[]()11122=+=⋅−+⋅=q p q p E l k ξξ∴ [][][]n ))(1n (n 21kl 112+−−=+=∑∑∑=≠==q p E E E n k n l nk k k l k ξξξξη方差:()[]{}()(){}n n n n n E E E E E ηηηηηη⋅−+=−2222=()()[]22n n E E ηη−=()22n n E ημη−npqq)n(p n q)(p n n q))(p n(n 412222=−−=−−+−−=相关函数:若n<m, []⎥⎦⎤⎢⎣⎡⋅=⋅∑∑==ml l n k k m n E E 11ξξηη⎥⎦⎤⎢⎣⎡=∑∑==n k m l l k E 11ξξ()∑∑===nk ml l k E 11ξξ()()∑∑∑==≠=+=nk k kn k mk l l l kE E 111ξξξξn q p nk m kl l +−=∑∑=≠=112)( n q p m n +−−=2))(1(若n>m, []m q p n m E m n +−−=⋅2))(1(ηη[][][]22)()(1,min q p nm q p m n E m n −⋅+−−=⋅ηη总结:概率分布:{}222m n m n n q p m n n m P −+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛+==η , m=-n,-n+2,-n+4,……,n-2,n ;n m ≤均值:{}()n E n p q η=− 方差:(){}24n n E E npq ηη−=⎡⎤⎣⎦相关函数:[][]2min ,4()n m E n m pq nm p q ηη⋅=⋅+⋅−2.2 经过n 步返回原点的概率根据一维分布的分析可知,第n 步返回原点的概率为:⎪⎪⎩⎪⎪⎨⎧⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==为偶数,为奇数n q p n n n P nn n 222,0}0{η只有经过偶数步才能返回原点,经过奇数步返回原点的概率为0。

第11讲随机过程孙应飞

第11讲随机过程孙应飞

第11讲随机过程孙应飞第三章 Poisson 过程(Poisson 信号流)九、更新过程(1)概念及基本性质定义:设}1,{≥k X k 是独立同分布,取值非负的随机变量,分布函数为)(x F ,且1)0(k k n X S X S S 1110,,0,对0≥?t ,记:}:sup{)(t S n t N n ≤=则称}0),({≥t t N 为更新过程。

更新过程是一计数过程,并有:}{})({t S n t N n ≤=≥}{}{}{})({11t S t S S t S n t N n n n n ≤-≤=<≤==++记:)(s F n 为n S 的分布函数,由∑==nk k n X S 1,易知:)()(1x F x F =)2()()()(01≥-=?-n u F d u x F x F xn n证明:由全概率公式有:))(())(()()()(}{)(}{)(}{}{}{)(1101010111x F f x f F u F d u x F u F d u x S P u F d u x S P ud u f u X u x S P x X S P x S P x F n n x n xn n X n n n n n n n----∞-∞∞---*=*=-=-≤=-≤==-≤=≤+=≤=即)(x F n 是)(x F 的n 重卷积,记作:F F F n n *=-1。

另外,记:)}({)(t N E t m =称)(t m 为更新函数。

关于更新函数,有以下重要的定理。

定理:对于0≥?t ,有:∑∞==1)()(n n t F t m证明:根据以上的关系式,计算得:∑∑∑∑∑∑∑∑∑∞=∞=∞=∞=∞=∞==∞=∞=≤=≥=≥=========11111110}{})({})({})({})({})({})({)(n n n k k kn n n k n n t S P n t N P k t N P n t N P n t N P n t N P n n t N P n t m即有:∑∞==1)()(n n t F t m推论:若对0≥?t ,1)(<="">1))(1)(()(--≤t F t F t m下面是重要的更新方程。

随机过程讲义(南开大学内部)

随机过程讲义(南开大学内部)

舱舮舴 复合艐良艩艳艳良艮过程及应用 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舷
舱舮舴舮舱 复合艐良艩艳艳良艮过程 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舷
舱舮舴舮舲 复合艐良艩艳艳良艮过程在保险风险理论中的应用 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舸
3 连续时间马氏链
33
舳舮舱 定义 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舳舳
舳舮舱舮舱 马氏性与等价条件 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舳舳
对 h > 0般 有
pn(t
+
h) h

pn(t)
=
−λpn(t)
+
λpn−1(t)
+
o(h) ,
h
从而 pn(t) 在 t 的右导数为 −λpn(t) + λpn−1(t)舮 类似的可知 pn(t) 的左导数也存在。
这样
pn(t) = −λpn(t) + λpn−1(t), pn(0) = 0, n ≥ 1.
舱舮舵 艐良艩艳艳良艮 过程的其它扩展 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舰
舱舮舵舮舱 非齐次 艐良艩艳艳良艮 过程 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舰

随机过程讲义(第二章)(PDF)

随机过程讲义(第二章)(PDF)

第二章 随机过程的一般概念2.1 随机过程的基本概念和例子定义2.1.1:设(P ,,F )Ω为概率空间,T 是某参数集,若对每一个,是该概率空间上的随机变量,则称为随机过程(Stochastic Process)。

T t ∈),(w t X ),w t (X 随机过程就是定义在同一概率空间上的一族随机变量。

随机过程可以看成定义在),(w t X Ω×T 上的二元函数,固定Ω∈0w ,即对于一个特定的随机试验,称为样本路径(Sample Path),或实现(realization),这是通常所观测到的过程;另一方面,固定,是一个随机变量,按某个概率分布随机取值。

),(0w t X T t ∈0),(0w t X抽象一点:令,即∏∈=Tt T R R T R 中的元素为),(T t x X t t ∈=,为其Borel域(插乘)(T R B σ域),随机过程实质上是()F ,Ω到())(,T T R R B 上的一个可测映射,在())(,T TR RB 上诱导出一个概率测度:T P ()B X P B P R B T T T ∈=∈∀)(),(B 。

一般代表的是时间。

根据参数集T 的性质,随机过程可以分为两大类: t 1)为可数集,如T {}L ,2,1,0=T 或{}L L ,1,0,1,−=T ,称为离散参数随机过程,也称为随机序列;2)为不可数集,如T {}0≥=t t T 或{}∞<<∞−=t t T ,称为连续参数随机过程。

随机过程的取值称为过程所处的状态(State),所有状态的全体称为状态空间(State Space)。

通常以表示随机过程的状态空间。

根据状态空间的特征,一般把随机过程分为两大类:T t t X ∈),(S 1) 离散状态,即取一些离散的值; )(t X 2)连续状态,即的取值范围是连续的。

)(t X离散参数离散状态随机过程: Markov 链 连续参数离散状态随机过程: Poisson 过程 离散参数连续状态随机过程: *Markov 序列连续参数连续状态随机过程: Gauss 过程,Brown 运动例2.1.1:一醉汉在路上行走,以的概率向前迈一步,以q 的概率向后迈一步,以p r 的概率在原地不动,1=++r q p ,选定某个初始时刻,若以记它在时刻的位置,则就是直线上的随机游动(Random Walk)。

随机过程讲义

随机过程讲义
n U U{N (t ) = n − l , N (t + h) − N (t ) = l} l =2
故有:
Pn (t + h) = Pn (t )(1 − λh − ο (h)) + Pn −1 (t )(λh + ο (h)) + ο (h)
化简并令 h → 0 得:
Pn′(t ) = −λPn (t ) + λPn −1 (t )
∀ n ∈ N , t i ∈ T , 1 ≤ i ≤ n ,有随机过程 X (t ) 的增量: X (t 2 ) − X (t1 ), X (t 3 ) − X (t 2 ),L, X (t n ) − X (t n−1 )
相互独立,则称随机过程 { X (t ), t ∈ T } 是独立增量过程。 注意:若独立增量过程的参数集 T = [ a, b), a > −∞ ,一般假定 X ( a ) = 0 , 则 独 立 增 量 过 程 是 一 马 氏 过 程 。 特 别 地 , 当 X ( 0) = 0 时 , 独 立 增 量 过 程
两边同乘以 e ,移项后有:
λt
d λt λt [e Pn (t )] = λ e Pn −1 (t ) dt Pn (0) = P{N (0) = n} = 0
当 n = 1 时,有:
d λt [e P1 (t )] = λ , P1 (0) = 0 ⇒ P1 (t ) = (λ t )e −λ t dt
由归纳法可得:
(λ t ) n − λ t Pn (t ) = e , n ∈ N0 n!
注意: E{N (t )} = λ t 现的平均次数。 注意:Poission 过程的转移率矩阵(Q 矩阵)的表示,并用上一章讲过的方 法求解 Poission 过程的一维分布。

随机过程英语讲义

随机过程英语讲义

随机过程英语讲义2.2 Properties of Poisson processesExample Suppose that people immigrate into a territory at a Poisson rateλ=1 per day. (a) What is the expected time until the tenth immigrant arrives? (b) What is the probability that the elapsed time between the tenth and the eleventh arrival exceeds two days? Solution: (a) E[S10]=10/λ= 10 days (b) P{X112}= e -2λ= e-2≈ 0.13332.2 Properties of Poisson processesArrival time distribution Proposition 2.2.2: The arrival time of the nth event Sn follows aΓ distribution with parameter (n,λ). (λt ) n 1 f (t )=λe λ t Proof: (n 1)!{Sn≤ t} {N(t)≥n} P{Sn≤ t}= P{N(t)≥n}=∑k=n∞e λ t(λ t ) k k!differentiating the two sides of equation with respect to t:2.2 Properties of Poisson processes2.2 Properties of Poisson processesSuppose we are told that exactly one event of a Poisson process has taken place by time t, and we are asked to determine the distribution of the time atwhich the event occurred. Since a Poisson process possesses stationary and independent increments, it seems reasonable that each interval in[0,t] of equal length should have the same probability of containing the event. In other words, the time of the event should be uniformly distributed over[0,t].2.2 Properties of Poisson processesThis result may be generalized, but before doing so we need to introduce the concept of order statistics.52.2 Properties of Poisson processesOrder statistics Order statistics Let Y1, Y2……Yn are n random variables, if we arrange these random variables from small to big, note Y(1)= y1 is the smallest in the sequence, Y(2)= y2 is the second smallest,…. Y(n)= yn is the biggest in the sequence. Y(1) Y(2)…… Y(n), Y(1)……Y(n) or y1……yn are the order statistics of Y1…Yn.2.2 Properties of Poisson processes,Let,f is density of distribution of Yi, if f follows the uniform density over (0,t), the joint density of{Y(i)} is:Y(1) .....Y( n )f( y1,..., yn )= n !Ci=1nn! f ( yi )= n, t0 y1 ... yn t2.2 Properties of Poisson processesPast arrival times givenC Joint density of past arrival times Proposition 2.2.3: Given that N(t)=n, the n arrival times S1… Sn have the same distribution as the order statistics corresponding to the n i.i.d. samples from U(0,t). that is,n! f S1 .....S n N ( t )(t1,..., t n n)= n, tProof:0 t1 ... t n t2.2 Properties of Poisson processesP{ti≤ Si≤ t+hi, i=1,…n|N(t)= n}P{one event in[ti, ti+ hi], 1≤ i≤ n, no events elsewhere in[0,t]}= P{N (t )= n}=λh1eλh1n!= n h1 ...hn t...λhn e e e λt (λ t ) n n!λhn1λ ( t h1 ...hn )P{N (t )= n}= eλt(λ t ) n, n= 0,1, 2,...... n!2.2 Properties of Poisson processesn! P{ti≤ Si≤ t+hi, i=1,…n|N(t)= n}= n h1 ...hn t P{ti≤ S i≤ ti+ hi, i= 1...n N (t )= n} n!= n h1....hn ttaking the limits as hi→ 0 for all i, we obtain n! f S1 ..... S n N ( t )(t1,..., t n n)= n t2.2 Properties of Poisson processesExample: A cable TV company collects$1/unit time from each subscriber. Subscribers sign up in ac cordance with a Poisson process with rateλ. What is the expected total revenue received in (0,t]? Solution: (Depends on the total number of subscribers and their arriving time)2.2 Properties of Poisson processesLet N(t) denote the number of subscribers, and Si denote the收益arrival time of the ith customer. The revenue generated by this customer in (0,t] is t-Si. Adding the revenues generated by all arrivals in (0,t] N (t ) ∑ (t Si ), E ∑ (t S i ) i=1 i=1 find the previous expectation by conditioning on N(t)N (t )N (t ) n n E ∑ (t S i ) N (t )= n = E ∑ (t S i ) N (t )= n = nt E ∑ S i N (t )= n i=1 i=1 i=12.2 Properties of Poisson processesLet U1,…Un be iid random variables which follow U(0,t). sot n n n n E ∑ Si N (t )= n= E ∑ U (i ) = E ∑U i =∑ E[U i]= n 2 i=1 i=1 i=1 i=1soN (t ) t t E ∑ (t Si ) N (t )= n = nt n= n 2 2 i=1Calculate the expectation by conditional expectation: N (t ) E[ N (t )]t 1 2=λt E ∑ (t S i ) = 2 2 i=12.2 Properties of Poisson processesDecomposition of Poisson process (an important application of Proposition 2.2.3) A Poisson process N={N(t),t≥0} with rateλ. We consider the case in which if an arrival occurs at time s, it is a type-1 arrival with probability P(s) and a type-2 arrival with probability 1-P(s). The type of arrival depends on the epoch of arrival. By using Proposition 2.2.3 we can prove the following propositon.2.2 Properties of Poisson processesProposition 2.2.4 Let Ni={Ni(t), t≥0}, i=1 and 2, where Ni(t) denotes the number of type-i arrivals in (0,t]. N1(t) and N2(t) are two independent Poisson random variables with meansλpt andλqt, where1 t p=∫ P ( s )ds and q= 1 p t 0 λ pt (λpt ) n λ qt (λqt ) m P{N1 (t )= n, N 2 (t )= m}= e e n! m!2.2 Properties of Poisson processes2.2 Properties of Poisson processesThe importance of the above proposition is illustrated by thefollowing example.17。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 概率论基础知识1. 事件、概率和概率空间1.1 随机事件的运算和概率1.2 σ代数(域)和Borel 集设全集为, 为一些的子集构成的集类,若满足 ΩF ΩF 1)F ∈Ω2) 对任意F ∈A ,F ∈A3)对任意有限或至多可数的{}F ⊂n A ,F ∈n nA U则称为一个F σ代数(域)给定一个集合Ω,就可以构造一个包含它的一个σ代数。

推广:给定一个集类,可以构造一个的一个C F C ⊂σ代数。

包含C 的最小的F σ代数,称为由C 生成的σ代数,记作()C σ。

例如设R =Ω,{}R b a a b b a R A A ∈∞−∞==,),,(),(),[:任意或或或C为R 上的一个集类,()C σ中的集合称为Borel 集,()C σ称为直线上的Borel 域,记为。

)(R B1.3 Kolmogorov 概率公理化定义给定全集和其子集构成的一个Ωσ代数,若定义在上的函数满足F F )(⋅P 1) 任意,F ∈A 1)(0≤≤A P ;2) ; 1)(=ΩP 3)对任意两两不交的至多可数集{}F ⊂n A ,∑=⎟⎠⎞⎜⎝⎛nn n n A P A P )(U 称为上的概率测度,)(⋅P F ),,(P F Ω称为概率空间。

1.4 随机变量的概念定义:设为一概率空间,(P ,,F Ω))(w X X =为Ω上的一个实值函数,若对任意实数x ,,则称()F ∈−∞−),(1x X X 为()P ,,F Ω上的一个(实)随机变量。

称()()()),()),(()(1x X P x X P x X P x F −∞=−∞∈=<=−为随机变量X 的分布函数。

随机变量实质上是到()F ,Ω())(,R R B 上的一个可测映射(函数)。

记{}F B ⊂∈=−)()()(1R B B X X σ,称)(X σ为随机变量X 所生成的σ域。

推广到多维情形,随机向量是T n X X X X ),,(21L =()F ,Ω到())(,n n R R B 上的一个可测映射。

由可测映射在())(,n n R R B 上诱导出一个概率测度:X P ())()(),(1B X P B P R B X n −=∈∀B1.5 全概率公式和Bayes 公式设{为的一个分割,即}k B Ω{}k B 两两不交且。

Ω=U kk B 全概率公式:∑⋅=kk k B P B A P A P )()()(Bayes 公式:∑⋅⋅=iiik k k B P B A P B P B A P A B P )()()()()(2. 特征函数和母函数2.1 特征函数设X 为维实随机向量,称为n XjwTEe w =)(φX 的特征函数(characteristicfunction )。

性质:1) 1)0(=ϕ;2) (有界)n R w w ∈∀≤,1)(ϕ 3) (共轭对称);_______)()(w w −=ϕϕ4) (非负定)对任意给定正整数m ,任意和任意复数n m R t t t ∈L 21,m αααL 21,,0)(11≥−∑∑==m l mk k l k l t t ααϕ;5) )(w ϕ为n R 上的连续函数。

6) 有限多个独立随机变量和的特征函数等于各自特征函数的乘积; 7) 设为维随机向量,特征函数为(Tn X ξξL ,1=)n ),(1n w w L ϕ,则nn nns s t n s n s s s s n s jw w w w E ++=++∂∂∂=L L L L L 11110111),,(ϕξξ,若∞<n s n s E ξξL 11; 8) 随机变量的分布函数由其特征函数唯一决定。

Bocher 定理:n R 上的函数)(t ϕ是某个随机变量的特征函数当且仅当)(t ϕ连续非负定且1)0(=ϕ。

例如:设X 服从二项分布,,),(p n B 1;,1,0,)(=+=⎟⎟⎠⎞⎜⎜⎝⎛==−q p n k q p k n k X P kn k L 其特征函数n jw pe q w )()(+=φ设X 服从参数为λ的Poisson 分布,其特征函数[])1(exp )(−=jw e w λφ设X 服从正态分布,其特征函数),(2σµN )21exp()(22w jw w σµφ−=2.1 母函数(概率生成函数)在研究只取非负的整数值的随机变量时,以母函数来代替特征函数比较方便。

假设随机变量L ,2,1,0X 的分布为L ,2,1,0),(===k k X P p k ,其中称,10=∑∞=k kp1,)(0≤==∑∞=s s p Es s k k k Xϕ为随机变量X 的母函数(概率生成函数)(probability generating function)。

性质:1) )(,1)1(s ϕϕ=在1≤s 绝对且一致收敛; 2) )(s ϕ唯一决定随机变量X 的分布;3) 若随机变量X 的阶矩存在,则可以用母函数在l 1=s 的导数值来表示,特别有)1()1(),1(2ϕϕϕ′+′′=′=EX EX3. 收敛性和极限定理3.1 各种收敛的定义设为一随机变量序列,L L ,,,21n X X X 1)若对任意0>ε,()0lim =≥−∞→εX X P n n ,则称依概率收敛到随机变量L L ,,,21n X X X X ;2)若p n X E 存在,且0lim =−∞→pn n XX E ,则称L L ,,,21n X X X p 阶收敛到随机变量X ,特别当2=p ,称为均方收敛。

3) 若()1lim ==∞→X X P n n ,称几乎必然收敛到随机变量L L ,,,21n X X X X 。

4)若其分布函数序列满足)(x F n )()(lim x F x F n n =∞→在每一个连续点处成立,这里为)(x F )(x F X 的分布函数,则称依分布收敛到L L ,,,21n X X X X 的分布。

3.2 大数定律和中心极限定理4. 条件期望定义1:设),,(P F Ω为概率空间,B 为的一个子F σ-代数,ξ为上的随机变量且),,(P F ΩξE 存在,设η为B 可测的随机变量且满足B ∈∀=∫∫B dP dP BB,ξη称随机变量η为ξ在给定B 下(关于P )的条件期望,记为()B ξE 。

条件期望有如下的基本性质:(假设以下的式子有意义)1)()B B ∈∀=∫∫B dP dP E BB,ξξ;2) ()[]ξξE E E =B ;3) 若或F B =ξ为B 可测的随机变量,则()..,s a E ξξ=B ;4) 若..,s a c =ξ,则()..,s a c E =B ξ;5) (线性可加性)()()()..,s a bE aE b a E B B B ηξηξ+=+; 6) 若..,0s a ≥ξ,则()..,0s a E ≥B ξ;7) 若..,s a ηξ≤,则()()..,s a E E B B ηξ≤,特别()()B B ξξE E ≤。

第二章 随机过程的一般概念2.1 随机过程的基本概念和例子定义2.1.1:设(P ,,F )Ω为概率空间,T 是某参数集,若对每一个,是该概率空间上的随机变量,则称为随机过程(Stochastic Process)。

T t ∈),(w t X ),w t (X 随机过程就是定义在同一概率空间上的一族随机变量。

随机过程可以看成定义在),(w t X Ω×T 上的二元函数,固定Ω∈0w ,即对于一个特定的随机试验,称为样本路径(Sample Path),或实现(realization),这是通常所观测到的过程;另一方面,固定,是一个随机变量,按某个概率分布随机取值。

),(0w t X T t ∈0),(0w t X抽象一点:令,即∏∈=Tt T R R T R 中的元素为),(T t x X t t ∈=,为其Borel域(插乘)(T R B σ域),随机过程实质上是()F ,Ω到())(,T T R R B 上的一个可测映射,在())(,T TR RB 上诱导出一个概率测度:T P ()B X P B P R B T T T ∈=∈∀)(),(B 。

一般代表的是时间。

根据参数集T 的性质,随机过程可以分为两大类: t 1)为可数集,如T {}L ,2,1,0=T 或{}L L ,1,0,1,−=T ,称为离散参数随机过程,也称为随机序列;2)为不可数集,如T {}0≥=t t T 或{}∞<<∞−=t t T ,称为连续参数随机过程。

随机过程的取值称为过程所处的状态(State),所有状态的全体称为状态空间(State Space)。

通常以表示随机过程的状态空间。

根据状态空间的特征,一般把随机过程分为两大类:T t t X ∈),(S 1) 离散状态,即取一些离散的值; )(t X 2)连续状态,即的取值范围是连续的。

)(t X离散参数离散状态随机过程: Markov 链 连续参数离散状态随机过程: Poisson 过程 离散参数连续状态随机过程: *Markov 序列连续参数连续状态随机过程: Gauss 过程,Brown 运动例2.1.1:一醉汉在路上行走,以的概率向前迈一步,以q 的概率向后迈一步,以p r 的概率在原地不动,1=++r q p ,选定某个初始时刻,若以记它在时刻的位置,则就是直线上的随机游动(Random Walk)。

)(n X n )(n X例2.1.2:到达总机交换台的电话呼叫次数可以看成为一个Poisson 过程。

例 2.1.3:研究某一物种数量,由于环境等一些因素的影响导致物种出生和死亡的是随机变化的,若以表示在时刻时物种总数量,为生灭过程(Birth and Death Process)(满足一定假设)。

)(t X 0≥t )(t X例2.1.4:英国植物学家Brown 注意到漂浮在液面上的微小粒子不断进行无规则运动,这种运动是分子大量随机碰撞的结果,称为Brown 运动,以表示粒子在平面上的位置,则它是平面上的Brown 运动。

())(),(t Y t X2.2:有限维分布和数字特征定义2.2.1:对N n ∈∀,T t t t n ∈∀L ,,21,n 维随机向量())(),(),(21n t X t X t X L 的联合分布函数()()n n n n x t X x t X x t X P t t t x x x F <<<=)(,)(,)(,,;,,22112121L L L称为随机过程的维有限维分布。

称)(t X n (){}T t t t N n t t t x xx F n n n ∈∀∈∀L L L ,,,,,;,,212121为随机过程的有限维分布函数簇。

相关文档
最新文档