012812500299程传鹏线性代数考核作业(综合测试题)

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数试题线性代数试卷及答案大全(173页大合集)

线性代数试题线性代数试卷及答案大全(173页大合集)
由 ,得 的特征值 ,
属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,

故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r

奥鹏东师 《线性代数》练习题参考答案.doc

奥鹏东师 《线性代数》练习题参考答案.doc

《线性代数》练习题一 参考答案练习题第1套参考答案一、单项选择题1. C2. C3. B4. B5. A6. D7. C8. A 二、填空题 1.213531ββα+-= 2. 0 3. ()()B r A r ≤ 4. 8 5. 相关 6. () 1 , 17 , 2- - 7. ()()A r b A r = 三、计算及证明题1.给定向量组:() 3 , 1 , 1 , 1 1---=α,() 1 , 3 , 1 , 1- 2--=α,() 1 , 1 , 3 , 1- 3--=α,() 1 , 1- , 1 , 3- 4-=α,求:(1) 向量组4321 , , , αααα的秩;(2) 该向量组的一个极大无关组,并将其余向量用极大无关组线性表示。

解:对⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------1113113113113111进行初等行变换,得⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110010101001,则(1) 向量组4321 , , , αααα的秩为3;(2) 该向量组的一个极大无关组为 , , 321ααα,且3214αααα++-=2.如果向量组n ααα , , , 21Λ线性无关,证明:向量组 , , , 211Λααα+n ααα+++Λ21 线性无关。

证明:设 ()()02121211=+++++++b n k k k ααααααΛΛ 整理得 ()()0232121=+++++++++n n n n k k k k k k k αααΛΛΛ 由于向量组n ααα , , , 21Λ是线性无关的,所以有:⎪⎪⎩⎪⎪⎨⎧==+++=+++0003221n nn k k k k k k k ΛΛΛΛΛΛ 解得⎪⎪⎩⎪⎪⎨⎧===00021n k k k ΛΛ 所以向量组 , , , 211Λααα+n ααα+++Λ21 是线性无关的。

3. 设X B AX =+,其中⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=350211B ,求X 。

完整word版线性代数考试题及答案解析

完整word版线性代数考试题及答案解析

WORD格式整理……_…_学年第一学期期末考试-20102009_…__…_试卷《线性代数》…__…__…_分钟完卷。

分,1201、本试卷共6页,五个大题,满分100答卷说明:_…_…__…号2、闭卷考试。

…学)线(_总分五三四一二_…__…题号_…__…_分数_…__…_…________________ :_____________ 总分人:评阅人…_名…姓…) 分分,共24一、单项选择题。

(每小题得分……)级封班(11?31_…__…111?3__?…行列式【】1._1?311…__…_3111?_…_业……专3021(B) (D)(A) (C) …__…__…???A?A32?3?A阶方阵,数2. 】设,为,则【_…__)_6?624?24 (D) (A) (C) (B) _密_系(n,BA,阶方阵,则下列式子一定正确的是【】3.已知为…__…__…_222B?2(A?B)AB?A?BAAB? (A) (B)_…_…__…_22B?A?B?B)(A?)(A BA?AB (D) (C)_…__…_…_?0??aA?A3A【】4.设,则为阶方阵, _…__……243aaaa (D) (A) ( B) (C)AB等价,则有 5.设矩阵与【】专业技术参考资料WORD格式整理R(A)?R(B)R(A)?R(B) (A) (B)R(A)?R(B)R(A)R(B)的大小不能确定 (C) 和 (D)n Ax?0Ax?0A r有非零解的系数矩阵【】6.设,则元齐次线性方程组的秩为的充分必要条件是r?nr?nr?n nr? (B) (C) (D) (A)a,a,,a(m?2) 向量组】【 7. 线性相关的充分必要条件是m21a,a,,a (A) 中至少有一个零向量m12a,a,,a (B) 中至少有两个向量成比例m12a,a,,a m?1(C) 个向量线性表示中每个向量都能由其余m21a,a,,a m?1(D) 个向量线性表示中至少有一个向量可由其余m21n A与对角阵相似的充分必要条件是阶方阵】8. 【nn)?R(A A个互不相同的特征值有(A) (B)n AA一定是对称阵个线性无关的特征向量 (D)(C)有) 分,共15二、填空题。

(完整版)线性代数习题答案综合题

(完整版)线性代数习题答案综合题

2、题型:综合题3、难度级别:34、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的初等变换 8、试题内容:设,A B 为两个同型矩阵,试证:,A B 的秩满足()()R A R B =是A 与B 等价的充分必要条件.9、答案内容: 证明:()()()()()()()()12121122111221.,..,,,,.~~rr n r n r r n r n r r r n r n r r n r n r A B E F E B F P P Q Q P AQ P BQ A P P BQ Q ⨯--⨯-⨯-⨯--⨯-⨯---⇒⨯O ⎛⎫= ⎪O O ⎝⎭O ⎛⎫= ⎪O O ⎝⎭∴==rc r c 必要性与等价则存在可逆矩阵P,Q,使PAQ=B R(A)=R(B).充分性.设A,B 为m n 矩阵,R(A)=R(B)=r.则A 存在可逆矩阵使即.A B ⇒与等价10、评分细则:由题设()()PAQ B R A R B =⇒=(2分);将A 经初等变换化为标准形(2分) 将B 经初等变换化为标准形(2分);得出11221122,,,,P AQ P BQ P Q P Q =均可逆(2分);所以得出A 与B 等价(2分)._____________________________________________________________________________ 1、试题序号:347 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:已知四元非齐次线性方程组的系数矩阵的秩为3,123,,ααα是其解,且()()12231,1,0,2,1,0,1,3T Tαααα+=+=,求方程组的通解.9、答案内容: 解:412231312231223.() 3.0.()0.()(0,1,1,1)0,(0,1,1,1)0.111115()(2,1,1,5)(,,,)442444.12141454s T T T T A x b R A Ax Ax Ax Ax b Ax b αααααααααααααα⨯===+-+=-=+-+=--≠∴--=+++===⎛ ∴=⎝设方程组为对于其基础解系含4-3=1个解.是的解可以作为的一个基础解系为的一个解的通解为01,.11c c ⎫⎪⎪⎛⎫ ⎪ ⎪⎪⎪+ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎭为任意数 10、评分细则:由题设说明0Ax =的基础解系含一个解向量(2分);()122313αααααα+-+=-是0Ax =的一个解(2分);说明13αα-可以作为0Ax = 的一个基础解系(2分);说明()123414αααα+++为Ax b =的一个解(2分);所以得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:348 2、题型:综合题 3、难度级别:44、知识点:第五章 相似矩阵及二次型5、分值:106、所需时间:15分钟7、试题关键字:初等矩阵及矩阵的相似与合同 8、试题内容:设1111400011110000,1111000011110000A B ⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪⎪⎪⎝⎭⎝⎭试判断A 与B 是否合同,是否相似.若是,则求出使它们合同的矩阵. 9、答案内容:()()()()()()()()()()()()()()()()()()()()()()()()()()1234:4113112112113114112111010021131141100100001,211101000010000100,40143,T A B E E E E E E B P E E E P P AP BA E R A E R A A λλλλλ------=---⎛⎫ ⎪⎪=---= ⎪ ⎪⎝⎭=---⎛⎫ ⎪⎪∴ ⎪ ⎪⎝⎭-=⇒====-===-∴解与合同且相似.E 12E 12令E 12则可逆且使A 与B 合同的矩阵为且一定可以40000000,.00000000A B ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭对角化即与相似10、评分细则:判断出A 与B 合同且相似(2分);将A 进行初等行变换与列变换化为B 的过程以左乘及右乘初等矩阵的形式写出来(3分);因而写出使A 与B 合同的可逆矩阵P (2分);计算A 的特征值(2分);写出与A 相似的对角矩阵(1分)._____________________________________________________________________________1、试题序号:3492、题型:综合题3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:106、所需时间:15分钟7、试题关键字:向量组的线性关系与矩阵的秩 8、试题内容:设向量组12:,,,r B b b b L 能由向量组12:,,,s A a a a L 线性表示为()()1212,,,,,,r s b b b a a a K =L L ,其中K 为s r ⨯矩阵,且A 组线性无关.证明B 组线性无关的充分必要条件是()R K r =. 9、答案内容:()()()()()()()()()1212122121212122.,...,,,0..0.,00.,,,.0,,00.,r r r r r r r s R K r R b b b R K r R b b b r R b b b r b b x xb b b x x xx Bx B AK AKx A Kx x a a a S Kx R K r Kx x b =≥=≤∴=⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪====⇒= ⎪⎪⎝⎭∴=∴==∴=⇒=∴L L LL LL Q L Q L 11证充分性则有同时,则b 线行无关.必要性.设令则则有线行无关,R A b ,,r b L 线行无关.10、评分细则:充分性,由题设推出()12,,,r R b b b L r =()R K r ⇒≥,且有()()R K r R K r ≤⇒=(4分).必要性,令()12r B b b b =L ,设0Bx =,则有0AKx =(2分),由题设推出0Kx =0x ⇒=(2分);所以12,,,r b b b K 线性无关(2分)._____________________________________________________________________________ 1、试题序号:350 2、题型:综合题 3、难度级别:34、知识点:第二章 矩阵及其运算5、分值:106、所需时间:8分钟7、试题关键字:可逆矩阵及分块运算 8、试题内容:已知3阶矩阵A 与3维列向量x 满足323A x Ax A x =-,且向量组2,,x Ax A x 线性无关.(1) 记()2,,P x Ax A x =,求3阶矩阵B ,使AP PB =;(2)问A 是否可逆,说明理由. 9、答案内容:2232222()()(3)000()103.011000103.011(2).,,,.0..A x AxA x Ax A xA x AxA xAx A x x Ax A x B AP PB A P P B x Ax Ax P A B A ⇒=-⎛⎫⎪ ⎪ ⎪-⎝⎭⎛⎫ ⎪∴= ⎪ ⎪-⎝⎭=⇒=∴==∴Q 解:(1)AP=PB =线性无关可逆则不可逆10、评分细则:由题设及矩阵的分块运算法,计算出B (6分);由AP PB A B =⇒=(2分);所以0A B A ==⇒不可逆(2分)._____________________________________________________________________________ 1、试题序号:351 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设4元非齐次线性方程组Ax b =的系数矩阵A 的秩为3,123,,ηηη是它的3个解向量,且()()1232,3,4,5,1,2,3,4T Tηηη=+=,求该方程组的通解.9、答案内容:1312131131:.() 3.0,2()()0.34200.562334,.4556Ax b R A Ax Ax Ax Ax b c c ηηηηηηηηηη===+-=-+-=-⎛⎫ ⎪- ⎪+-=≠= ⎪- ⎪-⎝⎭-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴=+ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭解设方程组为且对于其基础解系只含一个解.为的一个解而可以作为一个基础解系的通解为为任意常数 10、评分细则:由题设推出0Ax =的基础解系含一个解向量(2分);由题设得出0Ax =的一个非零解(2分);说明这非零解可以作为0Ax =的一个基础解系(2分);求出Ax b =的一个解(2分);得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:352 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的秩与方程组的解 8、试题内容:设()()()123123123,,,,,,,,TTTa a ab b bc c c αβγ===,证明三直线11112222:0;0l a x b y c l a x b y c ++==++=;3333:0,l a x b y c ++=其中220,1,2,3i i a b i +≠=,相交于一点的充分必要条件为:向量组,αβ线性无关,而向量组,,αβγ线性相关. 9、答案内容:()()()()11122233333.2,,,2,,,2,;b b c R b R b c b b c R R R R αβαβγαβαβγαβα⎧⎪⇔⎨⎪⎩-⎧⎛⎫⎛⎫⎪ ⎪ ⎪⇔=-=⎨ ⎪ ⎪⎪⎪ ⎪-⎩⎝⎭⎝⎭⇔=-=⇔==⇔1112223331111122222333证明:a x+b y+c =0三直线交于一点a x+b y+c =0有唯一解a x+b y+c =0a x+b y+c =0a a a x+b y+c =0有唯一解a a a x+b y+c =0a a 线性无关,,βγ线性相关.10、评分细则:由题设得出111222333000a xb yc a x b y c a x b y c ++=⎧⎪++=⎨⎪++=⎩有唯一解(2分)1111122222333332a b a b c R a b R a b c a b a b c -⎛⎫⎛⎫⎪ ⎪⇔=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(2分)()()()()22R R R R αβαβγαβαβγ⇔=-=⇔==(4分),αβ⇔线性无关,,,αβγ线性相关(2分)._____________________________________________________________________________1、试题序号:3532、题型:综合题3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设矩阵()1234,,,A αααα=,其中234,,ααα线性无关,1232ααα=-.向量1234βαααα=-+-,求方程组Ax β=的通解.9、答案内容:()()()()12123412343412342341231234123412123434.11.11,,,2,,,,3,0x xx x x x Ax x x R R A Ax x x x x βααααααααββαααααααααααααααααα⎛⎫⎪ ⎪=-+-= ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=-⇒===⎛ ⎝Q Q 解:,且为的一个解又线性无关且线性相关则有所以,的基础解系只含一个非零解。

线性代数--综合测试答案

线性代数--综合测试答案

一、单项选择题1、已知3阶行列式D第1行的元素依次为1,2,-1,它们的余子式依次为2,-2,1,则D=A.-5B.-3C.3D.5D2、A.第1行的3倍加到第2行B.第2行的3倍加到第1行C.第1列的3倍加到第2列D.第2列的3倍加到第1列正确答案:C3、A.1B.2C.3D.4正确答案:B4、A.-2B.-1C.0D.1A5、A.-3B.-2C.2D.3正确答案:B6、已知3×4矩阵A的行向量组线性无关,则r(A)A.1B.2C.3D.4正确答案:C7、A.-1B.-2/3C.2/3D.1正确答案:A8、A.0B.1C.2D.3C 9、A.-108B.-12C.12D.108正确答案:D10、A.0B.1C.2D.-1正确答案:B11、A.2B.4C.8D.12正确答案:C12、A.-7B.-4C.4B13、A.1B.2C.3D.4正确答案:B14、A.13B.6C.5D.-5正确答案:D15、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1,b=1正确答案:D16、A.-2C.1D.2A17、齐次线性方程组Ax=0仅有零解的充分必要条件是矩阵A的A.列向量组线性相关B.列向量组线性无关C.行向量组线性相关D.行向量组线性无关B18、设非齐次线性方程组Ax=b,其中A为m*n阶矩阵,r(A)=r,则A.当r=n时,Ax=b有惟一解B.当r<n时,ax=b有无穷多解< p="" style="box-sizing: border-box;">C.当r=m时,Ax=b有解D.当m=n时,Ax=b有惟一解C19、设2阶矩阵A满足|2E+3A|=0,|E-A|=0,则|A+E|=A.-3/2B.-2/3C.2/3D.3/2C20、A.相似但不合同B.合同但不相似C.合同且相似D.不合同也不相似C21、A.相似且合同B.相似但不合同C.不相似但合同D.不相似且不合同正确答案:A22、A.1B.2C.3D.4正确答案:D 23、A.10B.2C.-10D.-2正确答案:A24、A.27B.243C.216D.81C25、A.3B.6C.9D.12正确答案:D26、若A,B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=A.5B.4C.3D.2正确答案:C27、A.6B.-6C.24D.-24正确答案:D28、A.m-nB.-m-nC.m+nD.-(m+n)正确答案:B29、A.-32B.-2C.2D.32正确答案:A30、A.1/2B.2C.4D.8正确答案:C31、A.8B.-8C.32D.-32正确答案:C32、A.a=4,b=0,c=1,d=4B.a=0,b=4,c=1,d=4C.a=4,b=0,c=4,d=1D.a=0,b=4,c=4,d=1正确答案:A33、设A,B,C均为n阶方阵,AB=BA,BC=CB,则BAC=A.ACBB.CABC.CBAD.BCA正确答案:A34、A.A=EB.B=OC.A=BD.AB=BA正确答案:D35、A.4B.8C.12D.16正确答案:D36、A.-5B.-2C.2D.5正确答案:A37、A.1/nB.-1/nC.nD.-n正确答案:D 38、A.PAB.APC.QAD.AQ正确答案:B 39、A.(2,1,1)B.(0,-3,2)C.(1,1,0)D.(0,-1,0)B 40、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1/2,b=2正确答案:D41、A.2B.-2C.4D.-4正确答案:B 42、A.1B.2C.3D.4正确答案:C 43、A.4B.3C.2D.1A 44、A.1B.2C.3D.4正确答案:D 45、A.3B.2C.1D.0正确答案:B 46、A.-2B.2C.-1D.1正确答案:A47、A.4B.3C.2D.1正确答案:B48、设A为5阶方阵,且r(A)=2,则线性空间W={x|Ax=0}的维数是A.5B.4C.3D.2正确答案:C49、A.4B.3C.2D.1正确答案:C50、A.1B.2C.3D.4C。

《线性代数》综合练习题,附答案

《线性代数》综合练习题,附答案

《线性代数》综合练习题一、选择题1. 设A ,B 都是n 阶方阵,且AB=0,则必有( ).A.0=A 或0=BB.0=+B AC. 0||=A 或0||=BD. 0||||=+B A2. 设A ,B ,C 都是n 阶方阵,且ABC=E,其中E 为n 阶单位方阵,则必有( ).A. ACB=EB. BC A =EC. CBA=ED. BAC=E3. 设A ,B 都是n 阶方阵,且A 与B 等价,则( ).A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. 存在可逆矩阵P,使B AP P =-14. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=-1*)(A ( ). A.A A )det(1 B. 1)det(1-A A C.*)det(1A A D. A A *)det(1 5. 设方阵A 满足A 2-A -2E=0, 则必有( ).A.E A -=B. E A 2=C. A 可逆D. A 不可逆6. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=⋅|*|||A A ( ).A. 1B. n A ||C. 1||-n AD. 1||+n A7. 设A,B 为n 阶方阵,则必有( ).A. AB=BAB. │A+B│=│A│+│B│C. │A -B│=│A│-│B│D. │AB│=│A││B│8.设B A ,都是n 阶可逆矩阵,则下列结论不正确的是( ).A. B A +一定可逆B. AB 一定可逆C . 11--B A 一定可逆 D. TT B A 一定可逆.9.下列矩阵中,与矩阵⎪⎪⎭⎫ ⎝⎛1011可交换的是( ). A. ⎪⎪⎭⎫ ⎝⎛2011 B. ⎪⎪⎭⎫ ⎝⎛1111 C. ⎪⎪⎭⎫ ⎝⎛2032 D. ⎪⎪⎭⎫ ⎝⎛--121110.矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 为非奇异矩阵的充要条件是( ). A. 0=-bc ad B. 0=-cd abC. 0≠-bc adD. 0≠-cd ab11.设A 为n 阶方阵,k 为非零常数,则必有( ).A. ||||A kA =B. ||||A k kA =C. ||||1A k kA n -=D. ||||A k kA n =12.下列说法正确的是( ).A. 设A 为n 阶方阵,且A 2=A ,则A=E 或A=0.B. 设A,B,C 为n 阶方阵, AB=AC 且A≠0,则B=C.C. 设A ,B ,C 都是n 阶方阵,且AB=E ,CA=E ,则B=C.D. 设A 为n 阶方阵,且A 2=0,则A=0.13.矩阵⎪⎪⎭⎫ ⎝⎛5321的逆矩阵是( ). A. ⎪⎪⎭⎫ ⎝⎛--5321B. ⎪⎪⎭⎫ ⎝⎛--1325 C. ⎪⎪⎭⎫ ⎝⎛--5321 D. ⎪⎪⎭⎫ ⎝⎛--5231 14.设A 为3阶方阵,|A|=3,则|3A -1|= ( ).A. 1B. -1C. 9D. -915. 设C B A ,,都是n 阶可逆矩阵,则=-1)(ABC ( ). A. 111---C B A B. 111---A C BC. 111---B A CD. 111---A B C16. 设A 是一个3阶的反对称矩阵,则|A|= ( ).A. -1B. 0C. 1D. 无法确定17.设α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321a a a ,β],,[321b b b =,)3,2,1(0,0=≠≠i b a i i ,则方阵A=αβ的秩为( ).A. 0B. 1C. 2D. 318.如果向量组线性相关,那么( ).A. 这个向量组中至少有一个零向量.B. 这个向量组中至少有两个向量成比例.C. 这个向量组中至少有一个向量可以由其余向量线性表示.D. 这个向量组中所有向量都可以由其余向量线性表示.19.下列说法正确的是( ).A. 等价的向量组含有相同的向量个数.B. 如果向量组线性相关,那么这个向量组中至少有一个零向量.C. 如果向量组线性相关,那么这个向量组中至少有两个向量成比例.D. n 维单位向量组是线性无关的.20.设向量组α1],0,0,1[=α2],1,0,0[=则β=( )时,它是α1, α2的线性组合.A. ]2,1,0[B. ]0,2,1[C. ]2,0,1[D. ]0,1,2[21.向量组α1,α2,… ,αm 的秩不为0的充要条件是( ).A. 向量组α1,α2,… ,αm 中至少有一个非零向量.B. 向量组α1,α2,… ,αm 中至多有一个非零向量.C. 向量组α1,α2,… ,αm 中全部是非零向量.D. 向量组α1,α2,… ,αm 线性无关.22.设向量组α1,α2,… ,αm 的秩为)2(-≤m r r ,则下列说法错误的是( ).A. 向量组α1,α2,… ,αm 中至少有一个含r 个向量的部分组线性无关.B. 向量组α1,α2,… ,αm 中含r 个向量的部分组都线性无关.C. 向量组α1,α2,… ,αm 中含1+r 个向量的部分组都线性相关.D. 向量组α1,α2,… ,αm 中含2+r 个向量的部分组都线性相关.23.设α1,α2,α3为3阶方阵A 的列向量组,则α1,α2,α3线性无关的充要条件是( ).A. │A│0≠B. A 的秩3)(<A RC. 方阵A 不可逆D. 方阵A 是奇异的24. 下列说法错误的是( ).A.1+n 个n 维向量必相关.B. 等价的向量组有相同的秩.C. 任一n 维向量一定可由n 维单位向量组线性表示.D. 零向量不可以由n 维单位向量组线性表示.25. 若R (A )=2,则5元齐次线性方程组A x =0的基础解系中有( )个向量。

《线性代数(经管类)》综合测验题库完整

《线性代数(经管类)》综合测验题库完整

《线性代数(经管类)》综合测验题库一、单项选择题1.下列条件不能保证n阶实对称阵A为正定的是( )A.A-1正定B.A没有负的特征值C.A的正惯性指数等于nD.A合同于单位阵2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说确的是( )A.是正定的B.其矩阵可逆C.其秩为1D.其秩为23.设f=X T AX,g=X T BX是两个n元正定二次型,则( )未必是正定二次型。

A.X T(A+B)XB.X T A-1XC.X T B-1XD.X T ABX4.设A,B为正定阵,则( )A.AB,A+B都正定B.AB正定,A+B非正定C.AB非正定,A+B正定D.AB不一定正定,A+B正定5.二次型f=x T Ax经过满秩线性变换x=Py可化为二次型y T By,则矩阵A与B( )A.一定合同B.一定相似C.即相似又合同D.即不相似也不合同6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为( )A.rB.t-rC.2t-rD.r-t7.设8.f(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是( )9.设A是n阶矩阵,C是n阶正交阵,且B=C T AC,则下述结论( )不成立。

A.A与B相似B.A与B等价C.A与B有相同的特征值D.A与B有相同的特征向量10.下列命题错误的是( )A.属于不同特征值的特征向量必线性无关B.属于同一特征值的特征向量必线性相关C.相似矩阵必有相同的特征值D.特征值相同的矩阵未必相似11.下列矩阵必相似于对角矩阵的是( )12.已知矩阵有一个特征值为0,则( )A.x=2.5B.x=1C.x=-2.5D.x=013.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=( )A.2B.-6C.6D.2414.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为( )A.3,1,1B.2,-1,-2C.3,1,-1D.3,0,115.设A的特征值为1,-1,向量α是属于1的特征向量,β是属于-1的特征向量,则下列论断正确的是( )A.α和β线性无关B.α+β是A的特征向量C.α与β线性相关D.α与β必正交16.设α是矩阵A对应于特征值λ的特征向量,P为可逆矩阵,则下列向量中( )是P-1AP对应于λ的特征向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合测试题线性代数(经管类)综合试题一(课程代码 4184)一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设D =111213212223313233a a a a a a a a a =M ≠0,则D 1=111112132121222331313233232323a a a a a a a a a a a a ------= ( B ).A.-2MB.2MC.-6MD.6M2.设 A 、B 、C 为同阶方阵,若由AB = AC 必能推出 B = C ,则A 应满足 ( D ).A. A ≠ OB. A = OC.|A |= 0D. |A |≠0 3.设A ,B 均为n 阶方阵,则 ( A ).A.|A +AB |=0,则|A |=0或|E +B |=0B.(A +B )2=A 2+2AB +B 2C.当AB =O 时,有A =O 或B =OD.(AB )-1=B -1A -14.二阶矩阵A a b c d ⎛⎫= ⎪⎝⎭,|A |=1,则A -1= ( B ). A. db ca ⎛⎫⎪⎝⎭ B.d b c a -⎛⎫ ⎪-⎝⎭ C.a b c d -⎛⎫ ⎪-⎝⎭ D.a b c d ⎛⎫ ⎪⎝⎭5.设两个向量组s ,12,, ααα与t ,12,, βββ,则下列说法正确的是( B ).A.若两向量组等价,则s = t .B.若两向量组等价,则r (s ,12,, ααα)= r (t ,12,, βββ)C.若s = t ,则两向量组等价.D.若r (s ,12,, ααα)= r (t ,12,, βββ),则两向量组等价.6.向量组s ,12,, ααα线性相关的充分必要条件是 ( C ).A. s ,12,, ααα中至少有一个零向量B. s ,12,, ααα中至少有两个向量对应分量成比例C. s ,12,, ααα中至少有一个向量可由其余向量线性表示D. s α可由-1s ,12,, ααα线性表示7.设向量组12,,...,m ααα有两个极大无关组12,,...,i i ir ααα与12,,...,j j js ααα,则下列成立的是( C ).A. r 与s 未必相等B. r + s = mC. r = sD. r + s > m8.对方程组Ax = b 与其导出组Ax = o ,下列命题正确的是( D ).A. Ax = o 有解时,Ax = b 必有解.B. Ax = o 有无穷多解时,Ax = b 有无穷多解.C. Ax = b 无解时,Ax = o 也无解.D. Ax = b 有惟一解时,Ax = o 只有零解.9.设方程组12323122000x x x x kx x x +-=⎧⎪+=⎨⎪+=⎩有非零解,则k = ( D ). A. 2 B. 3 C. -1 D. 1 10.n 阶对称矩阵A 正定的充分必要条件是( D ).A. |A |>0B.存在n 阶方阵C 使A =C T CC.负惯性指标为零D.各阶顺序主子式均为正数 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.四阶行列式D 中第3列元素依次为 -1,2,0,1,它们的余子式的值依次为5,3,-7,4,则D = -15 . 12.若方阵A 满足A 2 = A ,且A ≠E ,则|A |= 0 .13.若A 为3阶方阵,且 12||=A ,则|2A |= 4 .14.设矩阵10122126314t -⎛⎫⎪=-- ⎪ ⎪⎝⎭A 的秩为2,则t = t=-3 . 15.设向量α=(6,8,0),β=(4,–3,5),则(α,β)= 0 . 16.设n 元齐次线性方程组Ax = o ,r (A )= r < n ,则基础解系含有解向量的个数为 n -r 个.17.设1α=(1,1,0),2α=(0,1,1),3α=(0,0,1)是R 3的基,则β=(1,2,3)在此基下的坐标为 (1, 1, 2) .18.设A 为三阶方阵,其特征值为1,-1,2,则A 2的特征值为 (1, 1, 2) .19.二次型2221231231223(,,)2342f x x x x x x x x x x =+--+的矩阵A = 220231011-⎛⎫⎪- ⎪ ⎪-⎝⎭. 20.若矩阵A 与B =123024003⎛⎫⎪ ⎪ ⎪⎝⎭相似,则A 的特征值为 1, 2, 3 .三、计算题(本大题共6小题,每小题9分,共54分)21.求行列式1111111111111111xx y y+-+-的值.解:1111111111111111x x y y+-+-=11110011110x x x y yy+--+--11001100001111x xyy +=+00011000000011x xyy ==x 2y 2.22.解矩阵方程:211121131116X -⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭.令A =111211111-⎛⎫⎪- ⎪ ⎪⎝⎭, B =236⎛⎫ ⎪ ⎪ ⎪⎝⎭.因为(AE )=111100111100211010031210111001002101--⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1110003311101023611001022⎛⎫-⎪⎪ ⎪→ ⎪⎪⎪-⎝⎭,所以11103311123611022-⎛⎫-⎪ ⎪⎪= ⎪ ⎪ ⎪-⎝⎭A . 由AX =B ,得:X =A -1B =1103312111332366211022⎛⎫- ⎪⎛⎫⎛⎫ ⎪⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪-⎝⎭.23.求向量组1α=( 1, 1, 2, 3 ),2α=(-1,-1, 1, 1 ),3α=(1, 3, 3, 5 ),4α=(4,-2, 5, 6 )的秩和一个极大线性无关组,并将其余向量用该极大无关组线性表示.解:123411141132()21353156T T T T -⎛⎫ ⎪-- ⎪= ⎪⎪⎝⎭αααα1114002603130426-⎛⎫ ⎪-⎪→ ⎪-⎪-⎝⎭11141114002601130113001300260000--⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭1007010000130000⎛⎫⎪⎪→ ⎪- ⎪⎝⎭.所以,1234(,)=3,r ,,αααα极大无关组为123413;73,,.=-αααααα24.a 取何值时,方程组123412341234212427411x x x x x x x x x x x x a-++=⎧⎪+-+=⎨⎪+-+=⎩有解?并求其通解(要求用它的一个特解和导出组的基础解系表示). 解:211217a a --⎛⎫⎛⎫⎪ ⎪=-→--- ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭A 10500a -⎛⎫ ⎪→--- ⎪ ⎪-⎝⎭.若方程组有解,则()()r r =A A ,故a =5. 当a =5时,继续施以初等行变换得:164105553730155500000⎛⎫ ⎪⎪ ⎪→-⎪ ⎪ ⎪⎝⎭A ,原方程组的同解方程组为: 13434234416555,,337555x x x x x x x x ⎧=--⎪⎪⎨⎪=+-⎪⎩为自由未知量,令x 3=x 4=0,得原方程组的一个特解:453500⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 与导出组同解的方程组为:134342341655,,3755x x x x x x x x ⎧=--⎪⎪⎨⎪=-⎪⎩为自由未知量,令34x x ⎛⎫⎪⎝⎭分别取10,01⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,得到导出组的基础解系:165537,551001⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,方程组的全部解为:12416555337555010001c c ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭v ,其中,c 1 ,c 2为任意常数.25.已知200121101⎛⎫⎪=- ⎪ ⎪⎝⎭A ,求A 的特征值及特征向量,并判断A 能否对角化,若能,求可逆矩阵P ,使P –1AP =Λ(对角形矩阵). 解:矩阵A 的特征多项式为:2200|121(2)(1)11λλλλλλ--=--=----|E A ,所以,A 的特征值为:1232,1λλλ===.对于122λλ==,求齐次线性方程组(2)-=E A x o 的基础解系,0001012101000101000-⎛⎫⎛⎫ ⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭E A ,得基础解系:011,001⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,从而矩阵A 的对应于特征值122λλ==的全部特征向量为:12120110,.01c c c c ⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭不全为零对于31λ=,求齐次线性方程组()-=E A x o 的基础解系,100100111011100000-⎛⎫⎛⎫ ⎪ ⎪-=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭E A ,得基础解系:011⎛⎫⎪ ⎪ ⎪⎝⎭,从而矩阵A 的对应于特征值31λ=的全部特征向量为:01(0)1c c ⎛⎫⎪≠ ⎪ ⎪⎝⎭.因为三阶矩阵A 有三个线性无关的特征向量010⎛⎫ ⎪ ⎪ ⎪⎝⎭,101⎛⎫ ⎪ ⎪ ⎪⎝⎭,011⎛⎫ ⎪ ⎪ ⎪⎝⎭,所以, A 相似于对角矩阵,且010200101,020011001⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P Λ.26.用配方法将下列二次型化为标准形:222123123121323()2444f x ,x ,x x x x x x x x x x =+-+--解:222123123121323()2444f x ,x ,x x x x x x x x x x =+-+-- =22222112323232323[4()4()]4()+24x x x x x x x x x x x x +-+----- =2221232233(22)245x x x x x x x +--+-=222212322333(22)2(2)3x x x x x x x x +---+- =222123233(22)2()3x x x x x x +----.令11232233322y x x x y x x y x ⎧=+-⎪=-⎨⎪=⎩,即112223332x y y x y y x y ⎧=-⎪=+⎨⎪=⎩,得二次型的标准形为:22212323y y y --.四、证明题(本大题共6分)27.设向量123(1,1,1),(1,1,1),(0,0,1)=-==ααα,证明向量组123,,ααα是R 3空间中的一个基.证:因为11011011002020111001-==≠,所以123,,ααα线性无关(方法多样),所以向量组123,,ααα是R 3空间中的一个基.线性代数(经管类)综合试题二(课程代码 4184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

相关文档
最新文档