高中数学新人教A版必修1试题《对数函数及其性质》测试

合集下载

高中数学人教A版必修1练习:2.2.2 第一课时 对数函数的图像及性质 课下检测

高中数学人教A版必修1练习:2.2.2 第一课时 对数函数的图像及性质 课下检测

一、选择题1.已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于( )A.{x|x>-1} B.{x|x<1}C.{x|-1<x<1} D.∅解析:由题意得M={x|x<1},N={x|x>-1},则M∩N={x|-1<x<1}.答案:C2.函数f(x)=log2(3x+3-x)是( ) A.奇函数B.偶函数C.既是奇函数又是偶函数D.不是奇函数又不是偶函数解析:∵3x+3-x>0恒成立.∴f(x)的定义域为R.又∵f(-x)=log2(3-x+3x)=f(x).∴f(x)为偶函数.答案:B3.如图是三个对数函数的图像,则a、b、c的大小关系是( )A.a>b>c B.c>b>aC.c>a>b D.a>c>b解析:由图可知a>1,而0<b<1,0<c<1,取y=1,则可知c>b.∴a>c>b.答案:D4.已知函数f(x)=|lg x|.若a≠b,且f(a)=f(b),则a+b的取值范围是( ) A.(1,+∞) B.[1,+∞)C.(2,+∞) D.[2,+∞)解析:f(x)=|lg x|的图像如图所示,由题可设0<a<1,b>1,∴|lg a|=-lg a,|lg b|=lg b,∴-lg a=lg b.=b,即1a∴a+b=a+1a(0<a<1).又∵函数y=x+1x(0<x<1)为减函数,∴a+1a>2.答案:C二、填空题5.对数函数的图像过点(16,4),则此函数的解析式为________.解析:设f(x)=log a x(a>0且a≠1),则log a16=4.∴a4=16,又∵a>0且a≠1,∴a=2.即f(x)=log2x.答案:f(x)=log2x6.已知函数y=3+log a(2x+3)(a>0且a≠1)的图像必经过定点P,则P点坐标________.解析:∵当2x+3=1即x=-1时,log a(2x+3)=0,y=3,P(-1,3).答案:(-1,3)7.方程x2=log x解的个数是________.解析:函数y=x2和y=log x在同一坐标系内的图像大致为:答案:18.若实数a满足log a2>1,则a的取值范围为________.解析:当a>1时,log a2>1=log a a.∴2>a.∴1<a<2;当0<a<1时,log a2<0.不满足题意. 答案:1<a <2 三、解答题9.(1)已知函数y =lg(x 2+2x +a )的定义域为R ,求实数a 的取值范围; (2)已知函数f (x )=lg[(a 2-1)x 2+(2a+1)x+1],若f (x )的定义域为R ,求实数a 的取值范围.解:(1)因为y =lg(x 2+2x +a )的定义域为R , 所以x 2+2x +a >0恒成立,所以Δ=4-4a <0, 所以 a >1.故a 的取值范围是(1,+∞).(2)依题意(a 2-1)x 2+(2a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时, 错误! 解得a <-54.当a 2-1=0时,显然(2a +1)x +1>0,对x ∈R 不恒成立. 所以a 的取值范围是(-∞,-54).10.已知函数f (x )=log a x +1x -1(a >0,且a ≠1).(1)求f (x )的定义域: (2)判断函数的奇偶性.解:(1)要使函数有意义,则有x +1x -1>0,即⎩⎪⎨⎪⎧x +1>0,x -1>0,,或⎩⎪⎨⎪⎧x +1<0,x -1<0,解得x >1或x <-1, 此函数的定义域为(-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log a x +1x -1=-f (x ).∴f (x )为奇函数.。

人教A版数学必修一《2.2.2对数函数及其性质》同步测试题.docx

人教A版数学必修一《2.2.2对数函数及其性质》同步测试题.docx

高中数学学习材料马鸣风萧萧*整理制作《2.2.2 对数函数及其性质》同步测试题一、选择题1.(2011江西理)若,则函数的定义域为( ).A. B. C. D.考查目的:考查对数函数的有关性质,以及常见函数定义域的求法.答案:A.解析:要使函数有意义,必须,解得,∴.2.(2011天津文)设,,,则( ).A. B. C. D.考查目的:考查对数函数的性质,和不等式的基本性质.答案:D.解析:∵,,,又∵,∴,∴.3.(2011重庆理)下列区间中,函数在其上为增函数的是( ).A. B. C. D.考查目的:考查对数函数的性质,复合函数的单调性,及数形结合思想.答案:D.解析:用图象法解决,将的图象关于轴对称得到的图象,再向右平移两个单位,得到的图象,将得到的图象在轴下方的部分翻折上来,即得到的图象.由所得的图象知,选项中是增函数的显然只有D.二、填空题4.(2012江苏理))函数的定义域为 .考查目的:考查对数函数的性质,及常见函数定义域的求法.答案:.解析:要使函数有意义,必须,∴,解得,∴.5.已知函数(),在上的最大值与最小值之差为,则= .考查目的:考查对数函数的单调性.答案:4.解析:∵,∴是单调递增函数,∴,即,∴,∴,∴.6.(2011重庆理)设函数,若,则实数的取值范围是 .考查目的:考查对数函数的单调性,分段函数的概念及分类讨论思想.答案:.解析:若,由题意得,变形得,∴;若,由题意得,变形得,∴,∴.综合以上分析得,实数的取值范围是,或,即.三、解答题7.已知函数⑴求函数的值域;⑵求的单调性.考查目的:考查二次函数、对数函数和简单的复合函数的性质.答案:⑴函数的值域为;⑵函数在(0,1)上是减函数,在(1,2)上是增函数.解析:⑴由题意得,解得.当时,则,∴,∴函数的值域为;⑵设(),.∵函数在(0,1)上是增函数,在(1,2)上是减函数,而是减函数,∴由复合函数的单调性得,函数在(0,1)上是减函数,在(1,2)上是增函数.8.求函数()的最大值和最小值.考查目的:考查对数函数和二次函数的性质,以及转化化归思想.答案:.解析:.设,∵,∴,∴,∴.由二次函数的图像可知,函数的最大值为,最小值为.。

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。

人教新课标版数学高一-人教A必修一习题 .1对数函数的图象及性质

人教新课标版数学高一-人教A必修一习题  .1对数函数的图象及性质

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列函数是对数函数的是( )A .y =log a (2x )B .y =log22xC .y =log 2x +1D .y =lg x解析: 选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合. 答案: D2.对数函数的图象过点M (16,4),则此对数函数的解析式为( )A .y =log 4xB .y =log 14xC .y =log 12xD .y =log 2x解析: 由于对数函数的图象过点M (16,4),所以4=log a 16,得a =2.所以对数函数的解析式为y =log 2x ,故选D.答案: D3.函数y =log 2x 的定义域是[1,64),则值域是( )A .RB .[0,+∞)C .[0,6)D .[0,64)解析: ∵y =log 2x 在[1,64)上是增函数,∴log 21≤y <log 264.即0≤y <6.故选C. 答案: C4.函数f (x )=1ln (x +1)+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2] 解析: 要使函数有意义,则有⎩⎪⎨⎪⎧ x +1>0.ln (x +1)≠0,4-x 2≥0,即⎩⎪⎨⎪⎧ x >-1,x ≠0,-2≤x ≤2,即-1<x <0或0<x ≤2,故选B.答案: B二、填空题(每小题5分,共15分)5.若a >0且a ≠1,则函数y =log a (x -1)+2的图象恒过定点________. 解析: 当x -1=1时,log a (2-1)=0, ∴函数过定点(2,2),函数f (x )=log a (x -1)+2恒过定点(2,2). 答案: (2,2)6.若对数函数f (x )=log a x +(a 2-4a -5),则a =________. 解析: 由对数函数的定义可知, ⎩⎪⎨⎪⎧ a 2-4a -5=0,a >0,a ≠1,解得a =5.答案: 57.已知函数f (x )=log 5x ,则f (3)+f ⎝⎛⎭⎫253=________.解析: f (3)+f ⎝⎛⎭⎫253=log 53+log 5253=log 5⎝⎛⎭⎫3×253=log 525=2. 答案: 2三、解答题(每小题10分,共20分)8.求下列函数的定义域.(1)f (x )=lg (4-x )x -3;(2)y =log 0.1(4x -3). 解析: (1)由⎩⎪⎨⎪⎧4-x >0,x -3≠0,得x <4且x ≠3, ∴函数的定义域为{x |x <4且x ≠3}. (2)由⎩⎪⎨⎪⎧ 4x -3>0,log 0.1(4x -3)≥0,得⎩⎪⎨⎪⎧ 4x -3>0,4x -3≤1.∴34<x ≤1,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪34<x ≤1. 9.已知f (x )=log 3x .(1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围.解析:(1)作出函数y=log3x的图象如图所示,(2)令f(x)=f(2),即log3x=log32,解得x=2.由图象知:当0<a<2时,恒有f(a)<f(2).∴所求a的取值范围为0<a<2.。

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷含答案解析(11)

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷含答案解析(11)

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷(共22题)一、选择题(共10题)1.设全集为R,函数f(x)=0√2−x的定义域为M,则∁RM=( )A.{x∣ x≥2}B.{x∣ x<2且x≠−1}C.{x∣ x≥2或x=−1}D.{x∣ x>2或x=−1}2.设α∈{−1,1,12,3},则使幂函数y=xα的定义域为R且为奇函数的所有α值为( ) A.1,3B.−1,1C.−1,3D.−1,1,33.若函数y=x2+bx+c(x∈[0,+∞))是单调函数,则实数b的取值范围是( )A.b≥0B.b≤0C.b>0D.b<04.如果函数f(x)=12(m−2)x2+(n−8)x+1(m≥0,n≥0)在区间[12,2]上单调递减,则mn的最大值为( )A.16B.18C.25D.8125.已知定义在(0,+∞)上的函数f(x)为增函数,且f(x)⋅f(f(x)+1x)=1,则f(1)等于( )A.1+√52B.1−√52C.1+√52或1−√52D.√56.定义在R上的函数f(x)满足:f(x−2)的对称轴为x=2,f(x+1)=4f(x)(f(x)≠0),且f(x)在区间(1,2)上单调递增,已知α,β是钝角三角形中的两锐角,则f(sinα)和f(cosβ)的大小关系是( )A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能7.已知函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,下列说法一定正确的是( )A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数8.已知函数y=f(x)的定义域为[−6,1],则函数g(x)=f(2x+1)x+2的定义域是( ) A.(−∞,−2)∪(−2,3]B.[−11,3]C.[−72,−2]D.[−72,−2)∪(−2,0]9.已知R上的奇函数f(x)在区间(−∞,0)上单调递增,且f(−2)=0,则不等式f(x)≤0的解集为( )A.[−2,2]B.(−∞,−2]∪[0,2]C.(−∞,−2]∪[2,+∞)D.[−2,0]∪[2,+∞)10.已知函数f(x)=−x2+4x+a(x∈[0,1]),若f(x)有最小值−2,则f(x)的最大值为( )A.−1B.0C.1D.2二、填空题(共6题)11.在平面直角坐标系xOy中,对于点A(a,b),若函数y=f(x)满足:∀x∈[a−1,a+1],都有y∈[b−1,b+1],则称这个函数是点A的“界函数”.已知点B(m,n)在函数y=−12x2的图象上,若函数y=−12x2是点B的“界函数”,则m的取值范围是.12.已知f(x)=x3+3x,x∈R,且f(a−2)+f(a2)<0,则实数a的取值范围是.13.设函数f(x)={1,x>00,x=0−1,x<0,g(x)=x2⋅f(x−1),则函数g(x)的递减区间是.14.若函数f(x)在区间[a,b]上单调,且f(x)的图象连续不间断,则函数f(x)的最值必在处取得.15.已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,若f(a+1)≤f(4),则实数a的取值范围是.16.若函数y=a∣x−b∣+2在区间(0,+∞)上是增函数,则实数a,b满足的条件为.三、解答题(共6题)17.如图,用长为1的铁丝弯成下部为矩形,上部为半圆形框架,若半圆的半径为x,求此框架围成的面积y与x的函数式y=f(x),并写出它的定义域.18.中国茶文化博大精深.小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提岀的物体在常温环境下温度变化的冷却模型;如果物体的初始温度是θ1,环境温度是θ0,则经过时间t(单位:分)后物体温度θ将满足:θ=θ0+(θ1−θ0)⋅e−kt,其中k为正的常数.小明与同学一起通过多次测量求平均值的方法得到200ml初始温度为98∘C的水在19∘C室温中温度下降到相应温度所需时间如下表所示:从98∘C到90∘C所用时间1分58秒从98∘C到85∘C所用时间3分24秒从98∘C到80∘C所用时间4分57秒(参考数据:ln79=4.369,ln71=4.263,ln66=4.190,ln61=4.111,ln56=4.025)(1) 请依照牛顿冷却模型写出冷却时间t(单位:分)关于冷却后水温θ(单位:∘C)的函数关系,并选取一组数据求出相应的k值.(精确到0.01)(2) “碧螺春”用75∘C左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,200ml水煮沸后在19∘C室温下为获得最佳口感大约冷却分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.A.5B.7C.1019.解答下列问题:(1) 函数的积的定义:一般地,已知两个函数y=f(x)(x∈D1),y=g(x)(x∈D2),设D=D1∩D2,并且D不是空集,那么当x∈D时,y=f(x)与y=g(x)都有意义.于是把函数叫做函数y=f(x)与y=g(x)的积.(2) 如何研究和函数与积函数.20.函数f(x)=(m2−m−1)x m2+m−3是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.21.对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”,设函数f(x)的定义域为(0,+∞),且f(1)=3.(1) 若(a,b)是f(x)的一个“P数对”,且f(2)=6,f(4)=9,求常数a,b的值;(2) 若(1,1)是f(x)的一个“P数对”,且f(x)在[1,2]上单调递增,求函数f(x)在[1,8]上的最大值与最小值;(3) 若(−2,0)是f(x)的一个“P数对”,且当x∈[1,2)时,f(x)=k−∣2x−3∣,求k的值及f(x)在区间[1,2n)(n∈N+)上的最大值与最小值.22.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到(15−0.1x)万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1) 每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2) 每套丛书售价定为多少元时,单套丛书的利润最大?答案一、选择题(共10题)1. 【答案】C【解析】由题意得{x+1≠0,2−x>0,解得x<2且x≠−1,所以M={x∣ x<2且x≠−1},故∁RM={x∣ x≥2或x=−1}.【知识点】函数的定义域的概念与求法2. 【答案】A【解析】当α=−1,1,3时幂函数为奇函数,当α=−1时定义域不是R,所以α=1,3.【知识点】幂函数及其性质3. 【答案】A【解析】因为y在[0,+∞)上为单调函数,所以x=−b2≤0,即b≥0.【知识点】函数的单调性4. 【答案】B【解析】m≠2时,抛物线的对称轴为x=−n−8m−2.据题意,当m>2时,−n−8m−2≥2即2m+n≤12.因为√2m⋅n≤2m+n2≤6,所以mn≤18.由2m=n且2m+n=12得m=3,n=6.当m<2时,抛物线开口向下,据题意得,−n−8m−2≤12即m+2n≤18.因为√2n⋅m≤2n+m2≤9,所以mn≤812.由2n=m且m+2n=18得m=9>2,故应舍去.要使得mn取得最大值,应有m+2n=18(m<2,n>8).所以mn=(18−2n)n<(18−2×8)×8=16,所以最大值为18.【知识点】函数的单调性、函数的最大(小)值5. 【答案】B【解析】令x=1,得f(1)f(f(1)+1)=1,令t=f(1),则tf(t+1)=1,所以 f (t +1)=1t .令 x =t +1,则 f (t +1)f (f (t +1)+1t+1)=1t ⋅f (1t +1t+1)=1, 所以 f (1t +1t+1)=t =f (1).因为函数 f (x ) 为定义在 (0,+∞) 上的增函数, 所以 1t +1t+1=1,变形可得 t 2−t −1=0, 解得 t =1+√52或 t =1−√52.所以 f (1)=1+√52或 f (1)=1−√52.令 x =2,得 f (2)f (f (2)+12)=1, 令 s =f (2),则 sf (s +12)=1, 所以 f (s +12)=1s , 令 x =s +12,则 f (s +12)⋅f (f (s +12)+1s+12)=1sf (1s+22s+1)=1,则 f (1s +22s+1)=s =f (2). 所以 1s +22s+1=2,所以 4s 2−2s −1=0, 解得 s =1−√54或 s =1+√54,所以 f (2)=1−√54或 f (2)=1+√54.因为 f (1)<f (2), 所以 f (1)=1−√52.【知识点】函数的解析式的概念与求法、函数的单调性6. 【答案】A【知识点】抽象函数、函数的单调性7. 【答案】C【解析】方法一:对任意的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,取x1=x2=0得f(0)=−1,取x1=x,x2=−x得,f(0)=f(x)+f(−x)+1,所以f(x)+1=−f(−x)=−[f(−x)+1],所以f(x)+1为奇函数.方法二:由已知f(x1+x2)=f(x1)+f(x2)+1,设x1=x2=0,则f(0)=2f(0)+1,解得:f(0)=−1,又设x1=x,x2=−x,则x1+x2=x−x=0,所以f(0)=f(x)+f(−x)+1,所以f(x)+f(−x)+1+1=0,所以[f(x)+1]+[f(−x)+1]=0,由奇函数定义可知,f(x)+1为奇函数.【知识点】抽象函数、函数的奇偶性8. 【答案】D【解析】因为f(x)的定义域为[−6,1],所以−6≤x≤1,,因为g(x)=f(2x+1)x+2所以−6≤2x+1≤1且x≠−2,≤x≤0且x≠−2,所以−72,−2)∪(−2,0].所以x∈[−72【知识点】函数的定义域的概念与求法9. 【答案】B【解析】因为函数在(−∞,0)上单调递增,且f(−2)=0,所以当x∈(−∞,−2]时,f(x)≤0;当x∈(−2,0)时,f(x)>0.又函数是奇函数,奇函数的图象关于原点对称,f(0)=0,且f(2)=0,所以当x∈(0,2]时,f(x)≤0;当x∈(2,+∞)时,f(x)>0.所以f(x)≤0的解集是(−∞,−2]∪[0,2].故选B.【知识点】函数的奇偶性、函数的单调性10. 【答案】C【解析】函数f(x)=−x2+4x+a的图象开口向下,对称轴为直线x=2,于是函数f(x)在区间[0,1]上单调递增,从而f(0)=−2,即a=−2,于是最大值为f(1)=−1+4−2=1.【知识点】函数的最大(小)值二、填空题(共6题)11. 【答案】[−12,1 2 ]【解析】B(m,n)在y=−12x2上,所以n=−12m2,所以∀x∈[m−1,m+1],都有y∈[−12m2−1,12m2+1],即都有y max≤12m2+1,y min≥12m2−1,所以下面讨论13x∈[m−1,m+1]时,y的最值,① m≤−1时,m+1≤0,所以单调减,所以y max=−12(m+1)2,y min=−12(m−1)2,所以{−12(m+1)2≤12m2+1,−12(m−1)2≥12m2−1,无解.② −1<m≤0时,0<m+1≤1,−2<m−1≤−1,所以y max=0,y min=−12(m−1)2(取不到),所以{0≤12m2+1,−12(m−1)2≥12m2−1,所以−12≤m≤0.③ 0<m≤1时,1<m+1≤2,−1<m−1≤0,所以y max=0,y min=−12(m+1)2,所以 {0≤12m 2+1,−12(m +1)2≥12m 2−1,所以 0<m ≤12.④ m >1 时,m −1>0,所以 y max =−12(m −1)2 (取不到),y min =−12(m +1)2,所以 {−12(m −1)2≤12m 2+1,−12(m +1)2≥12m 2−1,无解.综上:−12≤m ≤12.【知识点】函数的最大(小)值12. 【答案】 (−2,1)【知识点】函数的奇偶性、函数的单调性13. 【答案】 [0,1)【解析】由题意知 g (x )={x 2,x >10,x =1−x 2,x <1,函数图象如图所示,其递减区间是 [0,1).【知识点】函数的单调性14. 【答案】端点【知识点】函数的最大(小)值15. 【答案】 [−5,3]【解析】函数 y =f (x ) 是定义在 R 上的偶函数,且在 [0,+∞) 上是增函数, 可得 f (x )=f (∣x ∣),则f(a+1)≤f(4),即为f(∣a+1∣)≤f(4),可得∣a+1∣≤4,即−4≤a+1≤4,解得−5≤a≤3,则实数a的取值范围是[−5,3].【知识点】函数的奇偶性、函数的单调性16. 【答案】a>0,b≤0【知识点】函数的单调性三、解答题(共6题)17. 【答案】AB=2x,CD⏜=πx,于是AD=1−2x−πx2,因此y=2x⋅1−2x−πx2+πx22,即y=−π+42x2+x,由{2x>0,1−2x−πx2>0,得0<x<1π+2,函数的定义域为(0,1π+2)【知识点】函数的解析式的概念与求法、函数的模型及其实际应用18. 【答案】(1) 由θ−θ0+(θ1−θ0)⋅e−kt得e−kt=θ−θ0θ1−θ0,即−kt=lnθ−θ0θ1−θ0,t=1klnθ1−θ0θ−θ0,在环境温度为θ0=19∘C,选取从θ=98∘C下降到θ=90∘C所用时间约为2分钟这组数据有2=1k ln7971,即k=ln79−ln712≈0.05;选取从θ=98∘C降到θ=85∘C期时间的为3.4分钟这组数据有3.4=1k ln7966,即k=ln79−ln663.4≈0.05;选取从们θ=98∘C得到θ=80∘C所期时的为5分钟这组数据有5=1k ln7961,即k=ln79−ln615≈0.05;故 k ≈0.05.(2) B200 ml 水煮沸后在 19∘C 室温下大约冷却 7 分钟左右冲泡口感最佳,故选B .理由如下:由(1)得 t =20ln 79θ−79,当 θ=75∘C 时,有 t =20×(ln79−ln56)≈6.88.所以 200 ml 水煮沸后在 19∘C 室温下大约冷却 7 分钟冲泡“碧螺春”口感最佳.【知识点】函数模型的综合应用19. 【答案】(1) y =f (x )⋅g (x )(x ∈D )(2) 首先要确定和函数与积函数的定义域,然后化简整理和(积)函数的解析式,结合解析式研究函数的性质.【知识点】函数的相关概念20. 【答案】根据幂函数的定义得 m 2−m −1=1,解得 m =2 或 m =−1.当 m =2 时,f (x )=x 3 在 (0,+∞) 上是增函数;当 m =−1 时,f (x )=x −3 在 (0,+∞) 上是减函数,不符合要求.故 f (x )=x 3.【知识点】幂函数及其性质21. 【答案】(1) 由题意知 {af (1)+b =f (2),af (2)+b =f (4).即 {3a +b =6,6a +b =9.解得 {a =1,b =3.(2) 因为 (1,1) 是 f (x ) 的一个“P 数对”,所以 f (2x )=f (x )+1,所以 f (2)=f (1)+1=4,f (4)=f (2)+1=5,f (8)=f (4)+1=6.因为 f (x ) 在 [1,2] 上单调递增,所以当 x ∈[1,2] 时,f (x )max =f (2)=4,f (x )min =f (1)=3,所以当 x ∈[1,2] 时,3≤f (x )≤4;当 x ∈[2,4] 时,x 2∈[1,2],3≤f (x 2)≤4,所以 4≤f (x )=f (x 2)+1≤5;当 x ∈[4,8] 时,x 2∈[2,4],4≤f (x 2)≤5, 所以 5≤f (x )=f (x 2)+1≤6.综上,当 x ∈[1,8] 时,3≤f (x )≤6.故 f (x ) 在 [1,8] 上的最大值为 6,最小值为 3.(3) 当 x ∈[1,2) 时,f (x )=k−∣2x −3∣,令 x =1,可得 f (1)=k −1=3,解得 k =4, 所以 x ∈[1,2) 时,f (x )=4−∣2x −3∣,故 f (x ) 在 [1,2) 上的取值范围是 [3,4].又 (−2,0) 是 f (x ) 的一个“P 数对”,所以 f (2x )=−2f (x ) 恒成立,当 x ∈[2k−1,2k )(k ∈N +) 时,x 2k−1∈[1,2),f (x )=−2f (x 2)=4f (x 4)=⋯=(−2)k−1⋅f (x 2k−1),故 k 为奇数时,f (x ) 在 [2k−1,2k ) 上的取值范围是 [3×2k−1,2k+1];当 k 为偶数时,f (x ) 在 [2k−1,2k ) 上的取值范围是 [−2k+1,−3×2k−1].所以当 n =1 时,f (x ) 在 [1,2n ) 上的最大值为 4,最小值为 3;当 n 为不小于 3 的奇数时,f (x ) 在 [1,2n ) 上的最大值为 2n+1,最小值为 −2n ;当 n 为不小于 2 的偶数时,f (x ) 在 [1,2n ) 上的最大值为 2n ,最小值为 −2n+1.【知识点】函数的最大(小)值、抽象函数22. 【答案】(1) 每套丛书售价定为 100 元时,销售量为 15−0.1×100=5 (万套),所以每套丛书的供货价格为 30+105=32 (元),故书商所获得的总利润为 5×(100−32)=340 (万元).(2) 每套丛书售价定为 x 元时,由 {15−0.1x >0,x >0,得 0<x <150 . 设单套丛书的利润为 P 元,则 P =x −(30+1015−0.1x )=x −100150−x −30,因为 0<x <150,所以 150−x >0,所以 P =−[(150−x )+100150−x ]+120, 又 (150−x )+100150−x ≥2√(150−x )⋅100150−x =2×10=20, 当且仅当 150−x =100150−x ,即 x =140 时等号成立,所以 P max =−20+120=100 .故每套丛书售价定为 140 元时,单套丛书的利润最大,为 100 元.【知识点】函数的模型及其实际应用、函数的最大(小)值、均值不等式的应用。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

【高中数学新人教A版必修1】2.2.2《对数函数及其性质》测试.docx

【高中数学新人教A版必修1】2.2.2《对数函数及其性质》测试.docx

【高中数学新人教A 版必修1】2.2.2《对数函数及其性质》测试一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内.1.对数式b a a =--)5(log 2中,实数a 的取值范围是 ( )A .)5,(-∞B .(2,5)C .),2(+∞D . )5,3()3,2(2.如果lgx =lga +3lgb -5lgc ,那么( )A .x =a +3b -cB .c ab x 53=C .53cab x = D .x =a +b 3-c 33.设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则( ) A .M∪N=RB .M=NC .M ⊇ND .M ⊆N4.若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( )A .⎪⎭⎫ ⎝⎛43,0 B .⎪⎭⎫⎢⎣⎡43,0 C .⎥⎦⎤⎢⎣⎡43,0 D .⎪⎭⎫ ⎝⎛+∞-∞,43]0,(5.下列函数图象正确的是 ( )A B C D6.已知函数)(1)()(x f x f x g -=,其中log 2f (x )=2x ,x ∈R ,则g(x ) ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数7.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参考数据:1.14=1.46,1.15=1.61) ( )A .10%B .16.4%C .16.8%D .20% 8.如果y=log 2a -1x 在(0,+∞)内是减函数,则a 的取值范围是 ( )A .|a |>1B .|a |<2C .a 2-<D .21<<a二、填空题:请把答案填在题中横线上. 9.函数)2(log 221x y -=的定义域是 ,值域是 .10.方程log 2(2x +1)log 2(2x +1+2)=2的解为 .11.将函数xy 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .12.函数y=)124(log 221-+x x 的单调递增区间是 .三、解答题:解答应写出文字说明、证明过程或演算步骤. 13.已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=. (1)求函数f (x )的定义域;(2)求函数f (x )的值域.14.设函数)1lg()(2++=x x x f .(1)确定函数f (x )的定义域; (2)判断函数f (x )的奇偶性;(3)证明函数f (x )在其定义域上是单调增函数; (4)求函数f(x)的反函数.15.现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg 20.301==).16.如图,A ,B ,C 为函数x y 21log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设∆ABC 的面积为S 求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值.17.已求函数)1,0)((log 2≠>-=a a x x y a 的单调区间.参考答案一、DCCB BDBD二、9. (][)2,112 --, [)+∞,0; 10.0; 11.1)1(log 2--=x y ; 12. )2,(--∞;三、13. 解:(1)函数的定义域为(1,p ).(2)当p >3时,f (x )的值域为(-∞,2log 2(p +1)-2);当1<p ≤3时,f (x )的值域为(-∞,1+log2(p +1)).14.解: (1)由⎪⎩⎪⎨⎧≥+>++010122x x x 得x ∈R,定义域为R. (2)是奇函数. (3)设x 1,x 2∈R ,且x 1<x 2,则11lg )()(22221121++++=-x x x x x f x f . 令12++=x x t ,则)1()1(22221121++-++=-x x x x t t .=)11()(222121+-++-x x x x=11))(()(2221212121++++-+-x x x x x x x x=1111)((222121222121++++++++-x x x x x x x x∵x 1-x 2<0,01121>++x x ,01222>++x x ,0112221>+++x x ,∴t 1-t 2<0,∴0<t 1<t 2,∴1021<<t t , ∴f (x 1)-f (x 2)<lg1=0,即f (x 1)<f (x 2),∴ 函数f(x)在R 上是单调增函数.(4)反函数为xx y 1021102⋅-=(x ∈R). 15.解:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数,1小时后,细胞总数为1131001002100222⨯+⨯⨯=⨯;2小时后,细胞总数为13139100100210022224⨯⨯+⨯⨯⨯=⨯;3小时后,细胞总数为191927100100210024248⨯⨯+⨯⨯⨯=⨯;4小时后,细胞总数为127127811001002100282816⨯⨯+⨯⨯⨯=⨯;可见,细胞总数y 与时间x (小时)之间的函数关系为: 31002xy ⎛⎫=⨯ ⎪⎝⎭,x N *∈由103100102x⎛⎫⨯> ⎪⎝⎭,得83102x⎛⎫> ⎪⎝⎭,两边取以10为底的对数,得3lg82x >, ∴8lg 3lg 2x >-, ∵8845.45lg3lg 20.4770.301=≈--, ∴45.45x >.答:经过46小时,细胞总数超过1010个.16.解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C .)441(log )2(4log 232231t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5,[)∞++=.541在v v 上是减函数,且1<u ≤59; S ⎥⎦⎤⎝⎛=59,1log 3在u 上是增函数,所以复合函数S=f (t ) [)+∞++=,1)441(log 23在tt 上是减函数(3)由(2)知t =1时,S 有最大值,最大值是f (1) 5log 259log 33-==17.解:由2x x ->0得0<x<1,所以函数)(log 2x x y a -=的定义域是(0,1)因为0<2x x -=4141)21(2≤+--x , 所以,当0<a <1时, 41log )(log 2aa x x ≥- 函数)(log 2x x y a -=的值域为⎪⎭⎫⎢⎣⎡+∞,41log a ; 当a >1时, 41log )(log 2aa x x ≤- 函数)(log 2x x y a -=的值域为⎥⎦⎤ ⎝⎛∞-41log,a当0<a <1时,函数)(log 2x x y a -=在⎥⎦⎤ ⎝⎛21,0上是减函数,在⎪⎭⎫⎢⎣⎡1,21上是增函数; 当a >1时,函数)(log 2x x y a -=在⎥⎦⎤ ⎝⎛21,0上是增函数,在⎪⎭⎫⎢⎣⎡1,21上是减函数.。

2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2.2.2 对数函数及其性质课后篇巩固提升基础巩固1.y=2x与y=log2x的图象关于( )A.x轴对称B.直线y=x对称C.原点对称D.y轴对称y=2x与y=log2x互为反函数,故函数图象关于直线y=x对称.2.函数y=ln(1-x)的图象大致为( )(-∞,1),且函数在定义域上单调递减,故选C.3.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1y=log a (x+c )的图象是由y=log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.4.已知a>0且a ≠1,函数y=log a x ,y=a x ,y=x+a 在同一坐标系中的图象可能是( )函数y=a x 与y=log a x 的图象关于直线y=x 对称,再由函数y=a x 的图象过(0,1),y=log a x 的图象过(1,0),观察图象知,只有C 正确.5.已知a=,b=log 2,c=lo ,则( )2-1313g 1213A.a>b>cB.a>c>bC.c>b>aD.c>a>b0<a=<20=1,b=log 2<log 21=0,c=lo >lo =1,∴c>a>b.故选D .2-1313g 1213g 12126.若对数函数f (x )的图象经过点P (8,3),则f = .(12)f (x )=log a x (a>0,a ≠1),则log a 8=3,∴a 3=8,∴a=2.∴f (x )=log 2x ,故f =log 2=-1.(12)1217.将y=2x 的图象先 ,再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度,可求出解析式或利用几何图形直观推断.8.已知函数f (x )=直线y=a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围{log 2x ,x >0,3x ,x ≤0,是 .f (x )的图象如图所示,要使直线y=a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.作出函数y=|log 2x|+2的图象,并根据图象写出函数的单调区间及值域.y=log 2x 的图象,如图甲.再将y=log 2x 在x 轴下方的图象关于x 轴对称翻折到x 轴上方(原来在x 轴上方的图象不变),得函数y=|log 2x|的图象,如图乙;然后将y=|log 2x|的图象向上平移2个单位长度,得函数y=|log 2x|+2的图象,如图丙.由图丙得函数y=|log 2x|+2的单调递增区间是[1,+∞),单调递减区间是(0,1),值域是[2,+∞).10.已知对数函数y=f(x)的图象经过点P(9,2).(1)求y=f(x)的解析式;(2)若x∈(0,1),求f(x)的取值范围.(3)若函数y=g(x)的图象与函数y=f(x)的图象关于x轴对称,求y=g(x)的解析式.设f(x)=log a x(a>0,且a≠1).由题意,f(9)=log a9=2,故a2=9,解得a=3或a=-3.又因为a>0,所以a=3.故f(x)=log3x.(2)因为3>1,所以当x∈(0,1)时,f(x)<0,即f(x)的取值范围为(-∞,0).g1(3)因为函数y=g(x)的图象与函数y=log3x的图象关于x轴对称,所以g(x)=lo x.3能力提升1.函数y=log a(x+2)+1(a>0,且a≠1)的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)x+2=1,得x=-1,此时y=1.2.若函数f (x )=log 2x 的反函数为y=g (x ),且g (a )=,则a=( )14A.2 B.-2 C. D.-1212,得g (x )=2x .∵g (a )=,∴2a =,∴a=-2.14143.若函数f (x )=log 2(x 2-ax-3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)t (x )=x 2-ax-3a ,则由函数f (x )=log 2t 在区间(-∞,-2]上是减函数,可得函数t (x )在区间(-∞,-2]上是减函数,且t (-2)>0,所以有-4≤a<4,故选D .4.已知函数f (x )=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值等于( )A. B.2 C.3D.1213y=a x 与y=log a (x+1)在[0,1]上的单调性相同,所以f (x )在[0,1]上的最大值与最小值之和为f (0)+f (1)=(a 0+log a 1)+(a 1+log a 2)=a ,整理得1+a+log a 2=a ,即log a 2=-1,解得a=.故选A .125.已知a=log 23.6,b=log 43.2,c=log 43.6,则a ,b ,c 的大小关系为 .a==2log 43.6=log 43.62,又函数y=log 4x 在区间(0,+∞)上是增函数,3.62>3.6>3.2,log 43.6log 42∴log 43.62>log 43.6>log 43.2,∴a>c>b.6.已知a>0且a ≠1,则函数y=a x 与y=log a (-x )在同一直角坐标系中的图象只能是下图中的 (填序号).方法一)首先,曲线y=a x 位于x 轴上方,y=log a (-x )位于y 轴左侧,从而排除①③.其次,从单调性考虑,y=a x 与y=log a (-x )的增减性正好相反,又可排除④.故只有②满足条件.(方法二)若0<a<1,则曲线y=a x 下降且过点(0,1),而曲线y=log a (-x )上升且过点(-1,0),所有选项均不符合这些条件.若a>1,则曲线y=a x 上升且过点(0,1),而曲线y=log a (-x )下降且过点(-1,0),只有②满足条件.(方法三)如果注意到y=log a (-x )的图象关于y 轴的对称图象为y=log a x 的图象,又y=log a x 与y=a x 互为反函数(两者图象关于直线y=x 对称),则可直接选②.7.已知函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .f (x )的解析式为f (x )=其图象如右图所示.{lg x ,x >0,0,x =0,-lg (-x ),x <0,由函数图象可得不等式f (x )>0时,x 的取值范围为(-1,0)∪(1,+∞).-1,0)∪(1,+∞)8.设函数f (x )=ln(ax 2+2x+a )的定义域为M.(1)若1∉M ,2∈M ,求实数a 的取值范围;(2)若M=R ,求实数a 的取值范围.由题意M={x|ax 2+2x+a>0}.由1∉M ,2∈M 可得{a ×12+2×1+a ≤0,a ×22+2×2+a >0,化简得解得-<a ≤-1.{2a +2≤0,5a +4>0,45所以a 的取值范围为.(-45,-1](2)由M=R 可得ax 2+2x+a>0恒成立.当a=0时,不等式可化为2x>0,解得x>0,显然不合题意;当a ≠0时,由二次函数的图象可知Δ=22-4×a×a<0,且a>0,即化简得解得a>1.{4-4a 2<0,a >0,{a 2>1,a >0,所以a 的取值范围为(1,+∞).9.已知函数f (x )=log 2(a 为常数)是奇函数.1+ax x -1(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x-1)>m 恒成立,求实数m 的取值范围.∵函数f (x )=log 2是奇函数,1+axx -1∴f (-x )=-f (x ).∴log 2=-log 2.1-ax -x -11+ax x -1即log 2=log 2,∴a=1.ax -1x +1x -11+ax 令>0,解得x<-1或x>1.1+x x -1所以函数的定义域为{x|x<-1或x>1}.(2)f (x )+log 2(x-1)=log 2(1+x ),当x>1时,x+1>2,∴log 2(1+x )>log 22=1.∵x ∈(1,+∞),f (x )+log 2(x-1)>m 恒成立,∴m ≤1.故m 的取值范围是(-∞,1].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 对数函数及其性质
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内.
1.对数式b a a =--)5(log 2中,实数a 的取值范围是 ( )
A .)5,(-∞
B .(2,5)
C .),2(+∞
D . )5,3()3,2(
2.如果lgx =lga +3lgb -5lgc ,那么
( )
A .x =a +3b -c
B .c
ab x 53=
C .53
c
ab x = D .x =a +b 3-c 3
3.设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则
( ) A .M∪N=R
B .M=N
C .M ⊇N
D .M ⊆N
4.若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是
( )
A .⎪⎭⎫ ⎝

43,0 B .⎪⎭⎫⎢⎣⎡43,0 C .⎥⎦⎤
⎢⎣⎡4
3,0 D .⎪⎭
⎫ ⎝⎛+∞-∞,43
]0,(
5.下列函数图象正确的是 ( )
A B C D 6.已知函数)
(1
)()(x f x f x g -
=,其中log 2f (x )=2x ,x ∈R ,则g(x ) ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数
7.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参
考数据:1.14=1.46,1.15
=1.61) ( )
A .10%
B .16.4%
C .16.8%
D .20% 8.如果y=log 2a -1x 在(0,+∞)内是减函数,则a 的取值范围是
( )
A .|a |>1
B .|a |<2
C .a 2-<
D .21<<a
二、填空题:请把答案填在题中横线上. 9.函数)2(log 22
1x y -=
的定义域是 ,值域是 .
10.方程log 2(2x +1)log 2(2x +1+2)=2的解为 .
11.将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .
12.函数y=)124(log 2
2
1-+x x 的单调递增区间是 .
三、解答题:解答应写出文字说明、证明过程或演算步骤. 13.已知函数)(log )1(log 1
1
log )(222
x p x x x x f -+-+-+=. (1)求函数f (x )的定义域;(2)求函数f (x )的值域.
14.设函数)1lg()(2++
=x x x f .
(1)确定函数f (x )的定义域; (2)判断函数f (x )的奇偶性;
(3)证明函数f (x )在其定义域上是单调增函数; (4)求函数f(x)的反函数.
15.现有某种细胞100个,其中有占总数
1
2
的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过10
10个?(参考数据:lg30.477,lg 20.301==).
16.如图,A ,B ,C 为函数x y 2
1log =的图象
上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设∆ABC 的面积为S 求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值.
17.已求函数)1,0)((log 2≠>-=a a x x y a 的单调区间.
参考答案
一、DCCB BDBD
二、9. (][)
2,112 --, [)+∞,0; 10.0; 11.1)1(log 2--=x y ; 12. )2,(--∞;
三、
13. 解:(1)函数的定义域为(1,p ).
(2)当p >3时,f (x )的值域为(-∞,2log 2(p +1)-2); 当1<p ≤3时,f (x )的值域为(-∞,1+log2(p +1)).
14.解: (1)由⎪⎩⎪⎨⎧≥+>++0
10122x x x 得x ∈R,定义域为R. (2)是奇函数. (3)设x 1,x 2∈R ,
且x 1<x 2,
则1
1lg )()(2
222
112
1++++=-x x x x x f x f . 令12++=x x t ,
则)1()1(2
2221121++-++=-x x x x t t .
=)11()(2
22121+-++-x x x x
=11))(()(2
221212121++++-+-x x x x x x x x
=
1
111)((22
2
12
12
22121++++++++-x x x x x x x x
∵x 1-x 2<0,01121>++x x ,0122
2>++x x ,0112221>++
+x x ,
∴t 1-t 2<0,∴0<t 1<t 2,∴102
1
<<
t t , ∴f (x 1)-f (x 2)<lg1=0,即f (x 1)<f (x 2),∴ 函数f(x)在R 上是单调增函数.
(4)反函数为x
x
y 1021102⋅-=(x ∈R).
15.解:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数, 1小时后,细胞总数为11310010021002
2
2
⨯+⨯⨯=⨯;
2小时后,细胞总数为13139100100210022
22
4
⨯⨯+⨯⨯⨯=⨯;
3小时后,细胞总数为191927100100210024
248
⨯⨯+⨯⨯⨯=⨯;
4小时后,细胞总数为1271278110010021002
8
2
8
16
⨯⨯+⨯⨯⨯=⨯;
可见,细胞总数y 与时间x (小时)之间的函数关系为: 31002x
y ⎛⎫=⨯ ⎪⎝⎭
,x N *

由103100102x
⎛⎫⨯> ⎪⎝⎭,得83102x
⎛⎫> ⎪⎝⎭
,两边取以10为底的对数,得3lg 82x >,
∴8lg3lg 2
x >
-, ∵8845.45lg3lg 20.4770.301=≈--,
∴45.45x >.
答:经过46小时,细胞总数超过10
10个.
16.解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C .
)44
1(log )2(4log 2
3223
1t t t t t ++=++=
(2)因为v =t t 42
+在),1[+∞上是增函数,且v ≥5,
[)∞++=.541在v v 上是减函数,且1<u ≤59; S ⎥⎦⎤
⎝⎛=59,1log 3在u 上是增函数,
所以复合函数S=f (t ) [)+∞++
=,1)44
1(log 2
3在t
t 上是减函数 (3)由(2)知t =1时,S 有最大值,最大值是f (1) 5log 25
9
log 33-==
17.解:由2
x x ->0得0<x<1,所以函数)(log 2x x y a -=的定义域是(0,1)
因为0<2
x x -=4
141)2
1(2
≤+
--x , 所以,当0<a <1时, 4
1log )(log 2
a
a x x ≥- 函数)(log 2x x y a -=的值域为⎪⎭⎫⎢⎣⎡+∞,41log a ; 当a >1时, 4
1
log )(log 2
a
a x x ≤- 函数)(log 2x x y a -=的值域为⎥⎦
⎤ ⎝

∞-41log
,a
当0<a <1时,函数)(log 2x x y a -=在⎥⎦⎤ ⎝⎛21,
0上是减函数,在⎪⎭
⎫⎢⎣⎡1,21上是增函数;
当a >1时,函数)(log 2x x y a -=在⎥⎦

⎝⎛21,0上是增函数,在⎪⎭
⎫⎢⎣⎡1,2
1上是减函数.。

相关文档
最新文档