2012年高考数学分类汇编集合与函数概念
2012年高考数学知识点回顾复习:函数部分001

专题一:集合、常用逻辑用语1、 集合的子集、真子集、空集满足},,,{}{d c b a M a ⊂⊆的集合M 有 个 2、 集合的运算:交、并、补已知集合}12|{+==x y x A ,}1|{2++==x x y y B ,则B A 等于 ( )A .)}3,1(),1,0{( B.R C.),0(+∞ D.),43[+∞3、 四种命题 、全称量词与存在量词 若命题“x ∃∈R ,使得2(1)10x a x +-+<”是真命题,则实数a 的取值范围是 .4、 充分必要条件已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件专题二:基本初等函数1、 函数的概念、定义域、值域已知集合{|02}M x x =≤≤,{|02}N y y =≤≤,再给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的是( )2、 函数的图像1.如图所示中的图象所表示的函数的解析式为( ) A .()3|1|022y x x =-≤≤ B .()33|1|0222y x x =--≤≤C .()3|1|022y x x =--≤≤D .()1|1|02y x x =--≤≤2.函数y=f(x)与函数y=g(x)的图象如图,则函数y=f(x)·g(x)的图象可能是 ( )3、 函数的基本性质 (1) 单调性1.求函数1x 1x y --+=的单调性。
2.求函数xx y 1-=在]2,1[上的值域是_____________(2) 奇偶性1.函数f(x)=(x -1)xx -+11的奇偶性 ;2.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数(3) 最值求函数2()23f x x x =--,[-2,2]的单调区间,值域和最值。
高考数学集合和函数知识点

高考数学集合和函数知识点1. 集合的基本概念集合是数学中的基本概念之一,它是由确定的元素所组成的整体。
集合的元素可以是任意事物,比如数字、字母、图形等等。
集合用大写字母表示,元素用小写字母表示。
常见的集合有自然数集合N,整数集合Z,有理数集合Q,实数集合R等等。
集合之间可以进行运算,包括并集、交集、差集等等。
2. 集合的表示方法集合可以通过列举元素的方式表示,比如集合A={1, 2, 3};也可以通过描述元素的特征来表示,比如集合B={x | x是偶数}。
3. 集合的运算3.1 并集并集是指两个集合中所有的元素的总和。
表示为A∪B,其中A和B是两个集合。
并集的结果是一个新的集合,其中包含了A和B中的所有元素。
例如,对于集合A={1, 2, 3}和集合B={3, 4, 5},它们的并集为A∪B={1, 2, 3, 4, 5}。
3.2 交集交集是指两个集合中共有的元素组成的集合。
表示为A∩B,其中A和B是两个集合。
交集的结果是一个新的集合,其中包含了A和B中共有的元素。
例如,对于集合A={1, 2, 3}和集合B={3, 4, 5},它们的交集为A∩B={3}。
3.3 差集差集是指从一个集合中去除另一个集合中的元素所得到的集合。
表示为A-B,其中A和B是两个集合。
差集的结果是一个新的集合,其中包含了A中去除掉B 中的元素。
例如,对于集合A={1, 2, 3}和集合B={3, 4, 5},它们的差集为A-B={1, 2}。
3.4 补集补集是指在某个全集中,不属于某个集合的元素所组成的集合。
表示为A的补集,其中A是一个集合。
补集的结果是一个新的集合,其中包含了全集中不属于A的元素。
例如,对于集合A={1, 2, 3},它的补集为A的补集={x | x∈R, x≠1, x≠2, x≠3}。
4. 函数的基本概念函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数由定义域、值域和对应关系组成。
2012年高考数学按章节分类汇编(人教A必修一):第一章集合与函数的概念

2012年高考数学按章节分类汇编(人教A 必修一)第一章集合与函数的概念一、选择题1 .(2012年高考(浙江文))设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}2 .(2012年高考(浙江理))设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( ) A .(1,4) B .(3,4) C .(1,3) D .(1,2)3 .(2012年高考(四川文))设集合{,}A a b =,{,,}B b c d =,则AB =( )A .{}bB .{,,}b c dC .{,,}a c dD .{,,,}a b c d4 .(2012年高考(山东文))已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A Bð为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}5 .(2012年高考(辽宁文))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U C A C B ⋂= ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}6 .(2012年高考(课标文))已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 ( )A .A ⊂≠BB .B ⊂≠AC .A=BD .A∩B=∅7 .(2012年高考(江西文))若全集U={x∈R|x 2≤4} A={x∈R||x+1|≤1}的补集CuA 为( )A .|x∈R |0<x<2|B .|x∈R |0≤x<2|C .|x∈R |0<x≤2|D .|x∈R |0≤x≤2|8 .(2012年高考(湖南文))设集合{}{}21,0,1,|MN x x x =-==,则M N ⋂= ( )A .{}1,0,1-B .{}0,1C .{}1D .{}09 .(2012年高考(湖北文))已知集合{}{}2|320,,|05,A x xx x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为 ( )A .1B .2C .3D .410.(2012年高考(广东文))(集合)设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =( )A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U11.(2012年高考(福建文))已知集合{}{}1,2,3,4,2,2MN ==-,下列结论成立的是( )A .N M ⊆B .M N M ⋃=C .M N N ⋂=D .{}2M N ⋂=12.(2012年高考(大纲文))已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则( )A .AB ⊆B .C B ⊆C .D C ⊆D .A D ⊆13.(2012年高考(北京文))已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B =( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞14 .(2012年高考(新课标理))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为 ( )A .3B .6C .8D .1015 .(2012年高考(陕西理))集合{|lg 0}Mx x =>,2{|4}N x x =≤,则MN =( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]16 .(2012年高考(山东理))已知全集{}0,1,2,3,4U=,集合{}{}1,2,3,2,4A B ==,则U C AB 为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,417 .(2012年高考(辽宁理))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8}, 则)()(B C A C U U 为 ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}18 .(2012年高考(湖南理))设集合M={-1,0,1},N={x|x 2≤x},则M∩N= ( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,0}19 .(2012年高考(广东理))(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M = ( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,620 .(2012年高考(大纲理))已知集合{{},1,,A B m A B A ==⋃=,则m =( )A .0B .0或3C .1D .1或321 .(2012年高考(北京理))已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B =( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞22.(2012年高考(江西理))若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( ) A .5B .4C .3D .2 23 .(2012年高考(陕西文))下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .2y x =-C .1y x=D .||y x x =24 .(2012年高考(江西文))设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则((3))f f =( )A .15B .3C .23D .13925.(2012年高考(湖北文))已知定义在区间(0,2)上的函数()y f x =的图像如图所示,则(2)y f x =--的图像为26.(2012年高考(福建文))设1,()0,1,f x ⎧⎪⎪=⎨⎪-⎪⎩0(0)(0)x x x >=<,1,()0,g x ⎧⎪=⎨⎪⎩()(x x 为有理数为无理数),则(())f g π的值为( )A .1B .0C .1-D .π27 .(2012年高考(上海春))记函数()y f x =的反函数为1().y f x -=如果函数()y f x =的图像过点(1,0),那么函数1()1y f x -=+的图像过点 [答]( )A .(0,0).B .(0,2).C .(1,1).D .(2,0).28 .(2012年高考(陕西理))下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .2y x =-C .1y x=D .||y x x =二、填空题29.(2012年高考(天津文))集合{}|25A x R x =∈-≤中最小整数位_________.30.(2012年高考(上海文))若集合}012|{>-=x x A ,}1|{<=x x B ,则B A =_________. 31.(2012年高考(天津理))已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,则=m __________,=n ___________.32.(2012年高考(四川理))设全集{,,,}Ua b c d =,集合{,}A a b =,{,,}B b c d =,则=)()(B C A C U U _______.33.(2012年高考(上海理))若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =_________ .34.(2012年高考(上海春))已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B =则k =______.35.(2012年高考(江苏))已知集合{124}A =,,,{246}B =,,,则AB =____.36.(2012年高考(重庆文))函数()()(4)f x x a x =+- 为偶函数,则实数a =________ 37.(2012年高考(浙江文))设函数f(x)是定义在R 上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则3f 2()=_______________.38.(2012年高考(广东文))(函数)函数y 的定义域为__________. 39.(2012年高考(安徽文))若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则_____a =40.(2012年高考(天津文))已知函数211x y x -=-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是________.41.(2012年高考(四川文))函数()f x =____________.(用区间表示)42.(2012年高考(上海文))已知)(x f y =是奇函数. 若2)()(+=x f x g 且1)1(=g .,则=-)1(g _______ .43.(2012年高考(山东文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.44.(2012年高考(福建文))已知关于x 的不等式220xax a -+>在R 上恒成立,则实数a 的取值范围是_________.祥细答案一、选择题 1. 【答案】D【命题意图】本题主要考查了集合的并集和补集运算. 【解析】Q{3,4,5},∴C U Q={1,2,6},∴ P∩(C U Q)={1,2}. 2. 【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3. [答案]D[解析]集合A 中包含a,b 两个元素,集合B 中包含b,c,d 三个元素,共有a,b,c,d 四个元素,所以}{d c b a B A 、、、=[点评]本题旨在考查集合的并集运算,集合问题属于高中数学入门知识,考试时出题难度不大,重点是掌握好课本的基础知识.4. 解析:}4,2,0{)(},4,0{==B A C A C U U .答案选C.5. 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U {7,9}.故选B 【解析二】 集合)()(B C A C U U 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案.6. 【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】A=(-1,2),故B ⊂≠A,故选B.7. C 【解析】{|22}U x x =-≤≤,{|20}A x x =-≤≤,则{|02}U C A x x =<≤. 8. 【答案】B【解析】{}0,1N = M={-1,0,1} ∴M∩N={0,1}【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N.9. D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.10.解析:A.{}2,4,6U C M =. 11. 【答案】D【解析】显然,,A B C 错,D 正确【考点定位】考查集合包含关系与运算,属基础题. 12.答案B【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用.【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,可知集合C 是最小的,集合A 是最大的,故选答案B. 13. 【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>.【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法.14. 【解析】选D 5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个15. 解析:{|lg 0}{|1}Mx x x x =>=>,{|22}N x x =-≤≤,{12}M N x x =<≤,故选C.16. 【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 17. 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}.故选B 【解析二】 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案.18. 【答案】B【解析】{}0,1N = M={-1,0,1} ∴M∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N19. 解析:C.{}3,5,6U C M =.20. 答案B【命题意图】本试题主要考查了集合的概念和集合的并集运算,集合的关系的运用,元素与集合的关系的综合运用,同时考查了分类讨论思想.【解析】【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B. 21. 【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>.【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法. 22. C 【解析】本题考查集合的概念及元素的个数.容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn 图的考查等.23. 解析:运用排除法,奇函数有1y x=和||y x x =,又是增函数的只有选项D 正确. 24. 【答案】D【解析】考查分段函数,22213((3))()()1339f f f ==+=. 25. B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有xe 的指数型函数或含有ln x 的对数型函数的图象的识别. 26. 【答案】B【解析】因为()0g π= 所以(())(0)0f g f π==. B 正确【考点定位】该题主要考查函数的概念,定义域和值域,考查求值计算能力. 27. B28. 解析:奇函数有1yx=和||y x x =,又是增函数的只有选项D 正确.29. 【解析】3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.30. [解析] ),(21∞+=A ,)1,1(-=B ,A ∩B =)1,(21. 31. 【答案】1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)AB n -,画数轴可知=1m -,=1n .32. [答案]{a, c, d}[解析]∵d}{c,=)(A C U ;}{a B C U =)( ∴=)()(B C A C U U {a,c,d} [点评]本题难度较低,只要稍加注意就不会出现错误.33. [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(21-. 34. 335. 【答案】{}1,2,4,6.【考点】集合的概念和运算. 【分析】由集合的并集意义得{}1,2,4,6AB =.36. 【答案】4【解析】由函数()f x 为偶函数得()()f a f a =-即()(4)()(4)a a a a a a +-=-+--4a ⇒=.【考点定位】本题考查函数奇偶性的应用,若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切a 都有()()f a f a =-成立.37. 【答案】32 【命题意图】本题主要考查了函数的周期性和奇偶性. 【解析】331113()(2)()()1222222f f f f =-=-==+=. 38.解析:[)()1,00,-+∞.由10x x +≥⎧⎨≠⎩解得函数的定义域为[)()1,00,-+∞.39. 【解析】6- 由对称性:362aa -=⇔=-40. 【解析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y ,综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,,做出函数的图象,要使函数y与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,则此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数的取值范围是10<<k 或21<<k .41. [答案](21-,∞)[解析]由分母部分的1-2x>0,得到x∈(21-,∞).[点评]定义域问题属于低档题,只要保证式子有意义即可,相对容易得分.常见考点有:分母不为0;偶次根下的式子大于等于0;对数函数的真数大于0;0的0次方没有意义.42. [解析] )(x f y=是奇函数,则)1()1(f f -=-,44)1()1()1()1(=+-+=-+f f g g ,所以3)1(4)1(=-=-g g .43.答案:14 解析:当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.另解:由函数()(14g x m =-在[0,)+∞上是增函数可知41,041<>-m m ; 当1>a 时()x f x a =在[-1,2]上的最大值为=2a 4,解得2=a ,最小值为211==-a m 不符合题意,舍去;当10<<a 时,()x f x a =在[-1,2]上的最大值为41=-a ,解得41=a ,此时最小值为411612<==a m ,符合题意, 故a =41. 44. 【答案】(0,8)【解析】因为 不等式恒成立,所以0∆<,即 2420a a -⋅<,所以08a <<【考点定位】该题主要考查一元二次不等式的解法,解法的三种情况的理解和把握是根本.。
集合与函数概念知识点

集合与函数概念知识点集合与函数是高中数学中的重要概念,在数学的各个领域中起着关键的作用。
集合是数学中最基础的概念之一,它是由不同元素组成的一种事物的整体。
而函数则是集合之间的一种特殊的关系,它描述了输入和输出之间的映射关系。
本文将从集合和函数的定义、性质和应用等方面来探讨这两个重要的数学概念。
首先,我们先来了解集合的概念。
集合是由一些确定的对象组成,这些对象称为集合的元素。
举个简单的例子,{1, 2, 3}就是一个集合,其中的1、2、3就是集合的元素。
在集合中,元素的顺序是无关紧要的,而且一个元素在集合中只会出现一次。
集合可以用不同的方式来表示,比如列举法、描述法和图示法等。
集合的基本运算包括交集、并集、补集和差集等,这些运算在解决实际问题时起到了重要的作用。
其次,我们来介绍函数的概念。
函数是集合之间的一种对应关系,它将一个集合的元素映射到另一个集合的元素上。
函数可以用各种方式表示,比如用公式、图像、表格和文字描述等。
函数有很多重要的性质,比如一一对应、单调性和可逆性等。
其中,一一对应是指一个输入对应一个输出,输出不会重复;单调性则描述了函数的增减趋势;可逆性则表示函数的输入和输出之间存在着逆关系。
函数在数学中的应用非常广泛,如在几何学中用来描述图形的变换、在微积分中用来描述曲线的变化、在统计学中用来表示概率分布等。
进一步探讨,集合和函数之间存在着密切的关系。
事实上,函数可以看作是将一个集合中的元素映射到另一个集合中的元素的一种特殊关系。
函数可以用集合来表示,其中输入的集合被称为定义域,输出的集合被称为值域。
函数的图像可以用集合的图示法来表示,其中每个点代表了函数中的一个元素对。
函数的特性可以通过集合的运算来研究,比如函数的复合、函数的反函数和函数的性质等。
通过研究函数与集合之间的关系,我们可以更好地理解函数的本质和特点。
最后,我们来谈一谈集合和函数在现实生活中的应用。
集合的应用非常广泛,比如在统计学中用来表示样本空间、在计算机科学中用来表示数据集、在金融学中用来表示投资组合等。
2012高考数学复习详细资料(精品)——集合

2012高考数学复习详细资料(精品)——集合一、知识清单:1.元素与集合的关系:用∈或∉表示;2.集合中元素具有确定性、无序性、互异性.3.集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y |y =x 2},表示非负实数集,点集{(x ,y )|y =x 2}表示开口向上,以y 轴为对称轴的抛物线; 4.集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…}; ②描述法③字母表示法:常用数集的符号:自然数集N ;正整数集*N N +或;整数集Z ;有理数集Q 、实数集R; 5.集合与集合的关系:用⊆,≠⊂,=表示;A 是B 的子集记为A ⊆B ;A 是B 的真子集记为A ≠⊂B 。
①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;空集是任何非空集合的真子集;③如果B A ⊆,同时A B ⊆,那么A = B ;如果A B ⊆,B C ⊆,A C ⊆那么.④n 个元素的子集有2n 个;n 个元素的真子集有2n -1个;n 个元素的非空真子集有2n -2个.6.交集A∩B={x |x ∈A 且x ∈B};并集A ∪B={x |x ∈A ,或x ∈B};补集C U A={x |x ∈U ,且x ∉A },集合U 表示全集.7.集合运算中常用结论: ①;A B AB A ⊆⇔=A B A B B ⊆⇔=②()()();U U U A B A B =痧?()()()U U U A B A B =痧?③()()card A B card A =+()()card B card A B - 二、课前预习1.下列关系式中正确的是( )(A){}Φ⊆Φ (B){}0∈Φ (C)0{}Φ= (D)0{}⊆Φ 2. 3231x y x y +=⎧⎨-=⎩解集为______.3.设{}{}24,21,,9,5,1A a a B a a =--=--,已知{}9AB =,求实数a 的值.4.设{}220,M x x x x R =++=∈,a =lg(lg10),则{a }与M 的关系是( ) (A){a }=M (B)M Ü{a } (C){a }ÝM (D)M ⊇{a }5.集合A={x |x =3k -2,k ∈Z},B={y |y=3n +1,n ∈Z},S={y |y =6m +1,m ∈Z}之间的关系是( ) (A)S ÜB ÜA (B)S=B ÜA (C)S ÜB=A (D)S ÝB=A 6.用适当的符号()∈∉、、=、、茌填空: ①π___Q ; ②{3.14}____Q ;③-R ∪R +_____R; ④{x |x =2k +1, k ∈Z}___{x |x =2k -1, k ∈Z}。
2012年高考数学重点知识点归纳

2012年高考数学重点知识点归纳第一章 集合与简易逻辑一、集合知识1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2.集合的表示法:列举法、描述法、图形表示法. 3.集合元素的特征:确定性、互异性、无序性. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉ U 交:且并:或补:且C5. 主要性质和运算律(1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇ C(2) 等价关系:U A B A B A A B B A B U ⊆⇔=⇔=⇔= C(3) 集合的运算律:交换律:.;A B B A A B B A == 结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+ (3) card (C U A )= card(U)- card(A)(4)设有限集合A, card(A)=n,则①A 的子集个数为n 2; ②A 的真子集个数为12-n ;③A 的非空子集个数为12-n ;④A 的非空真子集个数为22-n .二.简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考数学分类汇总-集合与函数概念

集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法0)〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <,(前者可以不成立,为空集;而后者必须成立). (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义图象判定方法y=f(X)yx ox x 2f(x )f(x )211yxo性 质函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
2012年高考数学考点:关于集合的知识点总结

2012年高考数学考点:关于集合的知识点总结导读:本文2012年高考数学考点:关于集合的知识点总结,仅供参考,如果能帮助到您,欢迎点评和分享。
一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:①.元素的确定性;②.元素的互异性;③.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}4、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年高考数学按章节分类汇编(人教A 必修一)第一章集合与函数的概念一、选择题1 .(2012年高考(浙江文))设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)= ( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}2 .(2012年高考(浙江理))设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3 .(2012年高考(四川文))设集合{,}A a b =,{,,}B b c d =,则A B =( ) A .{}b B .{,,}b c d C .{,,}a c d D .{,,,}a b c d4 .(2012年高考(山东文))已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 ( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}5 .(2012年高考(辽宁文))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U C A C B ⋂= ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}6 .(2012年高考(课标文))已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 ( )A .A ⊂≠B B .B ⊂≠AC .A=BD .A∩B=∅ 7 .(2012年高考(江西文))若全集U={x∈R|x 2≤4} A={x∈R||x+1|≤1}的补集CuA 为( )A .|x∈R |0<x<2|B .|x∈R |0≤x<2|C .|x∈R |0<x≤2|D .|x∈R |0≤x≤2|8 .(2012年高考(湖南文))设集合{}{}21,0,1,|M N x x x =-==,则M N ⋂=( ) A .{}1,0,1-B .{}0,1C .{}1D .{}0 9 .(2012年高考(湖北文))已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2 C .3 D .410.(2012年高考(广东文))(集合)设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =( )A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U11.(2012年高考(福建文))已知集合{}{}1,2,3,4,2,2M N ==-,下列结论成立的是( ) A .N M ⊆ B .M N M ⋃= C .M N N ⋂= D .{}2M N ⋂=12.(2012年高考(大纲文))已知集合{}|A x x =是平行四边形,{}|B x x =是矩形, {}|C x x =是正方形,{}|D x x =是菱形,则( )A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆13.(2012年高考(北京文))已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B =( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞ 14 .(2012年高考(新课标理))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为 ( )A .3B .6C .8D .1015 .(2012年高考(陕西理))集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N = ( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]16 .(2012年高考(山东理))已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,417 .(2012年高考(辽宁理))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为 ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}18 .(2012年高考(湖南理))设集合M={-1,0,1},N={x|x 2≤x},则M∩N= ( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,0}19 .(2012年高考(广东理))(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,620 .(2012年高考(大纲理))已知集合{{},1,,A B m A B A ==⋃=,则m =( )A .0B .0或3C .1D .1或321 .(2012年高考(北京理))已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B =( )A .(,1)-∞-B .2(1,)3-- C .2(,3)3- D .(3,)+∞22.(2012年高考(江西理))若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( )A .5B .4C .3D .223 .(2012年高考(陕西文))下列函数中,既是奇函数又是增函数的为 ( )A .1y x =+B .2y x =-C .1y x =D .||y x x =24 .(2012年高考(江西文))设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则((3))f f = ( ) A .15 B .3 C .23 D .13925.(2012年高考(湖北文))已知定义在区间(0,2)上的函数()y f x =的图像如图所示,则(2)y f x =--的图像为 ( )26.(2012年高考(福建文))设1,()0,1,f x ⎧⎪⎪=⎨⎪-⎪⎩0(0)(0)x x x >=<,1,()0,g x ⎧⎪=⎨⎪⎩()(x x 为有理数为无理数),则(())f g π的值为( ) A .1 B .0 C .1- D .π27 .(舍)(2012年高考(上海春))记函数()y f x =的反函数为1().y f x -=如果函数()y f x =的图像过点(1,0),那么函数1()1y f x -=+的图像过点 ( )A .(0,0).B .(0,2).C .(1,1).D .(2,0).28 .(2012年高考(陕西理))下列函数中,既是奇函数又是增函数的为( ) A .1y x =+B .2y x =-C .1y x =D .||y x x =二、填空题 29.(2012年高考(天津文))集合{}|25A x R x =∈-≤中最小整数位_________.30.(2012年高考(上海文))若集合}012|{>-=x x A ,}1|{<=x x B ,则B A =_________ .31.(2012年高考(天津理))已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n - ,则=m __________,=n ___________.32.(2012年高考(四川理))设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则=)()(B C A C U U _______.33.(2012年高考(上海理))若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =_________ .34.(2012年高考(上海春))已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B = 则k =______.35.(2012年高考(江苏))已知集合{124}A =,,,{246}B =,,,则A B = ____. 36.(2012年高考(重庆文))函数()()(4)f x x a x =+- 为偶函数,则实数a =________37.(2012年高考(浙江文))设函数f(x)是定义在R 上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则3f 2()=_______________.38.(2012年高考(广东文))(函数)函数y =的定义域为__________. 39.(2012年高考(安徽文))若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则_____a =40.(2012年高考(天津文))已知函数211x y x -=-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是________.41.(2012年高考(四川文))函数()f x =____________.(用区间表示) 42.(2012年高考(上海文))已知)(x f y =是奇函数. 若2)()(+=x f xg 且1)1(=g .,则=-)1(g _______ .43.(2012年高考(山东文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.44.(2012年高考(福建文))已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________.详细答案一、选择题1. 【答案】D 【命题意图】本题主要考查了集合的并集和补集运算.【解析】 Q{3,4,5},∴C U Q={1,2,6},∴ P∩(C U Q)={1,2}.2. 【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B3. [答案]D [解析]集合A 中包含a,b 两个元素,集合B 中包含b,c,d 三个元素,共有a,b,c,d四个元素,所以}{d c b a B A 、、、=[点评]本题旨在考查集合的并集运算,集合问题属于高中数学入门知识,考试时出题难度不大,重点是掌握好课本的基础知识.4. 解析:}4,2,0{)(},4,0{==B A C A C U U .答案选C.5. 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U {7,9}.故选B【解析二】 集合)()(B C A C U U 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案.6. 【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】A=(-1,2),故B ⊂≠A,故选B.7. C 【解析】{|22}U x x =-≤≤,{|20}A x x =-≤≤,则{|02}U C A x x =<≤.8. 【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M∩N={0,1}【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N.9. D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.10.解析:A.{}2,4,6U C M =.11. 【答案】D 【解析】显然,,A B C 错,D 正确【考点定位】考查集合包含关系与运算,属基础题.12.答案B 【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用.【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,可知集合C 是最小的,集合A 是最大的,故选答案B.13. 【答案】D 【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>.【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法.14. 【解析】选D 5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个15. 解析:{|lg 0}{|1}M x x x x =>=>,{|22}N x x =-≤≤,{12}M N x x =<≤,故选C.16. 【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.17. 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}.故选B【解析二】 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案.18. 【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N19. 解析:C.{}3,5,6U C M =.20. 答案B【命题意图】本试题主要考查了集合的概念和集合的并集运算,集合的关系的运用,元素与集合的关系的综合运用,同时考查了分类讨论思想.【解析】【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.21. 【答案】D 【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>.【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法.22. C 【解析】本题考查集合的概念及元素的个数.容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn 图的考查等. 23. 解析:运用排除法,奇函数有1y x=和||y x x =,又是增函数的只有选项D 正确. 24. 【答案】D 【解析】考查分段函数,22213((3))()()1339f f f ==+=. 25. B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有x e 的指数型函数或含有ln x 的对数型函数的图象的识别.26. 【答案】B 【解析】因为()0g π= 所以(())(0)0f g f π==. B 正确【考点定位】该题主要考查函数的概念,定义域和值域,考查求值计算能力.27. B28. 解析:奇函数有1y x=和||y x x =,又是增函数的只有选项D 正确.29. 【解析】3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.30. [解析] ),(21∞+=A ,)1,1(-=B ,A ∩B =)1,(21. 31. 【答案】1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n - ,画数轴可知=1m -,=1n .32. [答案]{a, c, d}[解析]∵d}{c,=)(A C U ;}{a B C U =)( ∴=)()(B C A C U U {a,c,d}[点评]本题难度较低,只要稍加注意就不会出现错误.33. [解析] ),(1∞+-=A ,)3,1(-=B ,A ∩B =)3,(1-. 34. 335. 【答案】{}1,2,4,6. 【考点】集合的概念和运算.【分析】由集合的并集意义得{}1,2,4,6A B = .36. 【答案】4【解析】由函数()f x 为偶函数得()()f a f a =-即()(4)()(4)a a a a a a +-=-+-- 4a ⇒=.【考点定位】本题考查函数奇偶性的应用,若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切a 都有()()f a f a =-成立.37. 【答案】32【命题意图】本题主要考查了函数的周期性和奇偶性. 【解析】331113()(2)()()1222222f f f f =-=-==+=. 38.解析:[)()1,00,-+∞ .由100x x +≥⎧⎨≠⎩解得函数的定义域为[)()1,00,-+∞ . 39. 【解析】6- 由对称性:362a a -=⇔=- 40. 【解析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y ,综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,,做出函数的图象,要使函数y 与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,则此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数的取值范围是10<<k 或21<<k .41. [答案](21-,∞)[解析]由分母部分的1-2x>0,得到x∈(21-,∞).[点评]定义域问题属于低档题,只要保证式子有意义即可,相对容易得分.常见考点有:分母不为0;偶次根下的式子大于等于0;对数函数的真数大于0;0的0次方没有意义.42. [解析] )(x f y =是奇函数,则)1()1(f f -=-,44)1()1()1()1(=+-+=-+f f g g ,所以3)1(4)1(=-=-g g .43.答案:14 解析:当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.另解:由函数()(14g x m =-在[0,)+∞上是增函数可知41,041<>-m m ; 当1>a 时()x f x a =在[-1,2]上的最大值为=2a 4,解得2=a ,最小值为211==-a m 不符合题意,舍去;当10<<a 时,()x f x a =在[-1,2]上的最大值为41=-a,解得41=a ,此时最小值为411612<==a m ,符合题意, 故a =41. 44. 【答案】(0,8) 【解析】因为 不等式恒成立,所以0∆<,即 2420a a -⋅<,所以08a <<【考点定位】该题主要考查一元二次不等式的解法,解法的三种情况的理解和把握是根本.。