2020年甘肃省白银市中考数学试卷

合集下载

甘肃省白银市2020年(春秋版)中考数学试卷B卷

甘肃省白银市2020年(春秋版)中考数学试卷B卷

甘肃省白银市2020年(春秋版)中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)等式(a+1)0=1的条件是()A . a≠﹣1B . a≠0C . a≠1D . a=﹣12. (2分) (2020八上·常州期末) 近年来,人们对PM2.5 (空气中直径小于等于2.5微米的颗粒)的关注日益密切.我市某天中PM2.5的值y1 (u g/m3) 随时间t (h)的变化如图所示,设y2表示0时,到t时PM2.5的最大值与最小值的差,则y2与t的函数关系大致是()A .B .C .D .3. (2分)(2020·黑龙江) 如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A .B .C .D .4. (2分) 12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A . 0.26×103B . 2.6×103C . 0.26×104D . 2.6×1045. (2分) (2015九上·山西期末) 下列计算正确的是()A .B .C .D .6. (2分) (2016九上·南开期中) 如图,△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A . (﹣1,)B . (﹣1,)或(﹣2,0)C . (,﹣1)或(0,﹣2)D . (,﹣1)7. (2分) (2018九上·唐河期末) 已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是().A . 当时,方程无解B . 当时,方程有两个相等的实数解C . 当时,方程有一个实数解D . 当时,方程总有两个不相等的实数解8. (2分)已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是()A . 0<d<2B . 1<d<2C . 0<d<3D . 0≤d<29. (2分)如图,这是一个可以自由转动的转盘,转动这个转盘,当它停下时,指针最可能停的区域是()A . AB . BC . CD . D10. (2分)已知一次函数y=ax﹣c的图象如图所示,则二次函数y=ax2+c的图象大致是()A .B .C .D .11. (2分)若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是()A . 6πcm2B . 12πcm2C . 18πcm2D . 24πcm212. (2分) (2018九上·嵩县期末) 如图,在直角梯形ABCD中,AD∥BC,∠B=90度,AC将梯形分成两个三角形,其中△ACD是周长为18cm的等边三角形,则该梯形的中位线的长是()A . 9cmB . 12cmC . cmD . 18cm二、填空题. (共6题;共7分)13. (1分) (2019八上·西安期中) 比较大小: ________ (填“>”,“<”或“=”).14. (1分) (2019八上·合肥期中) 已知与成正比例关系,且当时,,则时,________.15. (1分)(2013·深圳) 写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是________.16. (1分)(2017·济宁模拟) 分式方程 +1= 的解是________.17. (1分) (2019八下·高要期中) 如图,折叠形ABCD的一边AD,点D落在BC边上的点F处,AE是折痕,已知AB=8cm,BC=10cm.则CE=________cm.18. (2分) (2018七上·昌图月考) 观察下列各数,按某种规律在横线上填上适当的数:-23,-18,-13,________,________.三、解答题. (共8题;共76分)19. (10分) (2018七下·深圳期中) 计算(1)(2)(3x+y)(3x-y)20. (5分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD ,CD∥AB .若⊙O的半径为1,求图中阴影部分的面积(结果保留π).21. (10分)(2016·抚顺模拟) 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?22. (15分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?23. (7分)(2011·南京) 小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是________ m,他途中休息了________ min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?24. (6分)(2020·昆明) (材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.(问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为________;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)25. (11分)(2013·淮安) 如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为t秒.(1)当t=________时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当t为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为S平方单位.①求S与t之间的函数关系式;②当S最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD 与△PCQ重叠部分的面积.26. (12分)(2020·濮阳模拟)(1)发现探究:如图1,矩形和矩形位似,,连接,则线段与有何数量关系,关系是________.直线与直线所夹锐角的度数是________.(2)拓展探究:如图2,将矩形绕点逆时针旋转角,上面的结论是否仍然成立?如果成立,请就图2给出的情况加以证明.(3)问题解决:若点是的中点,,连接,,在矩形绕点旋转过程中,请直接写出长的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题. (共8题;共76分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

白银市2020版中考数学试卷B卷

白银市2020版中考数学试卷B卷

白银市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 4的平方根是()A . 8B . 2C . ±2D .2. (2分)(2018·番禺模拟) 如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A . ①②B . ①③C . ②④D . ③④3. (2分)下面关于投针实验的说法正确的是()A . 针与平行线相交和不相交的可能性是相同的B . 针与平行线相交的概率与针的长度没有关系C . 实验次数越多,估算针与平行线相交的概率越精确D . 针与平行线相交的概率受两平行线间距离的影响4. (2分)在函数y=中,自变量x的取值范围为()A . x≥2B . x>﹣2C . x≥﹣2且x≠0D . x<﹣2且x≠05. (2分) (2017八下·丰台期中) 如图,四边形中,,,,,则四边形的面积是().A .B .C .D .6. (2分) 1.0239精确到百分位的近似值是()A . 1.0239B . 1.024C . 1.02D . 1.07. (2分) (2016九上·吴中期末) 如图,是一个圆锥形纸杯的侧面展开图,已知圆锥底面半径为5cm,母线长为15cm,那么纸杯的侧面积为()A . 75πcm2B . 150πcm2C .D .8. (2分)晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。

如果设晓明步行的速度为x米/分,则晓明步行的速度范围是()A . 70≤x≤87.5B . x≤70或x≥87.5C . x≤70D . x≥87.59. (2分)下列图形都是由同样大小的矩形按一定的规律组成,其中第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑧个图形中矩形的个数为()A . 38B . 41C . 44D . 4810. (2分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:(1)ac>0;(2)方程ax2+bx+c=0的两根是x1=﹣1,x2=3;(3)2a﹣b=0;(4)当x>1时,y随x的增大而减小;则以上结论中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(﹣2x2)2=________。

2020年中考数学全真模拟试卷(甘肃白银专用)(一)(原卷版)

2020年中考数学全真模拟试卷(甘肃白银专用)(一)(原卷版)

2020年中考数学全真模拟试卷(甘肃白银专用)(一)数学试卷注意事项:1.本试题满分150分,考试时间120分钟.2.试卷由四部分组成.3.所有学生必须按题目要求答题.一.单选题(共10题;共30分)1.下列既是轴对称图形又是中心对称图形的是()A. B. C. D.2.习近平总书记提出精准扶贫战略以来,各地积极推进精准扶贫,加大帮扶力度,全国脱贫人口数不断增加,脱贫人口接近11000000人,将数据11000000用科学记数法表示为()A.1.1×106B.1.1×107C.1.1×108D.1.1×1093.若√x−2有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x>2D.x>-24.﹣22=()A.﹣2B.﹣4C.2D.45.6.下列计算中,不正确的是()A.a2⋅a5=a10B.a2−2ab+b2=(a−b)2C.−(a−b)=b−aD.3a3b2÷a2b2=3a和y=kx﹣3的图象大致是()6.在同一直角坐标系中,函数y= kxA. B. C. D.7.若分式方程3x−ax2−2x +1x−2=2x有增根,则实数a的取值是()A.0或2B.4C.8D.4或88.已知⊙O1的半径为3cm, ⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内切9.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B. C. D.10.如图,在Rt△ABC中,△C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC 与半圆弧上的动点,则MN的最小值和最大值之和是()A.5B.6C.7D.8二.填空题:本大题共8小题(每小题4分;共32分)11.计算: √4−2−1= =________.12如果不等式组 {x <3a +2x <a −4的解集是x <a ﹣4,则a 的取值范围是________. 13.若关于x 的一元二次方程 ax 2−x −14=0(a ≠0) 有两个不相等的实数根,则点 P(a +1,−a −3) 在第________象限.14.把函数y =x 2的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数________的图象.15.抛物线 y =2(x −3)(x −1) 的顶点坐标是________.16.二次函数y =ax 2+bx +c(a≠0)的图像如图所示,当y <3时,x 的取值范围是________.17.如图,在△O 中,圆心角△AOB=70°,那么圆周角△C=________.18.如图,把一张长为 4 ,宽为 2 的矩形纸片,沿对角线折叠,则重叠部分的面积为________.三.解答题(一);本大题共5小题,共38分解答应写出必要的文字说明,证明过程或演算步骤.19.(6分)计算: −2−2+√8cos45°−|1−√2|+(3.14−π)020.(6分)解不等式组: {2−x ≤2(x +4)x <x−13+3,并写出它的所有整数解.21.(8分)两个城镇A.B 与两条公路l 1.l 2位置如图所示,电信部门需在C 处修建一座信号反射塔,要求发射塔到两个城镇A.B 的距离必须相等,到两条公路l 1 , l 2的距离也必须相等,那么点C 应选在何处?请在图中,用尺规作图找出所有符合条件的点C .(不写已知.求作.作法,只保留作图痕迹)22.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼 A 处,测得起点拱门 CD 的顶部 C 的俯角为 35° ,底部 D 的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据: sin35°≈0.57, cos35°≈0.82, tan35°≈0.70)23.(10分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下图1.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了________名学生;学生参加体育活动时间的中位数落在________时间段(填写上面所给“A”.“B”.“C”.“D”中的一个选项);(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.四.解答题(二);本大题共5小题,共50分解答应写出必要的文字说明,证明过程或演算步骤.24(8分).水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?25.(10分)如图,矩形ABCD中,对角线AC的垂直平分线MN与AD相交于点M,与BC相交于点N,连接AN,CM.求求证:四边形AMCN是菱形.26.(10分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A.B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.27.(10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆△O于点D,连接BD,过点D作直线DM,使△BDM=△DAC.(△)求证:直线DM是△O的切线;(△)求证:DE2=DF•DA.28.(12分)如图,直线y=kx+b(k.b为常数)分别与x轴.y轴交于点A(﹣4,0).B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(△)求直线y=kx+b的函数解析式;(△)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(△)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.。

2020年甘肃省白银市中考数学试卷含答案解析

2020年甘肃省白银市中考数学试卷含答案解析

2020年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√112.(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°3.(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .44.(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .5.(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 26.(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m 的值为( )A .﹣1或2B .﹣1C .2D .08.(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A.90°B.100°C.120°D.150°9.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平̂,则DC的长为()分BCA.2√2B.√5C.2√5D.√10 10.(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2二、填空题:本大题共8小题,每小题3分,共24分.11.(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作元.12.(2020•金昌)分解因式:a2+a=.13.(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元14.(2020•金昌)要使分式x+2x−1有意义,x需满足的条件是.15.(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有个.16.(2020•金昌)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E 的坐标为.17.(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm2,则这个扇形的弧长为cm(结果保留π).18.(2020•金昌)已知y=√(x−4)2−x+5,当x分别取1,2,3,…,2020时,所对应y 值的总和是.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0.20.(4分)(2020•金昌)解不等式组:{3x−5<x+12(2x−1)≥3x−4,并把它的解集在数轴上表示出来.21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A ,C ,E 在同一条直线上.测量数据 α的度数 β的度数 CE 的长度 仪器CD(EF )的高度31° 42° 5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率).四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了天;(2)这七年的全年空气质量优良天数的中位数是天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.2020年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√11解:√9=3,则由无理数的定义可知,实数是无理数的是√11.故选:D .2.(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20° 解:α的补角是:180°﹣∠A =180°﹣70°=110°.故选:B .3.(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .4解:∵正方形的面积是12,∴它的边长是√12=2√3.故选:A .4.(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .解:圆锥的主视图是等腰三角形,俯视图是圆,因此A 不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B 不符合题意;正方体的主视图、俯视图都是正方形,因此选项C 符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D 不符合题意;故选:C .5.(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 2解:x 2与x 4不是同类项,不能合并计算,它是一个多项式,因此A 选项不符合题意; 同理选项B 不符合题意;x 2•x 4=x 2+4=x 6,因此选项C 符合题意;x 12÷x 2=x 12﹣2=x 10,因此选项D 不符合题意; 故选:C .6.(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米解:∵雕像的腰部以下a 与全身b 的高度比值接近0.618,∴a b ≈0.618, ∵b 为2米,∴a 约为1.24米.故选:A .7.(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m 的值为( )A .﹣1或2B .﹣1C .2D .0解:把x =1代入(m ﹣2)x 2+4x ﹣m 2=0得:m ﹣2+4﹣m 2=0,﹣m 2+m +2=0,解得:m 1=2,m 2=﹣1,∵(m ﹣2)x 2+4x ﹣m 2=0是一元二次方程,∴m ﹣2≠0,∴m≠2,∴m=﹣1,故选:B.8.(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A.90°B.100°C.120°D.150°解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平̂,则DC的长为()分BCA.2√2B.√5C.2√5D.√10̂,解:∵点D在⊙O上且平分BĈ=CD̂,∴BD∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC=√22+42=2√5,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.10.(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作﹣50元.解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.(2020•金昌)分解因式:a2+a=a(a+1).解:a2+a=a(a+1).故答案为:a(a+1).13.(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.14.(2020•金昌)要使分式x+2x−1有意义,x需满足的条件是x≠1.解:当x﹣1≠0时,分式有意义,∴x≠1,故答案为x≠1.15.(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有17个.解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴xx+3=0.85,解得:x=17,经检验x=17是分式方程的解,∴口袋中红球约有17个.故答案为:17.16.(2020•金昌)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E 的坐标为(7,0).解:∵A(3,√3),D(6,√3),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).17.(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为π3cm(结果保留π).解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;60π⋅R 2360=π6,解得:R =1,∵扇形的面积=12lR =π6, 解得:l =13π. 故答案为:π3.18.(2020•金昌)已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 2032 . 解:当x <4时,原式=4﹣x ﹣x +5=﹣2x +9, 当x =1时,原式=7; 当x =2时,原式=5; 当x =3时,原式=3;当x ≥4时,原式=x ﹣4﹣x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是: 7+5+3+1+1+…+1 =15+1×2017 =2032. 故答案为:2032.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0. 解:原式=4﹣3+√3−1 =√3.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.解:解不等式3x﹣5<x+1,得:x<3,解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<3,将不等式组的解集表示在数轴上如下:21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12AC,位置关系为:EF∥AC.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表: 课题 测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA ,在测点C 用仪器测得点B 的仰角为α,前进一段距离到达测点E ,再用该仪器测得点B 的仰角为β,且点A ,B ,C ,D ,E ,F 均在同一竖直平面内,点A ,C ,E 在同一条直线上.测量数据α的度数β的度CE仪器数的长度CD (EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)解:如图,设BG=x米,在Rt△BFG中,FG=BGtanβ=xtan42°,在Rt△BDG中,DG=BGtanα=xtan31°,由DG﹣FG=DF得,x tan31°−xtan42°=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率). 解:(1)共有5种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”的概率是15;(2)从A ,B ,C ,D 四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A 、D 两个景区的有2种, ∴P (选择A 、D )=212=16. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了26天;(2)这七年的全年空气质量优良天数的中位数是254天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.解:(1)∵296﹣270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x=17(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=3时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:函数y随x的增大而减小.解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°﹣∠OAB﹣∠ABO=120°,∴∠ACB=12∠AOB=60°;(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.解:(1)抛物线y =ax 2+bx ﹣2,则c =﹣2,故OC =2,而OA =2OC =8OB ,则OA =4,OB =12,故点A 、B 、C 的坐标分别为(﹣4,0)、(12,0)、(0,﹣2); 则y =a (x +4)(x −12)=a (x 2+72x ﹣2)=ax 2+bx ﹣2,故a =1, 故抛物线的表达式为:y =x 2+72x ﹣2;(2)抛物线的对称轴为x =−74,当PC ∥AB 时,点P 、C 的纵坐标相同,根据函数的对称性得点P (−72,﹣2);(3)过点P 作PH ∥y 轴交AC 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:y =−12x ﹣2,则△P AC 的面积S =S △PHA +S △PHC =12PH ×OA =12×4×(−12x ﹣2﹣x 2−72x +2)=﹣2(x +2)2+8,∵﹣2<0,∴S 有最大值,当x =﹣2时,S 的最大值为8,此时点P (﹣2,﹣5).。

白银市2020年(春秋版)中考数学试卷(I)卷

白银市2020年(春秋版)中考数学试卷(I)卷

白银市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)﹣的倒数的相反数等于()A . ﹣2B .C . -D . 22. (2分)(2019·泰山模拟) 2018年国庆小长假,奉安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近1320000元,将1320000用科学记数法表示为()A . 1.32×109B . 1.32×108C . 1.32×107D . 1.32×1063. (2分) (2017九下·张掖期中) 桌面上按如图所示放着1个长方体和1个圆柱体,其左视图是()A .B .C .D .4. (2分) (2017八下·东台期中) 下列图案中,是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019九上·射阳期末) 人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A . 平均数B . 中位数C . 众数D . 方差6. (2分)若3ax+7b4与-a4b2y是同类项,则xy的值为()A . 9B . -9C . 4D . -47. (2分)如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为()A . y=﹣ xB . y=﹣C . y=﹣D . y=﹣x8. (2分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是()A . 25°B . 30°C . 35°D . 40°9. (2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()A . 20°B . 55°C . 20°或55°D . 75°10. (2分)如图,在正方形ABCD中,AB=4,点E在以点B为圆心的上,过点E作所在圆的切线分别交边AD,CD于点F,G,连接AE,DE,若∠DEA=90°,则FG的长为()A . 4B .C .D . 311. (2分)(2016·淄博) 已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上有三点(-, y1)、(-, y2)、(-, y3),y1、y2、y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y212. (2分) (2017七下·兴化期末) 如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共4题;共4分)13. (1分) (2016八上·县月考) 已知,求的值为________.14. (1分) (2016九上·常熟期末) 不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出________球的可能性最大.15. (1分)(2018·济宁模拟) 如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2 .则AC长是________cm.16. (1分) (2019九上·利辛月考) 如图,矩形ABCD中,AB=3,BC=4,点P是对角线AC上一动点,过点P 作PE⊥AD于点E,若点P,A,B构成以AB为腰的等腰三角形时,则线段PE的长是________。

白银市2020年中考数学试卷(II)卷

白银市2020年中考数学试卷(II)卷

白银市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列运算正确的是()A . =±3B . |﹣3|=﹣3C . =﹣3D . =π﹣42. (2分) (2017八下·姜堰期末) 某市2017年有25000名学生参加中考,为了了解这25000名考生的中考成绩,从中抽取了1000名考生的成绩进行分析,以下说法正确的是()A . 25000名考生是总体B . 每名考生的成绩是个体C . 1000名考生是总体的一个样本D . 样本容量是250003. (2分)(2011·宜宾) 分式方程的解是()A . 3B . 4C . 5D . 无解4. (2分)如图,的直径的长为,弦长为,的平分线交于,则长为()A . 7B . 7C . 8D . 95. (2分)如图是某几何体的三视图,则该几何体的体积是()A . 18B . 54C . 108D . 2166. (2分)某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛。

在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.21。

则下列说法中,正确的是()A . 甲的成绩比乙的成绩稳定B . 乙的成绩比甲的成绩稳定C . 甲、乙两人成绩的稳定性相同D . 无法确定谁的成绩更稳定7. (2分) (2017八下·萧山期中) 如图,在平行四边形中,点A1 , A2 , A3 , A4和C1 , C2 , C3 ,C4分别是ABCD的五等分点,点B1 , B2和D1 , D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为2,则平行四边形ABCD的面积为()A . 4B .C .D . 308. (2分) (2018九上·巴南月考) 如图,在平面直角坐标系中,△ABC的顶点A,B在反比例函数的图象上,横坐标分别为1、3.5,AB=AC,BC与轴平行,若△ABC的面积为,则的值为()A .B . 5C .D .9. (2分)(2020·武汉模拟) 一个不透明的袋子中装有2个红球、2个蓝球,小球除颜色外其他均相同,若同时从袋子中任取两个小球,则摸到的两个小球中,至少有一个小球为蓝色的概率为()A .B .C .D .10. (2分)(2020·杭州模拟) 已知反比例函数y=的图象在每一个象限内,y随x的增大而增大,那么一次函数y=kx+2的大致图象是()A .B .C .D .11. (2分)(2017·吴忠模拟) 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A . 1B . 2C . 3D . 412. (2分)用“⊕”定义新运算:对于任意实数a、b,都有a⊕b=b+1,例如7⊕2=2+1=5,当m为实数时,m⊕(m⊕2)的值是A . 25B . m+1C . 5D . 26二、填空题 (共8题;共9分)13. (1分) (2019七上·宁波期中) 已知、互为相反数,、互为倒数,则 ________.14. (1分) (2016八下·平武期末) 函数y= 的自变量x的取值范围是________.15. (1分) (2016八上·肇庆期末) 已知空气的单位体积质量为0.00124g/cm3 ,将它用科学记数表示为________g/cm3.16. (1分) (2020八下·深圳期中) 分解因式: ________.17. (1分) (2015八上·吉安期末) “十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x元,男装部购买了原价为y元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为________.18. (2分) (2020七下·达县期末) 如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=50°°,则∠BAC=________,若△ADE的周长为19cm,则BC=________cm.19. (1分)(2020·天台模拟) 如图,以半圆O的半径OA为直径作一个半圆,点C为小半圆上一点,射线AC交半圆O于点D,已知的长为3,则的长为________.20. (1分)(2017·武汉模拟) 如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为________ cm.三、解答题: (共8题;共87分)21. (10分) (2019七下·瑞安期末) 计算下列各题:(1) (3.14-π)0+(-1)2019+3-2(2) (m+1)2-m(m+3)-322. (5分) (2018八上·东湖期中) 如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?23. (10分)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).24. (7分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图1),则sinB=,sinC =,即AD=csinB,AD=bsinC,于是csinB=bsinC,即 .同理有:,,所以 = ,即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=________;AC=________;(2)如图3,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图3),求此时货轮距灯塔A的距离AB.25. (10分)(2019·昆明模拟) 某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.26. (10分) (2018八上·大田期中) 对于实数p,q,我们用符号引表示p,q两数中较大的数,如:,(1)请直接写出;;(2)我们知道,当时,,利用这种方法解决下面问题:若,其中,求x的值.27. (20分)(2014·盐城) 【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.(1) .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.(2) .【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;(3) .【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;(4) .【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2 dm,AD=3dm,BD= dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.28. (15分)(2020·临洮模拟) 如图抛物线y=x2+bx+c(c<0)与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C,顶点为D,且OB=OC=3,点E为线段BD上的一个动点,EF⊥x轴于F.(1)求抛物线的解析式;(2)是否存在点E,使△ECF为直角三角形?若存在,求点E的坐标;不存在,请说明理由;(3)连接AC、BC,若点P是抛物线上的一个动点,当P运动到什么位置时,∠PCB=∠ACO,请直接写出点P 的坐标.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题: (共8题;共87分)21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-2、27-3、28-1、28-2、28-3、。

甘肃省白银市2020版中考数学试卷B卷(新版)

甘肃省白银市2020版中考数学试卷B卷(新版)

甘肃省白银市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2011九上·四川竞赛) 若一个三角形的任意两边都不相等,则称之为不规则三角形,用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是()A . 18B . 24C . 30D . 362. (2分)(2011·希望杯竞赛) 6个人用35天完成了某项工程的,如果再增加工作效率相同的8个人,那么完成这项工程,前后共用的天数是()A . 30B . 40C . 60D . 653. (2分)若是方程组的解,则a、b的值为()A .B .C .D .4. (2分) 1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为().A . 24.953×1013元B . 24.953×1012元C . 2.4953×1013元D . 2.4953×1014元5. (2分) (2019八下·太原期末) 已知一个多边形内角和是外角和的4倍,则这个多边形是()A . 八边形B . 九边形C . 十边形D . 十二边形6. (2分)若÷ 等于3,则x等于()A .B . ﹣C . 2D . ﹣27. (2分)(2017·锡山模拟) 下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A . y=﹣x+1B . y=x2﹣1C .D .8. (2分)若将点A(﹣3,2)先向右平移1个单位,再向下平移4个单位,得到点B,则点B的坐标为()A . (﹣1,6)B . (﹣4,﹣2)C . (﹣2,6)D . (﹣2,﹣2)二、填空题 (共8题;共8分)9. (1分) (2019九上·婺城期末) 一个三角板含、角和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且,点F在直尺的另一边上,那么的大小为________°.10. (1分) (2020八下·北京月考) 使式子有意义的条件是________.11. (1分) (2017七下·南沙期末) 若m<n,则3m﹣2________3n﹣2.12. (1分) (2017九上·青龙期末) 如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=________.13. (1分) (2018九上·邓州期中) 如图,在▱ABCD中,E为AD的三等分点,AE= AD,连结BE,交AC于点F,AC=15,则AF为________.14. (1分)对新城初中某年级学生的体重(单位:kg,精确到1kg )情况进行了抽查,将所得数据处理后分成A,B,C三组(每组含最低值,不含最高值),并制成如图1、表1的统计图表(部分数据未填),在被抽查的学生中偏瘦和偏胖的学生共有________.15. (1分)要把1张50元的人民币兑换成面额为5元和10元的人民币,面值5元x张,面值10元y张,那么x与y间的关系为________ .16. (1分) (2019八上·全椒期中) 如图:、两地相距,甲、乙两人从两地出发相向而行,甲先出发,图中,表示两人离地的距离与时间的关系,则甲出发后________小时,两人恰好相距 .三、解答题 (共12题;共161分)17. (15分)(2017·集宁模拟) 已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB= ,求DE的长.18. (20分) (2017八上·普陀开学考) 计算:(1)(﹣)2+3 × .(2)﹣()2× ÷ .(3)(8×27)﹣(π﹣1)0﹣()﹣1;(4)× × .19. (5分)(2019·盐城) 解不等式组:20. (10分) (2017九上·海淀月考) 已知关于的一元二次方程.(1)求证:此方程总有两个不相等的实数根.(2)若是此方程的一个根,求实数的值.21. (10分) (2019八下·柯桥期末) 如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2) )若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.22. (15分)(2017·江西模拟) 如图,圆形靠在墙角的截面图,A、B分别为⊙O的切点,BC⊥AC,点P在上以2°/s的速度由A点向点B运动(A、B点除外),连接AP、BP、BA.(1)当∠PBA=28°,求∠OAP的度数;(2)若点P不在AO的延长线上,请写出∠OAP与∠PBA之间的关系;(3)当点P运动几秒时,△APB为等腰三角形.23. (15分)(2020·宁波模拟) 如图所示,已知P(2,3)是反比例函数图象上的一点。

2020年中考数学模拟试卷(甘肃白银市专用)(二)(解析版)

2020年中考数学模拟试卷(甘肃白银市专用)(二)(解析版)

2020年中考数学全真模拟试卷(甘肃白银专用)(二)数学试卷注意事项:1.本试题满分150分,考试时间120分钟。

2.试卷由四部分组成。

3.所有学生必须按题目要求答题。

一、单选题(共10题;共30分)1.下列电动车品牌标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C【解析】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故答案为:C.2.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m,方差分别是s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,则这四名同学跳高成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】D【解析】【解答】解:∵s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,∴s丁2<s丙2<s甲2<s乙2,∴成绩最稳定的是丁.故答案为:D.3.如图,下列说法正确的是()A.∠2和∠4是同位角B.∠2和∠4是内错角C.∠1和∠A是内错角D.∠3和∠4是同旁内角.【答案】D【解析】解:AB、∠2和∠4即不是同位角,也不是内错角,不符合题意;C、∠2和∠A是内错角,而∠1和∠A不是内错角,不符合题意;D、∠3和∠4是同旁内角,符合题意.故答案为:D.4.已知实数x,y满足√x−2+(y+1)2=0,则x−y等于()A.3B. -3C.1D. -1【答案】A【解析】因为根号和平方都具备非负性,所以x−2=0,y+1=0,可得x=2,y=−1,所以x−y= 2−(−1)=3.故答案为:A.5.下列计算中,不正确的是()A.a2⋅a5=a10B.a2−2ab+b2=(a−b)2C.−(a−b)=b−aD.3a3b2÷a2b2=3a 【答案】A【解析】解:A.原式=a7,故答案为:A.6.如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cmB.12cmC.10cmD.20cm【答案】A【解析】【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=12OA=45cm,∴弧CD的长=120π×45180=30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故答案为:A.7.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.12x(x+1)=1035 C.x(x﹣1)=1035 D.12x(x﹣1)=1035【答案】C【解析】解:∵全班有x名同学,∴全班有x名同学.∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故答案为:C.8.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m为常数且m≠0)的图象都经过A(−1,2),B(2,−1),结合图象,则不等式kx的解集是()A.x<−1B.−1<x<0C.x<−1或0<x<2D.−1<x<0或x>2【答案】 C【解析】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=mx(m为常数且m≠0)的图象上方时,x的取值范围是:x<−1或0<x<2,∴不等式kx+b>mx的解集是x<−1或0<x<2.故答案为:C.9关于y=2(x﹣3)2+2的图象,下列叙述正确是()A.顶点坐标为(﹣3,2)B.对称轴为直线y=3C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小【答案】C【解析】解:∵y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,∴当x≥3时,y随x的增大而增大.∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确.故答案为:C.10.如图,在△ABC中,AC=BC=2,D是BC的中点,过A,C,D三点的⊙O与AB边相切于点A,则⊙O 的半径为()A.√73B.2√55C.1D.2√147【答案】D【解析】解:连接OA,作AH⊥BC,连接DO并延长交圆于K,∵AB是⊙O的切线,∴∠BAD=∠ACD,∵∠ABD=∠CBA,∴△ABD∽△CAB,∴ABBD =BCAB,∴1AB =AB2,∴AB=√2,∵AC2-CH2=AB2-BH2=AH2,∴22-(2-BH)2=2-BH2,解得BH=12,∴AH=√AB2−BH2=√2−14=√72,∴sin∠ACH=AHAC =√722=√74,∵∠AKD=∠ACH,∴sin∠AKD=ADKD ,即√74=√2KD,解得KD=4√147,∴OD=2√147.故答案为:D.;;二、填空题:本大题共8小题(每小题4分;共32分)11.若一正数的两个平方根分别是2a-1与-a+2,则a=________.【答案】-1【解析】解:∵一正数的两个平方根分别是2a-1与-a+2,∴2a-1-a+2=0解之:a=-1.故答案为:-112.−1−π________ −3.14.【答案】<【解析】【解答】∵π≈3.14159∴−π−(−3.14)=3.14−π<0∴(−1−π)−(−3.14)=−1+(3.14−π)<0即−1−π<−3.14故答案为:<.13.方程1x−3−2=x−13−x的解是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√112.(3分)(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .44.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 26.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m的值为( )A .﹣1或2B .﹣1C .2D .08.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√1010.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作元.12.(3分)(2020•金昌)分解因式:a 2+a = .13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价: 元暑假八折优惠,现价:160元14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 .15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 个.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 .17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为 cm (结果保留π).18.(3分)(2020•金昌)已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 .三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.21.(6分)(2020•金昌)如图,在△ABC 中,D 是BC 边上一点,且BD =BA .(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了天;(2)这七年的全年空气质量优良天数的中位数是天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.参考答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√11【解答】解:√9=3,则由无理数的定义可知,实数是无理数的是√11.故选:D .2.(3分)(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°【解答】解:α的补角是:180°﹣∠A =180°﹣70°=110°.故选:B .3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .4【解答】解:∵正方形的面积是12,∴它的边长是√12=2√3.故选:A .4.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A 不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B 不符合题意;正方体的主视图、俯视图都是正方形,因此选项C 符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D 不符合题意;故选:C .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 2【解答】解:x 2与x 4不是同类项,不能合并计算,它是一个多项式,因此A 选项不符合题意;同理选项B 不符合题意;x 2•x 4=x 2+4=x 6,因此选项C 符合题意;x 12÷x 2=x 12﹣2=x 10,因此选项D 不符合题意; 故选:C .6.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米【解答】解:∵雕像的腰部以下a 与全身b 的高度比值接近0.618,∴a b ≈0.618, ∵b 为2米,∴a 约为1.24米.故选:A .7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m的值为( )A .﹣1或2B .﹣1C .2D .0【解答】解:把x =1代入(m ﹣2)x 2+4x ﹣m 2=0得:m ﹣2+4﹣m 2=0,﹣m 2+m +2=0,解得:m 1=2,m 2=﹣1,∵(m ﹣2)x 2+4x ﹣m 2=0是一元二次方程,∴m ﹣2≠0,∴m≠2,∴m=﹣1,故选:B.8.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°【解答】解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√10̂,【解答】解:∵点D在⊙O上且平分BĈ=CD̂,∴BD∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC=√22+42=2√5,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.10.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2【解答】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作﹣50元.【解答】解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.(3分)(2020•金昌)分解因式:a2+a=a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元【解答】解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 x ≠1 .【解答】解:当x ﹣1≠0时,分式有意义, ∴x ≠1, 故答案为x ≠1.15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 17 个.【解答】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球, ∵假设有x 个红球, ∴x x+3=0.85,解得:x =17,经检验x =17是分式方程的解, ∴口袋中红球约有17个. 故答案为:17.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 (7,0) .【解答】解:∵A (3,√3),D (6,√3), ∴点A 向右平移3个单位得到D , ∵B (4,0),∴点B 向右平移3个单位得到E (7,0), 故答案为(7,0).17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为π3cm (结果保留π).【解答】解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;60π⋅R 2360=π6,解得:R =1,∵扇形的面积=12lR =π6, 解得:l =13π. 故答案为:π3.18.(3分)(2020•金昌)已知y =√(x 2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 2032 . 【解答】解:当x <4时, 原式=4﹣x ﹣x +5=﹣2x +9, 当x =1时,原式=7; 当x =2时,原式=5; 当x =3时,原式=3;当x ≥4时,原式=x ﹣4﹣x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是: 7+5+3+1+1+…+1 =15+1×2017 =2032. 故答案为:2032.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0. 【解答】解:原式=4﹣3+√3−1 =√3.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.【解答】解:解不等式3x﹣5<x+1,得:x<3,解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<3,将不等式组的解集表示在数轴上如下:21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【解答】解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12AC,位置关系为:EF∥AC.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【解答】解:如图,设BG=x米,在Rt△BFG中,FG=BGtanβ=xtan42°,在Rt△BDG中,DG=BGtanα=xtan31°,由DG﹣FG=DF得,x tan31°−xtan42°=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率). 【解答】解:(1)共有5种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”的概率是15;(2)从A ,B ,C ,D 四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A 、D 两个景区的有2种, ∴P (选择A 、D )=212=16. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了26天;(2)这七年的全年空气质量优良天数的中位数是254天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.【解答】解:(1)∵296﹣270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x=17(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=3时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:函数y随x的增大而减小.【解答】解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.【解答】解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°﹣∠OAB﹣∠ABO=120°,∴∠ACB=12∠AOB=60°;(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【解答】(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.【解答】解:(1)抛物线y =ax 2+bx ﹣2,则c =﹣2,故OC =2, 而OA =2OC =8OB ,则OA =4,OB =12,故点A 、B 、C 的坐标分别为(﹣4,0)、(12,0)、(0,﹣2); 则y =a (x +4)(x −12)=a (x 2+72x ﹣2)=ax 2+bx ﹣2,故a =1, 故抛物线的表达式为:y =x 2+72x ﹣2;(2)抛物线的对称轴为x =−74,当PC ∥AB 时,点P 、C 的纵坐标相同,根据函数的对称性得点P (−72,﹣2);(3)过点P 作PH ∥y 轴交AC 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:y =−12x ﹣2,则△P AC 的面积S =S △PHA +S △PHC =12PH ×OA =12×4×(−12x ﹣2﹣x 2−72x +2)=﹣2(x +2)2+8,∵﹣2<0,∴S 有最大值,当x =﹣2时,S 的最大值为8,此时点P (﹣2,﹣5).。

相关文档
最新文档