高一数学必修一对数与对数的运算练习题及答案

合集下载

高一数学(对数与对数的运算)

高一数学(对数与对数的运算)

例6 求下列各式中x的值:
2 (1) log64 x (2)logx 8 6 3 (3) lg100 x (4) - lne2 x
(5) logx (3 2 2 ) 2
( 5)
(6) log5 (log2 x) 0
2 例7.求x的值: log 64 x 3
思考4:log2x2=2log2x对任意实数x恒成 立吗?
思考5:如果a>0,且a≠1,M>0,则
log a M 等于什么?
n
思考6:上述关于对数运算的三个基本 性质如何用文字语言描述?
①两数积的对数,等于各数的对数的和; ②两数商的对数,等于被除数的对数减 去 除数的对数;
4.对数的运算法则
如果a > 0, 且a ≠ 1, M > 0, N > 0, n ∈ R, 那么 (1) loga ( M N ) = loga M + loga N ; M (2) loga = loga M loga N ; N n (3) log M = n loga M ; (4) loga
思考Ⅲ:已知 log1 (log2 x) log1 (log3 y) 1
2 3
1
试比较x和y的大小
1 解: log1 (log2 x) 1 log2 x 2 2
1 1 即: log 2 x 22 x 2 同理可得: y 3 3
x 2
6
x
logc N p 即证得 logc a
logc N loga N logc a
其他重要公式 2:
1 log a b logb a
logb b loga b logb a
a, b (0,1) (1,)

高一数学对数的概念与对数运算公式课后练习题

高一数学对数的概念与对数运算公式课后练习题

对数与对数运算一、对数1.对数的概念一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ;②x N N a a x =⇔=log ;两个重要对数:①常用对数:以10为底的对数N lg ;②自然对数:以无理数 71828.2=e 为底的对数的对数N ln . ③对数的性质:(1)负数和零没有对数;(2)1的对数是零:01log =a ;(3)底数的对数是1:1log =a a ; (4)对数恒等式:N aN a =log ; (5)n a n a =log .注意:指数式与对数式的互化:x N a =log ⇔N a x = 对数式 ⇔ 指数式对数底数 ← a → 幂底数对数← x → 指数 真数← N → 幂二、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ① M a (log ·=)N M a log +N a log ;② =NM a log M a log -N a log ; ③ n a M log n =M a log )(R n ∈. 注意:换底公式ab bc c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).题型一、 对数概念例1求下列各式中x 的取值范围(1)()10log 2−x ; (2)()2log 1+−x x ; (3)()()211log −+x x例2把下列各等式化为相应的对数式或指数式(1)12553=; (2)16412=⎪⎭⎫ ⎝⎛−; (3)38log 21−=; (4)3271log 3−= (5)log 3a =b例3 求下列各式中的x (1)2327log =x ; (2)32log 2−=x ; (3)()2223log −=+x ; (4)()0log log 25=x .题型二、对数的运算性质例4 化简: (1)51lg 5lg 32lg 4−+; (2)2.1lg 1000lg 8lg 27lg −+; (3)3log 333558log 932log 2log 2−+−; (4)⎪⎭⎫ ⎝⎛−−+246246log 2; (5)()()321log 321log 22−++++; (6)⎪⎭⎫ ⎝⎛−++5353lg例5(1)4771.03lg ,3010.02lg ≈≈,求45lg ;(2)已知m =35log 5,试用m 表示4.1log 7.例6 计算(1)5log 177−;(2)⎪⎭⎫ ⎝⎛−2lg 9lg 21100;(3)7lg142lg lg 7lg183−+−(b a ,为不等于零的正数,0>c ).(4)12lg 25+lg 2+7log 73=(5)4log 23−log 2814−5log 53+log 9√3.题型三 、换底公式的应用例7(1)计算:()3lg 2lg 3log 3log 84+; (2) 已知518,9log 18==b a ,用b a ,表示45log 36的值.题型四 、对数运算性质的综合运算 例8 求下列各式的值:(1)2log 233−; (2)8.1log 7log 37log 235log 5555−+−.例9 (1)已知()()23lg lg 23lg 2++=−x x x ,求222log x 的值; (2)已知()n m n m lg lg 21lg 2+=⎥⎦⎤⎢⎣⎡−,求n m 的值.题型五、 综合类问题例10 设z y x ,,均为正整数,且z y x 643==.(1)试求z y x ,,之间的关系;(2)比较z y x 6,4,3的大小.课后作业1.设log 23=a ,log 215=b ,则log 275=__________(结果用a ,b 表示).2、已知a =log 32,用a 表示log 38-2log 36是( )A .a -2B .5a -2C .3a -(1+a)2D .3a -a 2-13、(log 43+log 83)(log 32+log 98)等于( ) A.56 B.2512 C.94 D .以上都不对4、已知2x =5y =10,则1x +1y =________.5、求下列各式的值:(1)(lg 5)2+lg 50·lg 2;(2)lg 14-2lg 73+lg 7-lg 18;(3)log 1327-log 139;(4)log 89×log 332.(5)lg25+lg2•lg50+lg22。

高一数学(必修一)对数的运算练习题及答案

高一数学(必修一)对数的运算练习题及答案

高一数学(必修一)对数的运算练习题及答案一、单选题(本大题共8小题)1. 化简的结果为( )A. B. C. D.2. 已知,且,则的值为( )A. B. C. D.3. 已知,,,则,,的大小关系为( )A. B. C. D.4. 下列结论正确的是( )A. B. 若,则C. D. 若,则5. 已知,则用表示为( )A. B. C. D.6. 我们可以把看作每天的“进步率都是,一年后是;而把看作每天的“落后”率都是,一年后是,可以计算得到,一年后的“进步”是“落后的,倍,如果每天的“进步率和“落后”率都是,大约经过天后,“进步”是“落后”的倍( )A. B. C. D.7. 设,,则( )A. B. C. D.8. ( )A. B. C. D.二、多选题(本大题共4小题)9. 下列计算正确的是( )A. B.C. D.10. 下列各式正确的是( )A. B. C. D.11. 若,,则下列说法正确的是( )A. B. C. D.12. 已知,且,则( )A. B.C. D.三、填空题(本大题共4小题)13. .14. 已知正实数,满足,则的最小值为.15. 已知,,则用,表示16. 基础建设对社会经济效益产生巨大的作用,某市投入亿元进行基础建设,年后产生亿元社会经济效益若该市投资基础建设年后产生的社会经济效益是投资额的倍,则再过_______年,该项投资产生的社会经济效益是投资额的倍.四、解答题(本大题共2小题)17. 求值:;.18. 求值:;若,求与的值.参考答案1.【答案】【解答】解:.2.【答案】【解答】解:,,则,,故选D.3.【答案】【解答】解:,,,,,,故选:4.【答案】【解答】解:,,故A正确;若,则,故B不正确;,,没意义,故C不正确;若,则,故D不正确.故选A.5.【答案】【解答】解:,,.故选D.6.【答案】【解答】解:经过天后,“进步”与“落后”的比,,两边取以为底的对数得,,,所以大约经过天后,“进步”是“落后”的倍.故选:.7.【答案】【解答】解:,,,,故选:.8.【答案】【解答】解:.故选A .9.【答案】【解答】解:对,,正确;对,,正确;对,,错误;对,,正确;故选ABD.10.【答案】【解答】解:,A错误;,B错误;,C正确;D正确.11.【答案】【解答】解:,,,,,故A正确;,故B错误;,故C正确;,即,故D正确.故选:.12.【答案】【解答】解:因为,且,对,,所以,故A正确;对,取,此时,故B错误;对,,当且仅当时取等号,又因为,当且仅当时取等号,所以,当且仅当时取等号,因为,所以不能取等号,故C正确;对,当时,,所以;当时,,所以,当且仅当时取等号,因为,所以不能取等号,故D正确.13.【答案】【解答】解:.故答案为:.14.【答案】【解答】解:,,即,,,,当且仅当即,时,等号成立,的最小值为,故答案为:.15.【答案】【解答】解:因为,所以,又,所以.故答案为.16.【答案】【解答】解:由已知可得,,则,即,设投资年后,产生的社会经济效益是投资额的倍,则有,解得,所以再过年,该项投资产生的社会经济效益是投资额的倍.17.【答案】解:.18.【答案】解:;因为,所以,所以,即,所以,所以,即;所以,即,所以,因为所以.。

2014—2015学年高一数学(苏教版)必修一午间小练及答案:15 对数与对数运算

2014—2015学年高一数学(苏教版)必修一午间小练及答案:15 对数与对数运算

高一数学(苏教版)必修一午间小练:对数与对数运算1.定义两个实数间的一种运算“*”:()l g1010x yx y *=+,x 、y R ∈.对任意实数a 、b 、c ,给出如下结论:a b b a *=*;②()()a b c a b c **=**;③()()()a b c a c b c *+=+*+.其中正确的个数是 2.已知222125log 5,log 7,log 7a b ===则 3.若210,5100==b a ,则b a +2=4.若lg lg x y a -=,则33lg lg x y -=5.12lg 4lg 254(4-0++--π) .6.方程211log 1log 2x x ++=的解是 . 7. 计算:327log 2lg 225lg 432ln +++e= 。

8. 12log 6log 216log 332-+=9.计算(1)0143231)12(3.2)71(027.0-+-+-----(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+10.计算:1132081()274e π-⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭; ②2lg5lg4++参考答案1.3 【解析】试题分析:根据题中的定义,对于命题,左边()lg 1010a ba b =*=+,右边()l g 1010b a b a =*=+,左边=右边,命题正确;对于命题②,左边()()()l g 1010l g 1010l g 1010a b abca b c c +⎛⎫=**=+*=+⎪⎝⎭()lg 101010a b c =++,右边()()()()lg 1010lg 1010lg 1010lg 101010b c bca abc a b c a +⎛⎫=**=*+=+=++ ⎪⎝⎭=左边,命题②正确;对于命题③,左边()()()lg 1010lg 1010lg10a b a b c a b c c =*+=++=++()lg 1010a c b c ++=+,右边()()()lg 1010a c b c a c b c ++=+*+=+,左边=右边,命题③也正确.攻答案为3个考点:新定义 2.3a -b 【解析】 试题分析:根据对数的运算法则,有b a -=-=-=-=37log 5log 37log 5log 7log 125log 7125log 22232222. 考点:对数的运算法则. 3.1【解析】解:因为若a b 1001010101011005,102a log 5log 5,b log 2,22a b log 5log 21==∴===∴+=+=,4.3a【解析】33lg lg 3lg 3lg 3(lg lg )3x y x y x y a -=-=-=5.23 【解析】试题分析:原式=()23121212100lg 212=-+=-+-考点:指数与对数 6.1 【解析】试题分析:原方程可变为22log log (1)1x x ++=,即2l o g (1)1x x +=,∴(1)2x x +=,解得1x =或2x =-,又01011x x x >⎧⎪+>⎨⎪+≠⎩,∴1x =.考点:解对数方程.7.415【解析】解:因为ln 23115lg 252lg 2e log 2lg52lg 2244+++=++-= 8. 5【解析】222333336log 162log 6log 124log 6log 124log 512+-=+-=+= 9.(1)19 (2)-4 【解析】 试题分析:(1)指数式运算,先将负指数化为正指数,小数化为分数,即,131)2()7()271000()12(3256)71(027.04382310143231+-+--=-+-+-----再将分数化为指数形式,即191316449310131249)310(63133=+-+-=+-+- , (2)对数式运算,首先将底统一,本题全为10,再根据对数运算法则进行运算,即.4)1(2110lg 10lg 10lg 521258lg1.0lg 10lg 5lg 2lg 125lg 8lg 2121-=-⨯=⨯⨯=--+-试题解析:(1)131)2()7()271000()12(3256)71(027.04382310143231+-+--=-+-+----- .191316449310131249)310(63133 =+-+-=+-+-=(2).4)1(2110lg10lg10lg521258lg1.0lg10lg5lg2lg125lg8lg2121-=-⨯=⨯⨯=--+-考点:指对数式化简10.① 2; ②3.【解析】试题分析:对数运算与指数运算的运算法则一定要搞清.试题解析:解:①原式=521233--+=2 , 6分②原式=21(lg5lg2)2ln2e++⨯⨯ =2lg101+=3. 12分考点:对数运算,指数运算.。

2023-2024学年高一上数学必修一:对数的运算(1)

2023-2024学年高一上数学必修一:对数的运算(1)
D.12m-23n
解析:log3
x =log3 x-log3 3 y· y
log3(y·y
1 3
)
1 2
=12log3x-23log3y=12m-23n.
3 y·
y=log3xຫໍສະໝຸດ 1 2-二、填空题(每小题 5 分,共 15 分)
9.4lg2+3lg5-lg15=
4.
解析:根据对数的运算性质知:4lg2+3lg5-lg15=lg(24×53×5) =lg104=4.故答案为 4.
——能力提升—— 一、多项选择题(每小题 5 分,共 10 分) 1.有以下四个结论:①lg(lg10)=0;②lg(lne)=0;③若 e=lnx, 则 x=e2;④ln(lg1)=0.其中正确的是( AB ) A.① B.② C.③ D.④
解析:因为 lg10=lne=1,lg1=0,所以①②均正确;③中若 e=lnx, 则 x=ee,故③错误;④中 lg1=0,而 ln0 没有意义,故④错误.综上, 选 AB.
lg8+lg125-lg2-lg5 (2) lg 10×lg0.1
8×125 =lg1l0g12×2×lg510-1 =12×lg1-021 =-4.
(3)(log62)2+(log63)2+3log62×log6
3
18-13log62
3 =(log62)2+(log63)2+3log62×log6 18
3 2
=(log62)2+(log63)2+3log62×log63 9 =(log62)2+(log63)2+2log62×log63 =(log62+log63)2 =1.
13.(10 分)已知 loga(x2+4)+loga(y2+1)=loga5+loga(2xy-1)(a>0, 且 a≠1),求 log8yx的值.

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。

新教材北师大版高中数学必修第一册练习-换底公式答案含解析

新教材北师大版高中数学必修第一册练习-换底公式答案含解析

第四章 对数运算与对数函数§2 对数的运算2.2 换底公式知识点 对数的换底公式1.☉%8#65¥@7¥%☉(2020·银川一中月考)log 29·log 34=( )。

A.14 B.12C.2D.4 答案:D解析:原式=log 232·log 322=4log 23·log 32=4·lg3lg2·lg2lg3=4。

故选D 。

2.☉%11##*4#3%☉(2020·菏泽高一检测)log 849log 27的值是( )。

A.2B.32C.1D.23答案:D 解析:log 849log 27=log 272log 223÷log 27=23。

故选D 。

3.☉%0#90#¥0*%☉(2020·江西赣州十三县市高一期中考试)若log 2x ·log 34·log 59=8,则x 等于( )。

A.8 B.25 C.16 D.4 答案:B解析:因为log 2x ·log 34·log 59=lgxlg2·lg4lg3·lg9lg5=lgx lg2·2lg2lg3·2lg3lg5=8,所以lg x =2lg 5=lg 25,所以x =25。

故选B 。

4.☉%#*#29#62%☉(2020·白城一中月考)化简:log 212+log 223+log 234+…+log 21516等于( )。

A.5 B.4 C.-5 D.-4 答案:D解析:原式=log 2(12×23×34×…×1516)=log 2116=-4。

故选D 。

5.☉%¥7@@74#3%☉(2020·闽侯八中高一月考)若log 34·log 8m =log 416,则m 等于( )。

A.3 B.9 C.18 D.27 答案:D解析:原式可化为log 8m =2log 34,所以13log 2m =2log 43,所以m 13=3,m =27。

必修一 对数与对数运算 练习题C附答案

必修一 对数与对数运算 练习题C附答案

必修一 对数与对数运算 练习题C 附答案一、选择题 1.log 89log 23=( )A.23B.32 C .1 D .2[答案] A[点拨] 原式=lg9lg8lg3lg2=2lg33lg2lg3lg2=23,故选A.2.log 23·log 3m =12,则m =( ) A .2 B. 2 C .4 D .1[答案] B[解析] log 23·log 3m =log 2m =12 ∴m =2 12=2,故选B.3.log 23·log 34·log 45·log 56·log 67·log 78=( ) A .1 B .2 C .3 D .4[答案] C[解析] log 23·log 34·log 45·log 56·log 67·log 78=lg3lg2×lg4lg3×lg5lg4×lg6lg5×lg7lg6×lg8lg7=lg8lg2=3,故选C.4.若2.5x=1000,0.25y=1000,则1x -1y =( )A.13 B .3 C .-13 D .-3[答案] A[解析] x =log 2.51000,y =log 0.251000, ∴1x =log 10002.5,1y =log 10000.25,∴1x -1y =log 10002.5-log 10000.25=log 100010=13,故选A. 5.设lg2=a ,lg3=b ,则log 512等于( ) A.2a +b 1+a B.a +2b1+a C.2a +b 1-a D.a +2b 1-a[答案] C[解析] log 512=lg12lg5=2lg2+lg31-lg2=2a +b1-a,故选C.6.设,则x ∈( )A .(-2,-1)B .(1,2)C .(-3,-2)D .(2,3)[答案] D[解析]=log 310∈(2,3),故选D.7.设a 、b 、c ∈(0,+∞),且3a =4b =6c ,则以下四个式子中恒成立的是( )A.1c =1a +1bB.2c =2a +1bC.1c =2a +2bD.2c =1a +2b[答案] B[解析] 设3a =4b =6c =m , ∴a =log 3m ,b =log 4m ,c =log 6m , ∴1a =log m 3,1b =log m 4,1c =log m 6, 又∵log m 6=log m 3+log m 2,1c =1a +12b ,即 2c =2a +1b ,故选B.8.设方程(lg x )2-lg x 2-3=0的两实根是a 和b ,则log a b +log b a 等于( )A .1B .-2C .-103D .-4 [答案] C[解析] 由已知得:lg a +lg b =2,lg a lg b =-3,那么log a b +log b a =lg b lg a +lg a lg b =lg 2b +lg 2alg a lg b=(lg a +lg b )2-2lg a lg b lg a lg b =4+6-3=-103,故选C. 二、填空题9.log 22+log 927+4log 413=________.[答案] 15[解析] 原式=12+log 3233+13=15. 10.log 43·log 13432=________.[答案] -58[解析] 原式=log 43·(-14log 332)=-14×log 432=-14×log 2225=-14×52=-58.11.lg9=a,10b =5,用a 、b 表示log 3645为________. [答案]a +ba -2b +2[解析] 由已知b =lg5,则log 3645=lg45lg36=lg5+lg9lg4+lg9=a +b a +2lg2=a +b a +2(1-b )=a +ba -2b +2.12.(山东淄博2012~2013高一期中试题)设3x=4y=36,则2x +1y =________.[答案] 1[解析] 由3x=4y=36得x =log36,y =log 436,2x +1y =2log 336+1log 436=2log 363+log 364=log 369+log 364=log 3636=1. 三、解答题13.(瓮安二中2012~2013学年度第一学期高一年级期末考试数学科卷)求下列各式的值:(1)log 427·log 258·log 95;(2)(log 43+log 83)(log 32+log 92). [解析] (1)原式=lg27lg4·lg8lg25·lg5lg9 =3lg32lg2·3lg22lg5·lg52lg3 =98(2)解法一:原式=log 43·log 32+log 83·log 32+log 43·log 92+log 83·log 92=log 223·log 32+log 233·log 32+log 223·log 322+log 233·log 322=12log 23·log 32+13log 23·log 32+12log 23·12log 32+13log 23·12log 32=12+13+14+16=54.解法二:原式=(log 223+log 233)·(log 32+log 322) =(12log 23+13log 23)(log 32+12log 32) =56log 23×32log 32=54.14.计算:(log 23+log 49+log 827+…+log 2n 3n )×log 9n32. [分析] 此题是不同底数的对数运算,也需用换底公式进行化简求值.[解析] 原式=(log 23+2log 232log 22+3log 233log 22+…+n log 23n log 22)×log 9n32=(log 23+log 23+log 23+…+log 23)×log 9n32 =n ×log 23×5n ×12log 32=52.[点评] (1)应用换底公式时,究竟换成以什么为底? ①一般全都换成以10为底的对数.②根据情况找一个底数或真数的因子作为底.(2)直接利用换底公式的下面几个推论,加快解题速度. log a b =1log ba ,log anb m =mn log a b ,log an b n =log a b .15.某化工厂生产化工产品,去年生产成本为50元/桶,现使生产成本平均每年降低28%,那么几年后每桶的生产成本为20元(lg2≈0.301 0,lg3≈0.477 1,精确到1年)?[分析] 设x 年后每桶的生产成本为20元,由题意列出关于x,50,28%,20之间的关系式,解出x .[解析] 设x 年后每桶的生产成本为20元. 1年后每桶的生产成本为50×(1-28%), 2年后每桶的生产成本为50×(1-28%)2, x 年后每桶的生产成本为50×(1-28%)x =20. 所以,0.72x =0.4,等号两边取常用对数,得 x lg0.72=lg0.4.故x =lg0.4lg0.72=lg (4×10-1)lg (72×10-2)=lg4-1lg72-2=2lg2-13lg2+2lg3-2≈0.3010×2-13×0.3010+2×0.4771-2=-0.398-0.1428≈3(年). 所以,3年后每桶的生产成本为20元. 16.设3x =4y =6x =t >1,求证:1z -1x =12y .[分析] 对数与指数的底数都不相同时,首先用换底公式将底数化为相同.[解析] 证法一:∵3x =4y =6z =t >1, ∴x =lg t lg3,y =lg t lg4,z =lg t lg6, ∴1z -1x =lg6lg t -lg3lg t =lg2lg t =lg42lg t =12y . 证法二:∵3x =4y =6z =t >1,两边同时取以t 为底的对数,得x log t 3=y log t 4=z log t 6=1, ∴1z -1x =log t 6-log t 3=log t 2=12log t 4=12y .[点评] 化为同底与指对互化是解决指数、对数求值问题的常用策略.运用换底公式时,要注意选取合适的底数,以达到简化运算的作用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1 对数与对数的运算
练习一
一、选择题
1、 2
5)(log 5a -(a ≠0)化简得结果是( )
A 、-a
B 、a 2
C 、|a |
D 、a
2、 log 7[log 3(log 2x )]=0,则21-x
等于( ) A 、
31 B 、321 C 、221 D 、331
3、 n n ++1log (n n -+1)等于( )
A 、1
B 、-1
C 、2
D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( )
A 、2a -
B 、52a -
C 、23(1)a a -+
D 、 23a a -
5、 2log (2)log log a a a M N M N -=+,则
N M 的值为( ) A 、
41 B 、4 C 、1 D 、4或1
6、 若log m 9<log n 9<0,那么m,n 满足的条件是( )
A 、m>n>1
B 、n>m>1
C 、0<n<m<1
D 、0<m<n<1
7、 若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( )
A 、a<b<c
B 、 a<c<b
C 、c<b<a
D 、c<a<b
二、填空题
8、 若log a x =log b y =-
2
1log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________
9 、若lg2=a ,lg3=b ,则log 512=________
10、 3a =2,则log 38-2log 36=__________
11、 若2log 2,log 3,m n a a m n a +===___________________
12、 lg25+lg2lg50+(lg2)2=
三、解答题
13、 222522122(lg )lg lg (lg )lg +⋅+
-+
14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2
)(lg )lg(b a ab ⋅的值。

15、 若f(x)=1+log x 3, g(x)=2log x 2, 试比较f(x)与g(x)的大小.
练习一答案:
一、选择题
1、C ;
2、C ;
3、B ;
4、A ;
5、B ;
6、C ;
7、D
二、填空题8、
219、a
b a -+1210、a -211、1212、2 二、解答题
13、解:原式2)12(lg )5lg 2lg 2(2lg -++= =++-=+-=lg (lg lg )|lg |
lg lg 225212121
14、解: ⎪⎩
⎪⎨⎧=⋅=+21lg lg 2lg lg b a b a , 2)(lg )lg(b a ab ⋅=(lga+lgb)(lga -lgb)2=2[(lga+lgb)-4lgalgb]2 =2(4-4×2
1)=4 15、解: f(x)-g(x)=log x (4
3x). (1) ⎪⎪⎩
⎪⎪⎨⎧>--≠>0)143)(1(10x x x x , 即0<x<1或x>34时, f(x)>g(x) (2) ⎪⎪⎩
⎪⎪⎨⎧<--≠>0)143)(1(10x x x x , 即1<x<34时, f(x)<g(x) (3) x=3
4时, f(x)=g(x).
2.2.1 对数与对数的运算
练习二
一、选择题
1、在)5(log 2a b a -=-中,实数a 的范围是( )
A 、 a >5或a <2
B 、 25<<a
C 、 23<<a 或35<<a
D 、 34<<a
2、 若log [log (log )]4320x =,则x -1
2等于( )
A 、 1
42 B 、 1
22 C 、 8 D 、 4
3、334log 的值是( )
A 、 16
B 、 2
C 、 3
D 、 4
4、 已知b a ==4log 3log 55,,则log 2512是( )
A 、 a b +
B 、 )(21
b a + C 、 ab D 、 1
2ab
5、 已知21366log log x =-,则x 的值是( )
A 、 3
B 、 2
C 、 2或-2
D 、 3或2
6、 计算=++5lg 2lg 35lg 2lg 33( )
A 、 1
B 、 3
C 、 2
D 、 0
7、 已知238
34x y ==,log ,则x y +2的值为( )
A 、 3
B 、 8
C 、 4
D 、 log 48
8、 设a 、b 、c 都是正数,且c b a 643==,则( )
A 、 1
1
1
c a b =+ B 、 2
2
1c a b =+ C 、 122
c a b =+
D 、 212c a b =+
二、填空题
9、 若1)12(log -=+x ,则x=________,若log
28=y ,则y=___________。

10、 若f x x ()log ()=-31,且f a ()=2,则a=_____________
11、 已知log log log a b c x x x ===214,,,则log abc x =_________
12、 2
342923232log ()log ()+-+=___________
三、解答题
13、计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258) 14、已知b a ==5log 7log 1414,
,用a 、b 表示log 3528。

15、设M N a a a a
==-{}{lg }01112,,,,,,是否存在实数a ,使得M N ={}1?
练习二答案:
一、选择题
1、 C ;
2、A ;
3、A ;
4、B ;
5、B ;
6、A ;
7、A ;
8、B
二、填空题9、216-,10、1011、
4712、4 三、解答题13、解:原式=)125
log 8log 25log 4log 2)(log 8log 5log 4log 25log 5(log 55555222232++++ =)5
log 32log 35log 22log 22)(log 2log 35log 2log 25log 25log 3(5555522222++++ = 2log 35log )3113(52⋅++
=2log 2
log 5log 13555⋅⋅=13、 14、解:log log log 351414282835==++=++=++=+-+=+-+=-+log log log log log log (log )()141414141414147475222147217212a a b
a a
b a a b a a a b a a b
15、解: M N a a a a ==-{}{lg }01112,,,,,
要使M N ={}1,只需1∈N 且0∉N
若111-=a ,则a =10,这时lg a =1,这与集合中元素的互异性矛盾,∴≠a 10 若lg a =1,则a =10,与a ≠10矛盾
若21a
=,则a =0,这时lg a 无意义,∴≠a 0
若a =1,则1110-=a ,lg lg a a ===1022, 此时}10{}12010{,,,,,
==N M N ,这与已知条件矛盾 因此不存在a 的值,使M N ={}1。

相关文档
最新文档