高中数学必修1优秀教3.示范教案(2.1 对数与对数运算 第2课时)
高一数学教案: 2.2.1 对数与对数运算(2课时)

第二课时师:在初中,我们学习了指数的运算法则,请大家回忆一下.生:m n m n a a a +⋅= (m,n ∈Z);()m n mna a = (m,n ∈Z);()n n nab a b =⋅ (n ∈Z),师:下面我们利用指数的运算法则,证明对数的运算法则.(板书)(1)正因数积的对数等于同一底数各个因数的对数的和,即log a (MN )=log a M+log a N .(请两个同学读法则(1),并给时间让学生讨论证明.)师:我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.师:(板书)设log a M=p ,log a N=q ,由对数的定义可以写成M=a p ,N=a q.所以M ·N=a p ·a q =a p+q, 所以 log a (M ·N )=p+q=log a M+log a N . 即 log a (MN )=log a M+log a N . 师:这个法则的适用条件是什么?生:每个对数都有意义,即M >0,N >0;a >0且a ≠1. 师:观察法则(1)的结构特点并加以记忆.生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算. 师:非常好.例如,(板书)log 2(32×64)=? 生:log 2(32×64)=log 232+log 264=5+6=11.师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化. 师:(板书)log 62+log 63=?生:log 62+log 63=log 6(2×3)=1.师:正确.由此例我们又得到什么启示? 生:这是法则从右往左的使用.是升级运算. 师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用!师:(板书)(2)两个正数的商的对数等于被除数的对数减去除数的对数.师:仿照研究法则(1)的四个步骤,自己学习. (给学生三分钟讨论时间.)生:(板书)设log a M=p ,log a N=q .根据对数的定义可以写成M=a p ,N=a q.所以师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?生:(板书)师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.师:法则(2)的适用条件是什么?生:M>0,N>0;a>0且a≠1.师:观察法则(2)的结构特点并加以记忆.生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.师:(板书)lg20-lg2=?师:可见法则(2)的作用仍然是加快计算速度,也简化了计算的方法.师:(板书)例1 计算:(学生上黑板解,由学生判对错,并说明理由.):(1)log93+log927=log93×27=log981=2;(3)log2(4+4)=log24+log24=4;生:第(2)题错!在同底的情况下才能运用对数运算法则.(板书)生:第(3)题错!法则(1)的内容是:生:第(4)题错!法则(2)的内容是:师:通过前面同学出现的错误,我们在运用对数运算法则时要特别注意什么?生:首先,在同底的情况下才能从右往左运用法则(1)、(2);其次,只有在正因数的积或两个正数的商的对数的情况下,才能从左往右运用运算法则(1)、(2).师:(板书)(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即log a(N)n=n·log a N.师:请同学们自己证明(给几分钟时间)师:法则(3)的适用条件是什么?生:a>0,a≠1;N>0.师:观察式子结构特点并加以记忆.生:从左往右仍然是降级运算.师:例如,(板书)log332=log525=5log52.练习计算(log232)3.(找一好一差两名学生板书.)错解:(log232)3=log2(25)3=log2215=15.正确解:(log232)3=(log225)3=(5log22)3=53=125.(师再次提醒学生注意要准确记忆公式.)师:(板书)(4)正数的正的方根的对数等于被开方数的对数除以根指数.即师:法则(4)的适用条件是什么?生:a>0,a≠1;N>0.师:法则(3)和法则(4)可以合在一起加以记忆.即log a Nα=αlog a N(α∈R).(师板书)例2 用log a x,log a y,log a z表示下列各式:解:(注意(3)的第二步不要丢掉小括号.)例3 计算:解:(生板书)(1)log2(47×25)=log247+log225=7log24+5log22=7×2+5×1=19.师:请大家在笔记本上小结这节课的主要内容.小结:通过本节课,应使学生明确如何学习一种运算(从定义、记法、性质、法则等方面来研究);如何学习公式或法则(从公式推导,适用条件,结构特点和记忆以及公式作用四方面来研究).针对高中数学内容多、密度大、进度快的特点,应使学生尽早地掌握适应高中数学的学习方法.练习:课本第79页练习第1、2、3题。
人教A版数学必修一《2.2.1对数与对数运算(二)》教案

辽宁省沈阳市第十五中学高中数学《2.2.1对数与对数运算(二)》教案 新人教A 版必修1教学目标(一) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程;3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值;5.明确对数运算性质与幂的运算性质的区别.一、复习引入:1.对数的定义 b N a =log 其中 ),1()1,0(+∞∈Y a 与 ),0(+∞∈N2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且)()(),()(),(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3.重要公式:⑴负数与零没有对数; ⑵01log =a ,1log =a a ⑶对数恒等式N a N a =log二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a 1,M > 0, N > 0 有:)()(2N log M log NM log 1N log M log (MN)log a a a a a a -=+= b n m b a m a n log log =(3) 2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zy x zxy a a . 例2. 计算 (1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+ (3) .18lg 7lg 37lg214lg -+-例4.已知3010.02lg =,4771.03lg =, 求45lg例5.已知a =9log 18,518=b ,求45log 36 (备用题)。
高中数学必修1公开课教案2.2.1 对数与对数运算 第2课时

第2课时 指数与指数幂的运算(2)导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂. 推进新课 新知探究 提出问题(1)整数指数幂的运算性质是什么? (2)观察以下式子,并总结出规律:a >0, ①510a=352)(a =a 2=a510;②8a =24)(a =a 4=a 28; ③412a =443)(a =a 3=a 412; ④210a=225)(a =a 5=a210.(3)利用(2)的规律,你能表示下列式子吗?435,357,57a ,n m x (x>0,m,n ∈N *,且n>1).(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般的情形吗?活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义; a -n =n a1(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n . (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①510a =a510,②8a =a 28,③412a=a412,④210a=a210结果的a 的指数是2,4,3,5分别写成了510,28,412,510,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,435=543,357=735,57a =a 57,n mx=x nm .(4)53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m的n 次方根是x nm . 结果表明方根的结果和分数指数幂是相通的.(5)如果a>0,那么a m 的n 次方根可表示为na m=a n m ,即a nm =n a m (a>0,m,n ∈N *,n>1).综上所述,我们得到正数的正分数指数幂的意义,教师板书: 规定:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n ∈N *,n>1).提出问题①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗?③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n =n a1(a≠0),n ∈N *. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.规定:正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1).③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是:正数的正分数指数幂的意义是a mn =n m a (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.⑤若没有a >0这个条件会怎样呢?如(-1)31=3-1=-1,(-1)62=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a >0的条件,比如式子3a 2=|a|32,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: (1)a r ·a s =a r+s (a>0,r,s ∈Q ), (2)(a r )s =a rs (a>0,r,s ∈Q ), (3)(a·b)r =a r b r (a>0,b>0,r ∈Q ).我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题. 应用示例思路1 例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式.a 3·a ;a 2·32a ;3a a (a>0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a 213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a·a 31)21=(a 34)21=a 32. 点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8.活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.解:(1)原式=[2×(-6)÷(-3)]a 612132-+b653121-+=4ab 0=4a;(2)(m 41n83-)8=(m 41)8(n83-)8=m 841⨯n883⨯-=m 2n -3=32nm .点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63; (2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(nm =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4计算下列各式: (1)(125253-)÷425; (2)322aa a ∙(a >0).活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答. 解:(1)原式=(2531-12521)÷2541=(532-523)÷521=52132--52123-=561-5=65-5;(2)322a a a ∙=32212aa a ∙=a32212--=a 65=65a .思路2例1比较5,311,6123的大小.活动:学生努力思考,积极交流,教师引导学生解题的思路,由于根指数不同,应化成统一的根指数,才能进行比较,又因为根指数最大的是6,所以我们应化为六次根式,然后,只看被开方数的大小就可以了.解:因为5=635=6125,311=6121,而125>123>121,所以6125>6123>6121. 所以5>6123>311.点评:把根指数统一是比较几个根式大小的常用方法. 例2求下列各式的值:(1)432981⨯;(2)23×35.1×612.活动:学生观察以上几个式子的特征,既有分数指数幂又有根式,应把根式转化为分数指数幂后再由运算法则计算,如果根式中根指数不同,也应化成分数指数幂,然后分析解答,对(1)应由里往外432981⨯=421344)3(3⨯,对(2)化为同底的分数指数幂,及时对学生活动进行评价.解:(1)432981⨯=[34×(334)21]41=(3324+)41=(3314)41=367=633;(2)63125.132⨯⨯=2×321×(23)31×(3×22)61=231311++·3613121++=2×3=6.例3计算下列各式的值: (1)[(a23-b 2)-1·(ab -3)21(b 21)7]31;(2)1112121-+-++--a a a aa;(3)14323)(---÷a b b a.活动:先由学生观察以上三个式子的特征,然后交流解题的方法,把根式用分数指数幂写出,利用指数的运算性质去计算,教师引导学生,强化解题步骤,对(1)先进行积的乘方,再进行同底数幂的乘法,最后再乘方,或先都乘方,再进行同底数幂的乘法,对(2)把分数指数化为根式,然后通分化简,对(3)把根式化为分数指数,进行积的乘方,再进行同底数幂的运算. 解:(1)原式=(a23-b 2)31-(ab -3)61·(b 21)37=a 21b32-a 61b21-b 67=a6121+b672132+--=a 32b 0=a 32;另解:原式=(a 23b -2a 21b 23-·b 27)31=(a2123+b27232+--)31=(a 2b 0)31=a 32;(2)原式=11111-+-++a aa aa =)1(1-+a a a =)1(11-+-a a a a=)111(1-+-a a a= )1(2--a a =)1(2a a a-;(3)原式=(a 21b 32)-3÷(b -4a -1)21=a23-b -2÷b -2a21-=a2123+-b -2+2=a -1=a1. 例4已知a >0,对于0≤r≤8,r ∈N *,式子(a )8-r ·)1(4ar能化为关于a 的整数指数幂的情形有几种? 活动:学生审题,考虑与本节知识的联系,教师引导解题思路,把根式转化为分数指数幂后再由运算法则计算,即先把根式转化为分数指数幂,再进行幂的乘方,化为关于a 的指数幂的情形,再讨论,及时评价学生的作法.解:(a )8-r·)1(4ar =a 28r -·a4r-=a448rr --=a4316r -.16-3r 能被4整除才行,因此r=0,4,8时上式为关于a 的整数指数幂. 点评:本题中确定整数的指数幂时,可由范围的从小到大依次验证,决定取舍.利用分数指数幂进行根式运算时,结果可以化为根式形式或保留分数指数幂的形式. 例5已知f (x )=e x -e -x ,g (x )=e x +e -x . (1)求[f (x )]2-[g (x )]2的值; (2)设f (x )f (y )=4,g (x )g (y )=8,求)()(y x g y x g -+的值.活动:学生观察题目的特点,说出解题的办法,整体代入或利用公式,建立方程,求解未知,如果学生有难度,教师可以提示引导,对(1)为平方差,利用公式因式分解可将代数式化简,对(2)难以发现已知和未知的关系,可写出具体算式,予以探求. 解:(1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )] =(e x -e -x +e x +e -x )(e x -e -x -e x -e -x )=2e x (-2e -x )=-4e 0=-4; 另解:(1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2 =e 2x -2e x e -x +e -2x-e 2x -2e x e -x -e -2x =-4e x -x=-4e 0=-4; (2)f (x )·f (y )=(e x -e -x )(e y -e -y )=e x +y+e -(x+y)-e x -y -e -(x-y)=g (x+y )-g (x -y )=4,同理可得g (x )g (y )=g (x+y )+g (x -y )=8, 得方程组⎩⎨⎧=++=+8,y)-g(x y)g(x 4,y)-g(x -y)g(x 解得g (x+y )=6,g (x -y )=2.所以)()(y x g y x g -+=26=3.点评:将已知条件变形为关于所求量g (x+y )与g (x -y )的方程组,从而使问题得以解决,这种处理问题的方法在数学上称之为方程法,方程法所体现的数学思想即方程思想,是数学中重要的数学思想. 知能训练课本P 54练习 1、2、3. [补充练习]教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.1.(1)下列运算中,正确的是( ) A.a 2·a 3=a 6 B.(-a 2)3=(-a 3)2 C.(a -1)0=0 D.(-a 2)3=-a 6(2)下列各式①42)4(n -,②412)4(+-n ③54a ,④45a (各式的n ∈N ,a ∈R )中,有意义的是( )A.①②B.①③C.①②③④D.①③④ (3)24362346)()(a a ∙等于( )A.aB.a 2C.a 3D.a 4 (4)把根式-232)(--b a 改写成分数指数幂的形式为( )A.-2(a-b)52- B.-2(a-b)25-C.-2(a52--b 52-) D.-2(a25--b 25-)(5)化简(a 32b 21)(-3a 21b 31)÷(31a 61b 65)的结果是( )A.6aB.-aC.-9aD.9a2.计算:(1)0.02731--(-71)-2+25643-3-1+(2-1)0=________.(2)设5x =4,5y =2,则52x -y =________.3.已知x+y=12,xy=9且x <y,求21212121yx y x +-的值.答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)83.解:21212121yx y x +-=))(())((2121212121212121y x y x y x y x -+--=yx yy x x -+-21212.因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x <y,所以x-y=-2×33=-63.所以原式36612--=33-. 拓展提升1.化简111113131313132---+++++-x xx x x x x x .活动:学生观察式子特点,考虑x 的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1=(x 31)3-13=(x 31-1)·(x 32+x 31+1); x+1=(x 31)3+13=(x 31+1)·(x 32-x 31+1); x-x 31=x 31[(x 31)2-1]=x 31(x 31-1)(x 31+1). 构建解题思路教师适时启发提示.解:111113131313132---+++++-x xx x x x x x =111)(11)(3131323131333131323331---+++++-x x x x x x x x x=)1()1)(1(1)1)(1(1)1)(1(31313131313132312132313231-+--++-++++++-x x x x x x x x x x x x x=x 31-1+x 32-x 31+1-x 32-x 31=-x 31. 点拨:解这类题目,要注意运用以下公式, (a 21-b 21)(a 21+b 21)=a-b, (a 21±b 21)2=a±2a 21b 21+b, (a 31±b 31)(a32 a 31b 31+b 32)=a±b.2.已知a 21+a21-=3,探究下列各式的值的求法.(1)a+a -1;(2)a 2+a -2;(3)21212323----aa a a .解:(1)将a 21+a21-=3,两边平方,得a+a -1+2=9,即a+a -1=7;(2)将a+a -1=7两边平方,得a 2+a -2+2=49,即a 2+a -2=47; (3)由于a 23-a23-=(a 21)3-(a21-)3,所以有21212323----aa a a =2121212112121))((-----++-aa a a a a a a =a+a -1+1=8.点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值. 课堂小结 活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:(1)分数指数幂的意义就是:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. (3)有理数指数幂的运算性质:对任意的有理数r 、s,均有下面的运算性质: ①a r ·a s =a r+s (a>0,r,s ∈Q ), ②(a r )s =a rs (a>0,r,s ∈Q ), ③(a·b)r =a r b r (a>0,b>0,r ∈Q ). (4)说明两点:①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用(a n )nm =nm n a⨯=a m 来计算.作业课本P 59习题2.1A 组 2、4.设计感想本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.(设计者:郝云静)。
高中数学 2.2.1 第2课时 对数的运算教学设计 新人教版必修1

云南省德宏州芒市第一中学高中数学 2.2.1 第2课时 对数的运算教学设计 新人教版必修1一、教学目标:1、目标(1)使学生了解对数、常用对数、自然对数的概念,会用对数的定义将指数式化为对数式,将对数式化为指数式,会求简单的对数值。
(2)进一步使学生熟练对数的概念,使学生掌握对数的运算性质、换底公式,会用对数的性质解决一些实际问题。
2.教学重点:对数的概念以及对数的运算性质。
3.教学难点:对数的概念,对数和指数之间的关系。
二、预习导学1. 对数的定义:若N a b =,则b 叫做以a 为底N 的对数,记作 。
2. =)(log MN a ____;=NM a log ____; =m a N log ____;=n a N log ____三、问题引领,知识探究1. 新课导入问题1 对数与指数的关系及指数的运算法则各是怎样的?学生:回顾对数与指数的关系以及指数的运算性质;教师:板书:指数与对数的关系:log (0,1)x a a N x N a a =⇔=>≠且指数运算性质:()()()0,,;()0,,;()0,0.;r s r s r s rs r r r a a a a r s R a a a r s R ab a b a b r R +=>∈=>∈=>>∈2.新知探究问题2 你能利用这种关系及指数的运算法则推导出对数的运算法则吗?学生:独立思考,合作交流,尝试利用指数的运算性质推导对数的运算性质。
教师:总结规律,指出推导的关键是完成指数运算向对数运算的过渡,在过渡中强调引入中间变量的必要性。
师生共同写出其推导过程。
问题3 根据上面推导的过程,你还能推导对数的其他性质吗?学生:根据上面的推导方法自行推导;教师:板书对数运算的性质:如果01,0,0a a M N >≠>>且,那么(1)()log log log a a a M N M N ∙=+;(2)log log log a a a M M N N=-; (3)log log ()n a a M n M n R =∈。
高必修1第二章《对数与对数运算》第2课时平行班教案

2.2.1 对数与对数运算(2)(平行班)
【课题】:对数运算性质
【设计与执教者】:广州市第十七中学,肖洁
【学情分析】:
本节课从指数与对数的关系以及指数的运算法则入手,让学生从联系的观点探究对数的运算性质。
在尝试、思考、讨论、中巩固对数运算法则。
有利于培养学生的创造思维,渗透了类比思想以及归纳思想。
【教学目标】:
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能;
3.运用对数运算性质解决有关问题;
4.培养学生分析、综合解决问题的能力.
5. 培养学生数学应用的意识和科学分析问题的精神和态度.
【教学重点】:对数运算的性质与应用
【教学难点】:对数的运算性质的推导
【课前准备】:课件。
新课标高中数学人教A版必修一全册教案2.2.1对数与对数运算(两课时)概要

221对数与对数运算第一课时(一)教学目标i •知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质3 •情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力(2)通过对数的运算法则的学习,培养学生的严谨的思维品质(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力(二)教学重点、难点(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的(三)教学方法启发式启发学生从指数运算的需求中,提出本节的研究对象一一对数,从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算•引导学生在指数式与对数式的互化过程中,加深对于定义的理解,为下一节学习对数的运算性质打好基础•(四)教学过程log10 N 常记为lg N .②以无理数e=2.71828…为底的对数称为自然对数,log e N常记为In N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即IglOO =2.应用举例例1将下列指数式化为对数式,对数式化为指数式:(1)54=625;(2)26=—;641(3)( 1) m=5.73;3(4)log 1 16= —4;2(5)lg0.01= —2;(6)ln 10=2.303.例2:求下列各式中x的值2(1)log 64X = -_3(2)log x8=6(3)lg100 = x(4)-ln e2= x例1分析:进行指数式和对数式的相互转化,关键是要抓住对数与指数幕之间的关系,以及每个量在对应式子中扮演的角色.(生口答,师板书)解:(1) log 5625=4;(2)也丄二—6;64(3)log 1 5.73=m;31 —4(4)( - ) =16;2(5)10—2=0.01;(6) e =10.例2分析:将对数式化为指数式,再利用指数幕的运算性质求出x.解:(1)2 2x = (64)P =(43)刁2 ‘3(=) / 1=4 3 = 4 =—16通过这二个例题的解答,巩固所学的指数式与对数式的互化,提高运算能力.4. (1) 1; (2) 0; (3) 2;(4) 2; ( 5) 3; (6) 5.归纳 1.对数的定义及其记法; 先让学生回顾反思,然后 巩固本节 总结2.对数式和指数式的关系;师生共同总结,完善.学习成果,形3.自然对数和常用对数的概念 .成知识体系.课后 作业:2.2第一课时 习案学生独立完成 巩固新知 作业提升能力备选例题例1将下列指数式与对数式进行互化【分析】利用a x = N= x = log a N ,将(1) (2)化为对数式,(3) (4)化为指数式1⑵••• s -;」—(4):T og x 64 = -6 ,「. x 6 = 64.【小结】对数的定义是对数形式与指数形式互化的依据,同时,教材的“思考”说明了 这一点•在处理对数式与指数式互化问题时,依据对数的定义 a b = N= b = log a N 进行转换即可•例2求下列各式中的x.(1)log 8X=-3 ;3⑵ log x 27 蔦;(3) log 2 (log 5 x ) =0 ;(3) log i 27 ・-33(4) log x 64 二 _6【解析】(1)C )X =64, 4二 x = log 1 644(3)log r 27 = -33=2712【解析】(1)由log s x—232 2得x=8刁=(23)飞=2二即x=[.43(2)由log x27 =3,得x4=27 =33,44••• x 二(33卢=34=81.(3)由log? (log 5x) = 0 得log5X = 20= 1.• x = 5.【小结】(1)对数式与指数式的互化是求真数、底数的重要手段(2)第(3)也可用对数性质求解•如(3)题由Iog2(log5x) = 0及对数性质log a仁0. 知log5X = 1,又log55 = 1. • x = 5.第二课时(一)教学目标1 •知识与技能:理解对数的运算性质.2. 过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力” “等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3. 情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊一一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1. 教学重点:对数运算性质及其推导过程.2. 教学难点:对数的运算性质发现过程及其证明.(三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程性质直接化简.(1) log a xyzTog a xy-log a Z= lOg a X log a y-log a z 例2求下列各式的值.(1)log2(4725)(2)|g 5100例3计算:(1) lg14 - 2lg 7 +|g7 - lg18 ;3(2) lg 243;lg9= log a x20 —log a V Z 二log a X2log a . y -log a3Z1= 2log a X c log a y21.-§log a Z小结:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.例2 解(1) log2(4725) 二log?47log? 25=14 5 =19(2) lg5100..J 2=lg105例3 (1)解法一:lg14 —2lg — +lg7 —lg183=lg (2 X7)—2 (lg7 —lg3)提高运算能力.(3) lg (27+Ig8-3lg ^10 lg1.2 .课本P79练习第1 , 2, 3.2+lg7 —lg (3 >2)=Ig2+Ig7 —2lg7+2lg3+lg7 —2lg3 —lg2=0.解法二:lg14 —2lg 7 +lg7—lg18=lg14 —lg ( 7) 2+lg7 —314沢7lg18=lg =lg1=0.(7)2X18(2)解:lg 243= lg 35= 51g3 = 5lg9 lg 322lg3 ~2'(3)解:lg J矛+Ig8-3lg V10lg1.21 13 — 3 —=lg(3 )2+lg 2 -31g102一23疋22lg --------1035(lg3 + 21g2—1) 3=Ig3+21g2-1 = 2.小结:以上各题的解答,体现对数运算法则的综合运用,应注意掌握变形技巧,每题的各部分变形要化到最简形式,同时注意分子、分母的联系,要避免错用对数运算性质•课本P79练习第1,2,3.答案:1.( 1)lg( xyz)=lgx+lgy+lgz;xy22(2)lg ------- =lg(xy)—Igzz22备选例题例1计算下列各式的值: (1) - lg 3^ -- lg 8 lg .. 245 ;249 3 2(2)lg 52 lg8 lg 5 lg 20 (lg 2)2. 3【解析】(1)方法一:3 1原式=1 (lg 25—lg 72)-4lg 22 - lg(725) 22 351 =Ig2—lg7—2lg2 Ig7 lg 5 22 1 1=尹2尹51(lg2 lg5)=-.22方法二:原式: =lg-lg 4 Tg 7、、57 4、2 7 .5=lg7汉4= lg(2)W.(2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)=2lg10 + (lg5 + lg2) =2 + (lg10) =2 + 1 = 3.【小结】易犯Ig52 = (|g5)2的错误. 这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、 差、积、商运用对数的运算法则将它们化为真数的积、商、幕、方根,然后化简求值•计算对数的值时常用到 Ig2 + Ig5 = Ig10 = 1.例 2:( 1)已知 Ig2 = 0.3010, Ig3 = 0.4771,求 lg , 45 ;(3) 已知 Igx = 2Ig a + 3Igb -5lgc ,求 x. 【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幕表示,借助对数运算法则即可解答______________ 1 1 90【解析】(1) Ig 45 Ig 45 Ig -2 2 21[Ig9 Ig10 -Ig 2] 2 1[2lg 3 1-Ig2] 211 1"Ig3 2 "^Ig^ 0.4771+0.5 -0.1505=0.82661 1 1= log a a 4log a X 3-log a y121 111 11 log a x log a y n m. 4 3 12 43 12(3) 由已知得:2. 32 3 5 a bIg x =lg a 2 Ig b 3 -Ig c=lg —,c 5a 2b 3 •- x ~c【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、 乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第( 论:同底的对数相等,则真数相等.即log a N = log a M=N = M.(2)设 gx = m ,Iog a y = n ,用 m 、n 表示 Iog a [4 a 3 / ];⑵ Iog a [Va ^*]3 )小题利用下列结。
高中数学人教新课标必修一B版教案3.2.1对数及其运算(两课时)

课题 §3.2.1 对数及其运算(一) (一)学习目标知识与技能:理解对数的概念,能根据对数概念进行指数与对数之间的互化;理解对数恒等式及对数性质;熟练运用计算器求一个正实数的常用对数。
过程与方法:通过对数概念的学习,培养学生从特殊到一般的概括思维能力,渗透化归的思想。
情感、态度与价值观:通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想。
(二)重点难点 重点:对数的定义难点:对数的概念、对数的符号表示(三)教学内容安排1.复习引入细胞分裂x 次后,细胞个数为2x y =;给定分裂次数x ,可求出细胞分裂后的个数y ,实际问题中,常需要由细胞分裂后的个数y ,计算分裂的次数x ,又如指数式9x y =中,已知底数9和幂y 的值,求指数x ,怎样求呢?2.新授内容在指数函数x y a =()0,1a a >≠中,对实数集R 内的每一个值x ,在正实数集内都有唯一的值y 和它对应;反之,对正实数集内的每一个确定的值y ,在R 内都有唯一的值x 和它对应;我们把幂指数x 叫做以a 为底 y 的对数。
定义:一般地,对于指数式 N a b = ()0,1a a >≠,我们把数 b 叫做以a 为底 N 的对数,记作 log a b N =,读作“数 b 等于以a 为底 N 的对数”,a 叫做对数的底数,N 叫做真数。
学生举例例如:1642= ⇔ 216log 4= ; 100102=⇔2100log 10=2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-= 探究:⑴负数与零没有对数(∵在指数式中 N > 0 )⑵01log =a ,1log =a a∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 同样易知: 1log =a a ⑶对数恒等式如果把 N a b = 中的 b 写成 N a log , 则有 N a N a =log ⑷底数的取值范围),1()1,0(+∞ ;真数的取值范围范围),0(+∞。
高中数学人教版必修1教案2.2.1 对数与对数运算(2)

第二课时一.教学目标:1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题.③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度.2. 过程与方法①让学生经历并推理出对数的运算性质.②让学生归纳整理本节所学的知识.3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.二.教学重点、难点重点:对数运算的性质与对数知识的应用难点:正确使用对数的运算性质三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标.教学用具:投影仪四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-⋅=÷=();m n m n mn n ma a a a == 2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?如:,,m n m n m n a a a M a N a +⋅===设。
于是,m n MN a += 由对数的定义得到 log ,log m n a a M a m M N a n N =⇔==⇔=log m n a MN a m n MN +=⇔+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?(让学生探究,讨论)如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+(2)log log log a a a M M N N=- (3)log log ()n a a M n Mn R =∈ 证明:(1)令,m nM a N a == 则:m n m n M a a a N-=÷= l o g a M m n N ∴-= 又由,m n M a N a ==log ,log a a m M n N ∴== 即:log log log a a aM M N m n N -=-= (3)0,log ,N n n a n N M M a ≠==时令则l o g ,bn a b n M M a ==则Nb n na a ∴= Nb ∴= 即log log log a a a M M N N=- 当n =0时,显然成立.l o g l o gn a a M n M ∴= 提问:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0?1. 你能用自己的语言分别表述出以上三个等式吗?例题:1. 判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=-(3)log log log a a a x x y y=÷ (4)log log log a a a xy x y =- (5)(log )log n a a x n x = (6)1log log a ax x =-(7)1log log n a a x x n= 例2:用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值.(1)log a xy z (2)23log 8a x y (3)75log (42)z ⨯ (4)5lg 100 分析:利用对数运算性质直接计算:(1)log log log log log log aa a a a a xy xy z x y z z =-=+- (2)222333log log log log log log a a a a a a x y x y z x y z z =-=+-=112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519⨯=+=+=(4)2552lg 100lg105== 点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式.让学生完成P 68练习的第1,2,3题提出问题:你能根据对数的定义推导出下面的换底公式吗?a >0,且a ≠1,c >0,且e ≠1,b >0log log log c a c b b a= 先让学生自己探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M N c c M a N b a c b c ====则 且11,()N N M M M a c a a b ====N 所以c 即:log log ,log c a c b N N b M M a==又因为 所以:log log log c a c b b a = 小结:以上这个式子换底公式,换的底C 只要满足C >0且C ≠1就行了,除此之外,对C 再也没有什么特定的要求.提问:你能用自己的话概括出换底公式吗?说明:我们使用的计算器中,“log ”通常是常用对数. 因此,要使用计算器对数,一定要先用换底公式转化为常用对数. 如:2lg 3log 3lg 2= 即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=” 再如:在前面要求我国人口达到18亿的年份,就是要计算 1.0118log 13x = 所以 1.0118lg 18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈ =32.883733()≈年练习:P 68 练习4让学生自己阅读思考P 66~P 67的例5,例6的题目,教师点拨.3、归纳小结(1)学习归纳本节(2)你认为学习对数有什么意义?大家议论.4、作业(1)书面作业:P74 习题2.2 第3、4题 P 75 第11、12题2、思考:(1)证明和应用对数运算性质时,应注意哪些问题?(2)222log (3)(5)log (3)log (5)---+-等于吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 指数与指数幂的运算(2)
导入新课
思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.
思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂. 推进新课 新知探究 提出问题
(1)整数指数幂的运算性质是什么? (2)观察以下式子,并总结出规律:a >0, ①5
10
a
=352)(a =a 2
=a
5
10;
②8a =2
4)(a =a 4
=a 2
8; ③412a =44
3)(a =a 3=a 412; ④2
10
a
=225)(a =a 5
=a
2
10.
(3)利用(2)的规律,你能表示下列式子吗?
4
35,357,57a ,n m x (x>0,m,n ∈N *,且n>1).
(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般的情形吗?
活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.
讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义; a -n =
n a
1
(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n . (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①510
a
=a
5
10,②8
a =a 2
8,③412
a
=a
4
12,④210
a
=a
2
10结果的a 的指数是2,4,3,5
分别写成了
510,28,412,5
10,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式). (3)利用(2)的规律,43
5=54
3,35
7=735,5
7
a =a 5
7,
n
m
x =x n
m .
(4)53
的四次方根是54
3,75
的三次方根是73
5,a 7的五次方根是a 5
7,x m
的n 次方根是x n
m . 结果表明方根的结果和分数指数幂是相通的.
(5)如果a>0,那么a m
的n 次方根可表示为n
a m
=a n
m ,即a n
m =n a m (a>0,m,n ∈N *,n>1).
综上所述,我们得到正数的正分数指数幂的意义,教师板书: 规定:正数的正分数指数幂的意义是a m
n =n a m (a>0,m,n ∈N *,n>1).
提出问题
①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗?
③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?
⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?
⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?
活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n =
n a
1
(a≠0),n ∈N *. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.
规定:正数的负分数指数幂的意义是a
m
n -=
m
n a
1=
n
m
a 1
(a>0,m,n ∈N *,n>1).
③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是:
正数的正分数指数幂的意义是a m
n =n m a (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是a
m
n -=
m
n a
1=
n
m
a 1
(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.
⑤若没有a >0这个条件会怎样呢?
如(-1)3
1=3-1=-1,(-1)6
2=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,
如无a >0的条件,比如式子3a 2
=|a|3
2,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.
⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: (1)a r ·a s =a r+s (a>0,r,s ∈Q ), (2)(a r )s =a rs (a>0,r,s ∈Q ), (3)(a·b)r =a r b r (a>0,b>0,r ∈Q ).
我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题. 应用示例
思路1 例1求值:①83
2;②25
2
1-③(21)-5;④(81
16)43
-.
活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,
21写成2-1,81
16
写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①83
2=(23)32=23
23⨯=22=4; ②25
2
1
-=(52
)
2
1-
=5
)
2
1(2-⨯=5-1=
5
1; ③(
2
1)-5=(2-1)-5=2-1×(-5)=32; ④(81
16)43
-=(32))43
(4-⨯=(32)-3=827.
点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如83
2
=328=364=4. 例2用分数指数幂的形式表示下列各式.
a 3·a ;a 2·3
2a ;3a a (a>0).
活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3
·a 2
1
=a
2
13+
=a 2
7;
a 2·32a =a 2·
a 3
2=a 2
32+
=a 3
8;
3
a a =(a·a 31
)2
1=(a 3
4)2
1=a 3
2.。