高中数学 第三章 不等式 3.3 一元二次不等式及其解法学案 新人教B版必修5

合集下载

高中数学第三章一元二次不等式及其解法第3课时一元二次不等式解法(习题课)练习(含解析)

高中数学第三章一元二次不等式及其解法第3课时一元二次不等式解法(习题课)练习(含解析)

第三章 不等式3.2 一元二次不等式及其解法第3课时 一元二次不等式解法(习题课)A 级 基础巩固一、选择题1.不等式(x -1)x +2≥0的解集是( )A .{x |x >1}B .{x |x ≥1}C .{x |x ≥1或x =-2}D .{x |x ≤-2或x =1} 解析:(x -1)x +2≥0,所以⎩⎪⎨⎪⎧x -1≥0,x +2≥0或x =-2,⇒x ≥1或x =-2,故选C.答案:C2.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4} 解析:因为ax 2-ax +1<0无解,当a =0的显然正确;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ≤0⇒⎩⎪⎨⎪⎧a >0,a 2-4a ≤0⇒0≤a ≤4. 综上知,0≤a ≤4.选D.答案:D3.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ) A .M ∩NB .M ∪NC .∁R(M ∩N )D .∁R(M ∪N )解析:因为M ={x |-3<x <1},N ={x |x ≤-3},所以M ∪N ={x |x <1},故∁R(M ∪N )={x |x ≥1},选D.答案:D4.已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >lg 2}B .{x |-1<x <lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}解析:由题意知,一元二次不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <12.而f (10x )>0,所以-1<10x <12,解得x <lg 12,即x <-lg 2. 答案:D5.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2 解析:f (x )=x 2+(a -4)x +4-2a >0,a ∈[-1,1]恒成立⇒(x -2)a +x 2-4x +4>0,a∈[-1,1]恒成立.所以⎩⎪⎨⎪⎧(x -2)×(-1)+x 2-4x +4>0,(x -2)×1+x 2-4x +4>0, 解得3<x 或x <1.选B.答案:B二、填空题6.若不等式(a 2-1)x 2-(a -1)x -1<0的解集为R ,则实数a 的取值范围是________. 答案:⎝ ⎛⎦⎥⎤-35,1 7.已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a =________. 解析:由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax -1=0的根,所以a =-2.答案:-2 8.关于x 的方程x 2m+x +m -1=0有一个正实数根和一个负实数根,则实数m 的取值范围是________.解析:若方程x 2m +x +m -1=0有一个正实根和一个负实根,则有⎩⎪⎨⎪⎧m >0,m -1<0,或⎩⎪⎨⎪⎧m <0,m -1>0. 所以0<m <1或∅.答案:(0,1)三、解答题9.已知一元二次不等式(m -2)x 2+2(m -2)x +4>0的解集为R.求m 的取值范围. 解:因为y =(m -2)x 2+2(m -2)x +4为二次函数,所以m ≠2.因为二次函数的值恒大于零,即(m -2)x 2+2(m -2)x +4>0的解集为R.所以⎩⎪⎨⎪⎧m -2>0,Δ<0,即⎩⎪⎨⎪⎧m >2,4(m -2)2-16(m -2)<0, 解得:⎩⎪⎨⎪⎧m >2,2<m <6.所以m 的取值范围为{m |2<m <6}.10.已知f (x )=-3x 2+a (6-a )x +3,解关于a 的不等式f (1)≥0.解:f (1)=-3+a (6-a )+3=a (6-a ),因为f (1)≥0,所以a (6-a )≥0,a (a -6)≤0, 方程a (a -6)=0有两个不等实根a 1=0,a 2=6,由y =a (a -6)的图象,得不等式f (1)≥0的解集为{a |0≤a ≤6}.B 级 能力提升1.若实数α,β为方程x 2-2mx +m +6=0的两根,则(α-1)2+(β-1)2的最小值为( )A .8B .14C .-14D .-494解析:因为Δ=(-2m )2-4(m +6)≥0,所以m 2-m -6≥0,所以m ≥3或m ≤-2.(α-1)2+(β-1)2=α2+β2-2(α+β)+2=(α+β)2-2αβ-2(α+β)+2=(2m )2-2(m +6)-2(2m )+2=4m 2-6m -10=4⎝ ⎛⎭⎪⎫m -342-494,因为m ≥3或m ≤-2,所以当m =3时,(α-1)2+(β-1)2取最小值8.答案:A2.有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的农药不超过容积的28%,则桶的容积的取值范围是________.解析:设桶的容积为x 升,那么第一次倒出8升纯农药液后,桶内还有(x -8)(x >8)升纯农药液,用水补满后,桶内纯农药液的浓度为x -8x.第二次又倒出4升药液,则倒出的纯农药液为 4(x -8)x 升,此时桶内有纯农药液⎣⎢⎡⎦⎥⎤x -8-4(x -8)x 升. 依题意,得x -8-4(x -8)x≤28%·x . 由于x >0,因而原不等式化简为9x 2-150x +400≤0,即(3x -10)(3x -40)≤0.解得103≤x ≤403. 又x >8,所以8<x ≤403.答案:⎝⎛⎦⎥⎤8,403 3.已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解:设f (x )=x 2+2mx +2m +1,根据题意,画出示意图,由图分析可得,m 满足不等式组⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0.解得-56<m <-12.。

高中数学新人教B版必修5课件:第三章不等式3.5.1二元一次不等式(组)所表示的平面区域

高中数学新人教B版必修5课件:第三章不等式3.5.1二元一次不等式(组)所表示的平面区域

反思感悟 在画二元一次不等式组表示的平面区域时,应先画出每个不等 式表示的区域,再取它们的公共部分即可.其步骤:①画线;②定侧;③求 “交”;④表示.但要注意是否包含边界.
跟踪训练3 画出|x|+|y|≤1表示的平面区域.
解 当x≥0且y≥0时,|x|+|y|≤1,即x+y≤1.
x≥0, 由y≥0,
3 达标检测
PART THREE
1.不在不等式3x+2y<6表示的平面区域内的一个点是
A.(0,0) C.(0,2)
B.(1,1)
√D.(2,0)
解析 将四个点的坐标分别代入不等式中,其中点(2,0)代入后不等式不成立, 故此点不在不等式3x+2y<6表示的平面区域内,故选D.
1234
2.已知点(-1,2)和点(3,-3)在直线3x+y-a=0的两侧,则a的取值范围是
解析 在平面直角坐标系中画出直线x-2y+6=0, 视察图象(图略)知原点在直线的右下方, 将原点(0,0)代入x-2y+6,得0-0+6=6>0, 所以原点(0,0)在不等式x-2y+6>0表示的平面区域内,故选B.
命题角度2 给不等式组画平面区域
例3 画出下列不等式组所表示的平面区域.
x-2y≤3,
核心素养之直观想象
HEXINSUYANGZHIZHIGUANXIANGXIANG
数形结合的魅力
典例 我们可以验证点(1,2)是不等式x-y<6的一个解.怎么证明直线
x-y=6左上方半平面(不包括边界)上所有点均是x-y<6的解?
证明 设点A(x0,y0)位于直线x-y=6左上方区域,
则过点A作直线AB∥y轴,交直线x-y=6于点 B. 设B(x0,y1),则有y0>y1. ∵B在直线x-y=6上,

高三数学一元二次不等式及其解法教案范例

高三数学一元二次不等式及其解法教案范例

高三数学一元二次不等式及其解法教案范例教案范例:高三数学一元二次不等式及其解法教学目标:1. 理解一元二次不等式的定义和解法;2. 掌握一元二次不等式的图解法和代数解法;3. 能够运用解一元二次不等式的方法解决实际问题。

教学步骤:Step 1:引入知识(5分钟)通过提问学生对一元二次方程的回顾,引入一元二次不等式的概念。

简单介绍一元二次不等式与一元二次方程的异同点。

Step 2:图解法(15分钟)1. 讲解一元二次不等式的图解法:先将不等式转化为对应的一元二次方程,然后求出方程的解集并在坐标系中表示出来,最后根据问题中的不等号关系确定解集。

2. 示例演练:出示若干个一元二次不等式,引导学生尝试用图解法求解。

Step 3:代数解法(15分钟)1. 讲解一元二次不等式的代数解法:通过移项和因式分解的方法将一元二次不等式化为二次因式的乘积形式,然后根据因式的性质确定不等式的解集。

2. 示例演练:出示若干个一元二次不等式,引导学生尝试用代数解法求解。

Step 4:综合训练(15分钟)1. 提供一些综合性的一元二次不等式问题,要求学生综合运用图解法和代数解法解答。

2. 引导学生分析问题的实际背景,并对解集进行合理性判断。

Step 5:拓展应用(10分钟)提供一些与实际问题相关的一元二次不等式,要求学生能够将问题转化为数学不等式,并用所学的方法解决。

Step 6:总结归纳(5分钟)总结一元二次不等式的解法,强调图解法和代数解法的适用条件及各自的特点。

Step 7:作业布置(5分钟)布置一定量的练习题,要求学生熟练掌握一元二次不等式的解法。

教学反思:通过图解法和代数解法的对比,可以帮助学生全面理解一元二次不等式的解法。

同时,引入一些实际问题,能够增强学生对一元二次不等式应用的理解和能力。

在教学过程中,要注意引导学生思考和分析问题,培养他们的解决问题的能力。

最新人教版高三数学必修5(B版)电子课本课件【全册】

最新人教版高三数学必修5(B版)电子课本课件【全册】
最新人教版高三数学必修5(B版)电 子课本课件【全册】
1.1.2 余弦定理
最新人教版高三数学必修5(B版)电 子课本课件【全册】
1.2 应用举例
最新人教版高三数学必修5(B版)电 子课本课件【全册】
2.2.2 等差数列的前n项和
ห้องสมุดไป่ตู้
2.3.2 等比数列的前n项和
阅读与欣赏
级数趣题
第三章 不等式
3.1.2 不等式的性质
3.3 一元二次不等式及其解法
3.5 二元一次不等式(组)与简单的线性规划问题
本章小结
后记
第一章 解三角形
最新人教版高三数学必修5(B版)电 子课本课件【全册】
1.1 正弦定理和余弦定理 1.1.1 正弦定理
最新人教版高三数学必修5(B版) 电子课本课件【全册】目录
0002页 0057页 0111页 0131页 0145页 0192页 0237页 0283页 0285页 0321页 0390页 0461页 0500页 0557页
第一章 解三角形
1.1.2 余弦定理
本章小结
第二章 数列
2.1.2 数列的递推公式(选学)
本章小结
最新人教版高三数学必修5(B版)电 子课本课件【全册】
阅读与欣赏
亚历山大
时期的三角测量
最新人教版高三数学必修5(B版)电 子课本课件【全册】

高中数学教材人教B版目录(详细版).doc

高中数学教材人教B版目录(详细版).doc

数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。

数学人教B版教材目录(必修选修)

数学人教B版教材目录(必修选修)

数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。

高中数学 3-3一元二次不等式及其解法 课件同步导学 新人教B版必修5

高中数学 3-3一元二次不等式及其解法 课件同步导学 新人教B版必修5
的解集是什么?
【提示】 (1)当 a>0 时,f(x)≥0 的解集为(-∞,x1]∪ [x2,+∞);f(x)≤0 的解集为[x1,x2].
(2)当 a<0 时,f(x)≥0 的解集为[x1,x2], f(x)≤0 的解集为(-∞,x1]∪[x2,+∞). (3) 不相同,当 a>0 时,axx--xx21≥0 的解集为(-∞,x1] ∪(x2,+∞);当 a<0 时,其解集为[x1,x2),与 f(x)≥0 的解 集相比,均差一个端点 x2,这是因为当 x=x2 时,axx--xx21无 意义.

(x1,x2)


• 3.求解一元二次不等式ax2+bx+c>0(a>0)的 算法过程:
(3)f(x)≥0 与axx--xx21≥0 的解集相同吗?
• 设f(x)=a(x-x1)(x-x2),(x1<x2)则 • (1)当a>0时,f(x)≥0的解集是什么?f(x)≤0
的解集是什么? • (2)当a<0时,f(x)≥0的解集是什么?f(x)≤0
a2-1<0
.
Δ<0
【解析】 ①当 a2-1=0,即 a=±1 时, 若 a=1,则原不等式为-1<0,恒成立. 若 a=-1,则原不等式为 2x-1<0, 即 x<12,不符合题目要求,舍去. ②当 a2-1≠0,即 a≠±1 时,原不等式的解集为 R 的条 件是aΔ2=-1a<-012+4a2-1<0 , 解得-35<a<1. 综上所述,当-35<a≤1 时,原不等式的解为全体实数.
(1)不等式 ax2+bx+c>0 的解集是全体实 数(或恒成立)的条件是当 a=0 时,b=0,c>0;
当 a≠0 时,aΔ><00 . (2)不等式 ax2+bx+c<0 的解集是全体实数(或恒成立) 的条件是当 a=0 时,b=0,c<0; 当 a≠0 时,aΔ<<00 .类似地,还有 f(x)≤a 恒成立⇔ [f(x)]max≤a;f(x)≥a 恒成立⇔[f(x)]min≥a.

数学讲义:第3章 3.3 一元二次不等式及其解法 Word版含答案

数学讲义:第3章 3.3 一元二次不等式及其解法 Word版含答案

高中数学课程
1.含参数的不等式的解题步骤 (1)将二次项系数转化为正数; (2)判断相应方程是否有根(如果可以直接分解因式,可省去此步); (3)根据根的情况写出相应的解集(若方程有相异根,为了写出解集还要分析根 的大小). 2.解含参数的一元二次不等式 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 与等于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.
∴g(x)max=g(3)=7m-6.
∴7m-6<0,解得
6 m<7.
∴0<m<67.
当 m=0 时,-6<0 恒成立.
当 m<0 时,g(x)在[1,3]上是减函数.
∴g(x)max=g(1)=m-6<0,解得 m<6,∴m<0.
高中数学课程
综上所述,m 的取值范围为-∞,67. 法二:f(x)<-m+5 恒成立,
高中数学课程
综上所述,
当-2<a<0 时,解集为x2a≤x≤-1



当 a=-2 时,解集为{x|x=-1};
当 a<-2 时,解集为x-1≤x≤2a

.

不等式恒成立问题
【例 3】 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范围; (2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.

.

(2)原不等式等价于 3x2-6x+2≥0.Δ=12>0,解方程 3x2-6x+2=0,得 x1=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 一元二次不等式及其解法1.理解一元二次不等式与二次函数、一元二次方程之间的关系,能借助二次函数的图象解一元二次不等式.2.能利用一元二次不等式解决相关的实际问题,并会设计求解一元二次不等式的程序框图.3.了解简单的分式不等式、含参数的不等式和简单高次不等式的解法.1.一元二次不等式的概念形如____________或____________(其中a≠0)的不等式叫做一元二次不等式.用文字表述为:一般地,含有______未知数且未知数的________为2的整式不等式,叫做一元二次不等式.【做一做1】已知不等式:①x2>0;②-x2-2x≤15;③x3-5x+6>0;④x2-y<0.其中一元二次不等式的个数为( ).A.1 B.2 C.3 D.42.二次函数、一元二次方程和一元二次不等式之间的联系如下表所示:设f(x)=ax2+bx+c(a>0)有两个不等的实根x1,x2,且x1<x2有两个相等的实根1,x2,且x1=x没有实数根____________________________________________对于一元二次不等式的二次项系数为正且存在两个根的情况下,常用口诀是:大于取两边,小于取中间.即:你只要记住一个前提:a>0和四句话:根上等于零,根间小于零,根外大于零,无根大于零.对于二次项系数是负数(即a<0)的一元二次不等式,可以先把二次项系数化为正数,再对照上述情况求解.我们把二次项系数为正的一元二次不等式称之为标准一元二次不等式.【做一做2-1】不等式x2-2x+1>0的解集是( ).A.R B.{x|x∈R,且x≠1}C.{x|x>1} D.{x|x<1}【做一做2-2】不等式-6x2-x+2≤0的解集是__________.3.用程序框图描述求解一元二次不等式ax2+bx+c>0(a>0)的算法过程:【做一做3】函数y =f (x )的图象如图所示,则不等式f (x )>0的解集是________.一、借助函数图象解不等式的原理分析 剖析:我们知道以自变量的取值为横坐标,对应的函数值作为纵坐标在平面直角坐标系中描出所有的点,这些点就构成了函数的图象.因此函数图象上点的坐标的意义是横坐标是自变量的取值,纵坐标是对应的函数值.二次函数f (x )=ax 2+bx +c 的图象上的点的坐标的意义也是一样.由于位于x 轴上方的点的纵坐标大于0,位于x 轴上的点的纵坐标等于0,位于x 轴下方的点的纵坐标小于0,所以二次函数f (x )=ax 2+bx +c 的图象上位于x 轴上方的点的横坐标的取值范围是不等式f (x )=ax 2+bx +c >0的解集,二次函数f (x )=ax 2+bx+c 的图象上位于x 轴下方的点的横坐标的取值范围是不等式f (x )=ax 2+bx +c <0的解集.所以可以用二次函数的图象解一元二次不等式.当然,对于任意函数y =f (x ),只要能画出它的图象,那么就可以解不等式f (x )>0或f (x )<0.(1)如果一元二次不等式ax2+bx +c ≥0的解集是R ,则有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0;如果一元二次不等式ax2+bx +c ≤0的解集是R ,则有⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac ≤0.(2)如果一元二次不等式ax2+bx +c ≥0的解集是∅,则有⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0;如果一元二次不等式ax 2+bx +c ≤0的解集是∅,则有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0.二、简单的一元高次不等式的解法剖析:解法有两种:(1)等价转化,把高次不等式转化为低次不等式组.(2)穿根法:先化成最高次项系数为正的形式,再把高次不等式中的多项式分解为多个一次或二次因式的积的形式,求出对应方程的根,依次在数轴上把根标出,然后用一条曲线从最大的根的右上方穿起,穿过所有根,曲线与数轴围成的上方区域为“>”型不等式的解集,下方区域为“<”型不等式的解集.当有重根时,偶次重根“穿而不过”,奇次重根按一次根对待.三、分式不等式的解法剖析:分母中含有未知数,且分子、分母都是关于未知数的多项式的不等式称为分式不等式,解法有两种:(1)穿根法,其解题过程为:先化成标准式(右端为0,左端的分子、分母均为一次因式或二次不可约因式的积),要求各一次因式中的x 的系数及二次因式中的x 2的系数必须为正数.以下过程同一元高次不等式的解法.(2)等价转化法,如下表所示.f xg x>0 f xg x>0⇔{ f x g x 或{ f x g xf xg x >0⇔ f (x )g (x )>0 f xg x<0 f xg x<0⇔{ f x g x 或{ f x g x f xg x <0⇔ f (x )g (x )<0 f xg x≥0 { f x g x 或{ f x g xf xg x≥0⇔ 错误!f xg x≤0 { f x g x 或{ f xg xf xg x≤0⇔ 错误!四、教材中的“?”1.由(1)和(2)的解法,你能否解不等式x +2x -3≥0,x +2x -3≤0? 剖析:(1)x +2x -3≥0相当于⎩⎪⎨⎪⎧x +2≥0,x -3>0或⎩⎪⎨⎪⎧x +2≤0,x -3<0,即⎩⎪⎨⎪⎧x ≥-2,x >3或⎩⎪⎨⎪⎧x ≤-2,x <3,得x >3或x ≤-2.(2)x +2x -3≤0相当于⎩⎪⎨⎪⎧x +2≥0,x -3<0或⎩⎪⎨⎪⎧x +2≤0,x -3>0,即⎩⎪⎨⎪⎧x ≥-2,x <3或⎩⎪⎨⎪⎧x ≤-2,x >3,得-2≤x <3.2.不等式x 2+4x +4≥0的解集是什么?x 2+4x +4≤0的解集是什么?剖析:x 2+4x +4≥0相当于(x +2)2≥0,∴不等式的解集为R . x 2+4x +4≤0相当于(x +2)2≤0,∴不等式的解集为{x |x =-2}.题型一 一元二次不等式的概念【例1】①x 2+x +1<0,②-x 2-4x +5≤0,③x +y 2+1>0,④mx 2-5x +1>0,⑤-x 3+5x ≥0,⑥(a 2+1)x 2+bx +c >0(m ,a ∈R ).其中关于x 的不等式是一元二次不等式的是__________.(请把正确的序号都填上)反思:当所给不等式的二次项系数含字母时,要注意二次项系数是否为零,这一点决定了这个不等式是否为一元二次不等式.题型二 一元二次不等式的解法【例2】解不等式:x 2-2x -3>0.分析:可对不等式左边进行因式分解,再利用积的符号法则把它转化为不等式组求解;也可以利用二次函数图象求解.反思:解法一的具体步骤是:(1)因式分解;(2)转化为不等式组;(3)写解集.解法二的具体步骤是:(1)构造函数;(2)画图象;(3)写解集.【例3】解关于x 的不等式:x 2-(a +a 2)x +a 3>0(a ∈R ).分析:这是一个含有参数的一元二次不等式,首先考虑因式分解,分解之后可知方程的根是a ,a 2,需要对两根进行大小比较,所以要进行讨论.反思:熟练掌握一元一次和一元二次不等式的解法是解不等式的基础,对含字母系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要注意不重、不漏.题型三 已知一元二次不等式的解集求参数问题【例4】若不等式px 2+qx +2>0的解集为{x |-1<x <2},求p +q . 分析:本题需要通过不等式的解集来确定不等式的系数,它类似于在初中所碰到的由方程的根确定方程的系数.于是我们很自然地想到能否将不等式问题转化为方程问题.反思:在本题中,已知不等式的解集,要求确定其系数,这和解不等式的问题(已知系数求其解集)正好是互为逆向的两类问题.这类问题也可以用下面的方法来解:(1)先作出一个解集符合要求的不等式;(2)根据不等式同解的要求,确定其系数的数值.利用此法确定不等式系数时,必须注意:①将两不等式化为同向不等式;②同向二次不等式的二次项系数同号,否则就会产生错误.题型四 分式不等式的解法 【例5】解下列不等式:(1)4-x 2x +3≤0;(2)2x -13x +1>0;(3)ax x +1<0. 反思:在分式转化为整式的过程中注意分母不为零,对于“≥”“≤”型的分式不等式,转化后应变为不等式组.1已知集合M ={x ||x |<3},N ={x |x 2-x -6>0},则M ∩N 为( ). A .RB .{x |-2<x <3}C .{x |-3<x <-2或x >3}D .{x |-3<x <-2}2函数y =x 2+x -12的定义域是( ).A .{x |x <-4或x >3}B .{x |-4<x <3}C .{x |x ≤-4或x ≥3}D .{x |-4≤x ≤3}3不等式2x 2+mx +n >0的解集是{x |x >3或x <-2},则二次函数y =2x 2+mx +n 的表达式是( ).A .y =2x 2+2x +12B .y =2x 2-2x +12C .y =2x 2+2x -12D .y =2x 2-2x -124不等式x 2-x -2<0的解集是________.5二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表:则不等式++>0的解集是________.答案:基础知识·梳理1.ax 2+bx +c >0 ax 2+bx +c <0 一个 最高次数 【做一做1】B2.{x |x <x 1或x >x 2} {x |x ≠-b2a} R {x |x 1<x <x 2} ∅ ∅【做一做2-1】B【做一做2-2】{x |x ≤-23或x ≥12} 原不等式等价于6x 2+x -2≥0,6x 2+x -2=0的两根为x 1=-23,x 2=12,∴6x 2+x -2≥0的解集为{x |x ≥12或x ≤-23}.3.-b -Δ2a -b +Δ2a (-∞,-b 2a )∪(-b2a ,+∞)(-∞,x 1)∪(x 2,+∞) (-∞,+∞) 【做一做3】∅ 典型例题·领悟【例1】①②⑥ ①②是;③不是;④不一定是,因为当m =0时,它是一元一次不等式;⑤不是,因为未知数的最高次数是3;⑥是,尽管x 2的系数含有字母,但a 2+1≠0,所以⑥与④不同,故答案为①②⑥.【例2】解:解法一:原不等式化为(x +1)(x -3)>0,即⎩⎪⎨⎪⎧ x +1>0,x -3>0或⎩⎪⎨⎪⎧x +1<0,x -3<0. 解得x >3或x <-1.故原不等式的解集为{x |x <-1或x >3}.解法二:作函数y =x 2-2x -3的图象,如图所示,由图可知,y =x 2-2x -3的图象在x 轴上方(即函数值大于零)的点的横坐标的取值范围是x <-1或x >3.故原不等式的解集为{x |x <-1或x >3}.【例3】解:将不等式x 2-(a +a 2)x +a 3>0变形为(x -a )(x -a 2)>0.当a <0或a >1时,有a <a 2,解集为{x |x <a 或x >a 2};当0<a <1时,有a >a 2,解集为{x |x <a 2或x >a }; 当a =0时,解集为{x |x ≠0}; 当a =1时,解集为{x |x ≠1}.【例4】解:∵不等式px 2+qx +2>0的解集为(-1,2),∴方程px 2+qx +2=0的两根是x 1=-1,x 2=2,且p <0.由韦达定理,可知⎩⎪⎨⎪⎧-qp=-1+2,2p =(-1)·2⇒⎩⎪⎨⎪⎧p =-1,q =1⇒p +q =0.【例5】解:(1)4-x2x +3≤0⇔⎩⎪⎨⎪⎧(4-x )(2x +3)≤02x +3≠0⇔⎩⎪⎨⎪⎧(x -4)(2x +3)≥02x +3≠0⇒{x |x ≥4或x <-32}.(2)2x -13x +1>0⇔(2x -1)(3x +1)>0 ⇔{x |x >12或x <-13}.(3)axx +1<0⇔ax (x +1)<0, 当a >0时,ax (x +1)<0⇔x (x +1)<0⇔{x |-1<x <0}; 当a =0时,原不等式的解集为∅;当a <0时,ax (x +1)<0⇔x (x +1)>0⇔{x |x >0或x <-1}. 随堂练习·巩固 1.D2.C 要使函数有意义,只需x 2+x -12≥0.方程x 2+x -12=0的解为x 1=-4,x 2=3.函数y =x 2+x -12的开口向上且与x 轴有两个交点(-4,0),(3,0).∴原不等式的解集为{x |x ≤-4或x ≥3}.3.D 依题意知x =3和x =-2是方程2x 2+mx +n =0的两个根,所以⎩⎪⎨⎪⎧3-2=-m2,3×(-2)=n2.解得m =-2,n =-12.故二次函数的表达式为y =2x 2-2x -12.4.{x |-1<x <2} 原不等式可以变化为(x +1)(x -2)<0,可知方程x 2-x -2=0的解为-1和2,所以原不等式的解集为{x |-1<x <2}.5.(-∞,-2)∪(3,+∞)根据所给数表中函数的单调性可以看出a>0,且方程ax2+bx+c=0的两个根为-2和3.。

相关文档
最新文档