恒星结构方程-天文学导论

合集下载

天文学导论 (8)上

天文学导论 (8)上

第八章:星系与宇宙的大尺度结构银河系•可见物质:恒星(96%)+气体+(3%)尘埃(1%)•暗物质疏散星团(开团,open star clusters)•疏散团与球状星团•疏散星团:由巨大的尘埃和气体团中形成大量的恒星而形成,位于银河系盘面•由数百颗至上千颗由弱引力联系的恒星组成,恒星密度比球状星团低很多,直径<数十光年•位于恒星活跃形成区,年轻,只有数百万年的历史•可能仍然含有分子云的残迹,星团产生的光:HII区•其中恒星的年龄和化学成分相近•例子:金牛星座中的毕(宿)星团(Hyades),昴星团(Pleiades);英仙座中的双重星团蜂巢星团(Beehive):昴星团:年龄<~115Myrs年龄<~750Myrs球状星团(Globular clusters)•引力紧紧束缚,外形呈球形,恒星高度向中心集中•恒星比较年老,由20,000-1百万个恒星组成,直径~200光年•一般位于星系晕中•银河系约有150个,另外可能还有10-20个未被发现•在星系形成的时候产生?•例子:英仙座中的M13;半人马ω球状星团星际介质(ISM)和发射星云•ISM:气体和尘埃组成•大多数ISM不可见•发射星云:气体发光,猎户大星云(Great Nebula of Orion),恒星形成,HII区,波长之一:6563Å•暗星云:气体遮蔽了星系的光,煤袋星云(Coal Sack)•两种星云同时存在:鹰状星云(巨蛇座,Serpens);马头星云(猎户座)银河系的大小、形状和结构Shapley测量 了银河系100 个球状星团 结论:球形 分布;太阳 距离银心的 距离;银河 系的尺度太阳距离银心 的距离: ~8.3Kpc 太阳绕银心的 速度: 220 km/s 环绕周期: 230 百万年 转动曲线:~刚 体银河系的结构 •中性氢发射21cm射电辐射 •中性氢云团的速度:多普勒效应 •漩涡结构氢线的观测21cm氢线的产生机制跃迁几率:2.9x10-15/s 第一次观测:哈佛大学的Edward Purcell教 授与他的研究生Harold Ewen,1951,角型天 线银河系中心在可见光波段被气体和尘埃严重吸收Extinction by 30 magnitudes  Only 1 out of 1012 optical photons makes its way from the GC towards Earth!Galactic centerWide-angle optical view of the GC region银心的射电观测Many supernova remnants; shells and filamentsArcSgr A Sgr ASgr A*: 银心银河系中心存在一个大约4百万太阳质量的黑洞银河系中心的黑洞恒星动力学测量黑洞的质量银心的X 射线观测Chandra X-ray image of Sgr A*银心的超大质量黑洞在X 射线波段很暗银心区域包含很多的黑洞和中子星双星系统Genzel etal 2003, Nature世界上第一个 3.5毫米 VLBI 图像UN beam 1.11 mas x 0.32 mas @ 9o Super-resolution 0.02 masunresolved (no extended structure) → single componentzero closure phases → symmetrical structure• (~E-W) elongated emission → consistent with λ≥ 7mm dataShen et al. 2005 Nature~5Rs~5Rs黑洞“阴影” 其它星系•原先被称之为“白星云”•世纪之争:银河系之外还是银河系之内?•Cepheid变星定距离:银河系之外!•Edwin Hubble分类•星系群(最多~100星系);星系团(100-1000星系)椭圆星系银河系的相对大小椭圆星系•在大的星系团的中心,总是观测到一个或者更多的巨椭圆星系:~1013太阳质量,~300 000光年(比银河系大九倍),很多星系并合的结果;数量不多•一般的椭圆星系:~106太阳质量,~1000光年•年轻恒星很少,恒星形成基本停止,气体已经用完•椭圆星系占了宇宙中总星系数目的1/3漩涡星系1840s漩涡星系漩涡星系根据它们盘和核球的相对比重分类:Sa, Sb, ScMore bulgeMore disk有棒的星系: SBa,SBb, SBc盘越多意味着更多的恒星形成•核区:恒星年老,颜色:黄、橘红、红•旋臂:恒星年轻,颜色:蓝色(这类恒星的相对数目少)漩涡星系中的暗物质•1970s,Vera Rubin通过观测漩涡星系中的HII区红色的Hα谱线的移动,来测量星系的转动曲线:偏离开普勒运动!•暗物质?修正的引力理论(MOND)?漩涡星系的转动曲线:暗物质存在的证据星系的质量:一个例子•速度为负:朝向太阳系运动•速度:~-180km/s•太阳速度:~220km/s•M33朝向银河系的运动速度:~24km/s•谱线宽度:M33边界相对中心的运动速度:~100km/s•假设星系是圆形的:观测为~71x45角分,星系的倾角:acrsin(45/71)=~39度•速度改正:100/sin(39)=158km/s•M33的半径:~71角分,71/(60x57.3)=0.020弧度~45x109太阳质量•根据质光关系定M33中发光物质的质量•太阳的绝对光度:4.8;M33绝对光度:-19.5•光度差:2.51224.3=~5.2x109•M33中发光物质的质量: =~5.2x109太阳质量,只有动力学质量的1/10!•进一步的改正:不发光的气体和尘埃,恒星质光关系的改正,银河系的质光关系:1.5•M33中的重子物质:~ 8x109太阳质量,仍然只有动力学质量的1/6!!。

天文学中的恒星内部结构研究

天文学中的恒星内部结构研究

天文学中的恒星内部结构研究恒星是宇宙中最常见的天体之一,其内部结构的研究对于了解恒星的形成、演化和性质具有重要意义。

恒星内部结构的研究主要涉及到恒星的物理过程、能量传输和能量产生机制等方面。

本文将详细介绍恒星内部结构研究的主要内容和方法。

恒星内部结构的研究主要包括对恒星的组成、密度分布、温度分布、能量传输和能量产生机制等方面的研究。

首先,恒星的组成是研究恒星内部结构的基础。

恒星主要由氢、氦和其他重元素组成,而且这些元素的丰度分布会随着恒星的演化而发生变化。

其次,恒星内部的密度分布对于了解其结构和演化过程至关重要。

恒星内部的密度会随着半径的变化而变化,一般来说,恒星的内部密度会随着距离恒星中心的距离的增加而减小。

同时,恒星内部的密度分布也受到恒星的组成、温度和压力等因素的影响。

此外,恒星内部的温度分布是研究恒星内部结构的另一个重要方面。

恒星内部的温度分布会随着半径的变化而变化,一般来说,恒星的内部温度会随着距离恒星中心的距离的增加而增加。

恒星内部的温度分布不仅受到能量传输的影响,还受到恒星内部物质的热传导、辐射和对流等因素的影响。

此外,能量传输机制也是研究恒星内部结构的重要内容之一、能量传输机制主要包括辐射和对流传输两种方式。

辐射传输是通过辐射的形式将能量从恒星核心传输到外部区域,而对流传输是通过物质的流动将能量从恒星核心传输到外部区域。

恒星内部能量传输机制不仅影响恒星的能量产生和演化过程,还与恒星的光度和亮度等性质有关。

最后,能量产生机制也是研究恒星内部结构的重要内容之一、恒星内部的能量主要来自于核聚变过程,即氢核聚变为氦核的反应,这是恒星主序阶段主要的能量生成机制。

除了核聚变,恒星内部还会发生其他核反应和物质的核裂变等过程,这些过程也会对恒星的能量产生和演化过程产生影响。

总之,恒星内部结构的研究对于了解恒星的形成、演化和性质具有重要意义。

恒星内部结构的研究涉及到恒星的组成、密度分布、温度分布、能量传输和能量产生机制等方面,研究方法主要包括观测、模拟和理论推导等。

天文学中的恒星结构与演化

天文学中的恒星结构与演化

天文学中的恒星结构与演化恒星一直是天文学中的研究的重点之一,因为它们是构成宇宙的重要组成部分。

对于恒星结构与演化的研究,在我们理解宇宙的基本运作方式方面发挥了关键作用。

在本文中,我们将探讨恒星的结构和演化的一些关键方面。

一、恒星的结构恒星的外层是由等离子体组成的,这种等离子体被称为氢原子。

恒星内部主要由氢和氦,这些元素的物理学和化学性质是使恒星能够产生可观测且持续辐射的基础。

在中央区域,温度和压力非常高,可以使氢核融合成氦。

这个反应会释放大量的能量,这种能量被用来维持恒星内部的稳定状态。

同时,由于氢融合所释放的能量在外部释放,因此恒星的温度将是一个随半径逐渐增加的函数。

同时,值得注意的是,一个恒星的内部结构也取决于恒星的质量。

质量更大的恒星会有更高的温度和密度,这可能导致更多的能量产生。

也就是说,一个中等质量的恒星将是由核心、辐射区、和对流区组成的结构体;而一个超级巨星将拥有更复杂的结构。

二、恒星演化有许多类型的恒星演化。

例如,较小的恒星(低于约1.5太阳质量)会随着氢融合量的降低而逐渐变暗,最终形成一个白矮星。

而更大的恒星(大约从1.5太阳质量到3太阳质量之间)可以成为一个新星:当这些恒星内部产生铁核时,核心失去支撑而崩塌,从而产生大规模的能量释放,整个恒星就会变亮。

接下来是一个大规模的爆炸,它将剩余物质逐渐释放到周围。

当这个过程完成后,恒星将形成一个非常稳定的天体。

然而,更大的恒星则可能形成一个黑洞,它产生的引力是如此强大,以至于它最终成为无法被看到的东西。

总之,恒星的结构与演化对于我们理解整个宇宙的基本运作方式是至关重要的。

在未来的研究中,我们将继续努力探索恒星的本质,并扩展我们对宇宙的理解。

恒星内部结构和演化的理论模型研究

恒星内部结构和演化的理论模型研究

恒星内部结构和演化的理论模型研究恒星是宇宙中最常见的物体之一,它们以其炽热的核心和璀璨的辐射而闻名。

了解恒星的内部结构和演化是天文学家一直以来的研究课题之一。

通过建立理论模型,科学家们逐渐揭示了恒星的奥秘。

恒星的内部结构可以用一种称为恒星结构模型的理论来描述。

这一模型基于爱因斯坦的质能等效原理以及热力学和核物理等学科的基本原理。

根据该模型,恒星由一系列的层组成,包括核心、辐射区和对流区等等。

首先是恒星的核心,它是恒星最炽热的区域,温度可以达到数百万度。

核心中发生着核聚变反应,将氢核融合成氦核,释放出巨大的能量。

这种能量产生的过程,使得恒星维持着稳定的辐射能量,成为一颗恒定燃烧的“烛光”。

核心周围是辐射区,它是由高温等离子体组成的区域。

在这个区域,能量通过辐射传输的方式传递到外层。

辐射传导的特点是能量以光子的形式传递,这些光子在恒星内部的碰撞和吸收中,被频繁地发射和吸收。

再往外是恒星的对流区。

对流传输是在高温和高密度的条件下,气体体积的扩张和收缩引起的。

当恒星的对流区被激发时,热量从核心向外层传递。

可以将对流区类比为一个不断升温和降温的巨大气泡。

这些层之间的界面区域是恒星的一些重要特征,例如震荡现象和化学元素的混合。

恒星内部的震荡可以提供关于恒星质量、年龄和化学成分等重要信息。

而化学元素的混合则在恒星内部发生物质交换过程,使恒星的化学特性变得更加复杂。

除了内部结构,恒星的演化也是天文学家们关注的焦点。

恒星的演化路径可以通过恒星演化模型来探究。

这些模型基于恒星的质量、化学成分、年龄等参数,用数学和物理方程描述恒星演化的过程。

恒星的演化可以大致分为四个阶段:主序阶段、巨星阶段、超巨星阶段和末期阶段。

在主序阶段,恒星通过核聚变反应维持着稳定的辐射能量,并在赫罗图中占据一个稳定的位置。

而在巨星和超巨星阶段,恒星在内部核聚变产生能量不足、外层膨胀的作用下,逐渐变成庞大且明亮的天体。

最终,当恒星耗尽核燃料时,会膨胀成红巨星,然后借助恒星风将外层物质抛射出去,形成行星状星云。

天文学导论_宇宙概观

天文学导论_宇宙概观
• (m) milli = 0.00 1 = 10-3
• (μ ) micro = 0.00 000 1 = 10-6
中国特有的词冠
• 万 = 104 = 10 K (thousands) • 亿 = 108 = 100 Millions • “Billion = 109 = Giga = 10 亿” • Trillion = 1012 = Tera = 10,000 亿
长度单位Length Units :光年 light year
• 恒星和星系之间的距离是非常遥远的,所 以使用天文单位有的时候也不是很方便。 • c=300,000 km/s = 3 x105 km (in vacuum) • 测出光通过某段距离的时间,也就知道了 这个距离。
Examples: 月亮Moon: 光秒
几个概念
• Light year (ly 光年) – 光在一年里走过的距 离 (about 10 trillion (10 万亿) km) • Star 恒星–由炽热气体组成的、能自己发光 的球状或类球状天体。离地球最近的恒星 是太阳。其次是半人马座比邻星,它发出 的光到达地球需要4.22年。 • Planet 行星 – 在椭圆轨道上环绕太阳运行 的、近似球形的天体。行星本身一般不发 射可见光,而以表面反射太阳光而发亮。
光分Light minute
• A Light Year (ly) is the distance light travels in a year 1 ly = 9.4604x1015 metres (63,000 AU)
科学表示法 Scientific Notation
• 当我们在处理天文学数据的时候,如果按平时的 习惯来书写,我们会感到很tiresome ,因为有 Too many zeros… • 所以我们采用科学表示法,指数给出了零的个数。

清华大学天文学导论-4太阳与恒星

清华大学天文学导论-4太阳与恒星

2.3 对流区 Convective zone
能量以对流形式向外传播的区域,至半径99% 处(即太阳的外层)
离核心越远,气体温度越低(约200万K), 开始变得不透明,光子很容易被吸收,辐射转 移的效率因而很低。因此在太阳最外层,对流 取代了辐射转移成为传播能量至太阳表面更重 要的方式
2.4 光球层 Photosphere:“发光的球体”
• 平均 = 1.4 g cm-3; • 中心 = 150 g cm-3; • 光球层 = 3.5 x 10-7 g cm-3
太阳化学成分
以质量计:
• 氢:72% • 氦:26% • 其它元素:2%
以粒子数计:
• ~ 90% 氢 • ~ 10% 氦
等离子体态

中心 : 光球层: 日冕: (太阳黑子:
对流区的上部是光球层,即我们每天所看到的 太阳,是太阳“大气”中非常薄的一层,厚度 仅500千米,气体密度为地球大气的10% 我们之所以看到光球层,是因为它的气体密度 正合适。在它之下的气体密度太大,光线不能 直接通过;在它之上的气体密度则足够稀薄, 能让光球层发出的光线顺利通过,8.3分钟到 达地球 所以,光球层界定了肉眼(光学)可见的太阳 的“表面”,其温度约为5800K
在太阳核心,氢转变为氦实际上要经过一连 串的核反应,称之为质子-质子(p-p)链
核聚变的极端条件
核聚变需要高温:氢原子核(质子 1H )能有 足够的能量克服原子核(质子)之间的库仑排 斥力 核聚变需要极高的密度来增加粒子间的碰撞机 会 因此,核聚变只能在温度高达~107K 的太阳核 心发生
image of neutrinos from the Sun taken by SuperKamiokande. 2002年诺贝尔物理奖 小昌柴俊(日) 戴维斯(美)

天文学基础09-恒星

天文学基础09-恒星
太阳停留在主序阶段的时间大约是100亿年 15个太阳质量的恒星停留时间只有1500万年 1/2个太阳质量的恒星在主序阶段停留时间长达2000亿年 恒星质量最大不超过太阳质量的 120 倍,最小不小于太阳质量的 0.05倍
§9.3 恒星的演化机制 一、恒星的能源
1. 原子结构
强子:质子、中子、介子(π、κ……)、超子(Λ、Σ……)
四、主序后的演化
1. 氦后元素的热核反应
a. 氦燃烧——当温度达到108开以上时,氦原子核将成为燃料,总释 放能量相率大约是氢燃烧的1/5:
b. 碳燃烧 ——当温度达到 8×108开时,新的碳燃烧和氧燃烧开始,产 出镁(Mg)、硅(Si)、磷(P)、硫(S)等炉渣。这些元素的原 子核所带电荷已经很大,形成“库仑壁垒”,不容易靠得很近。
超巨型 亮巨星 正常巨星 亚巨星 主序星(矮星) 亚矮星 白矮星
例如:太阳 G2V,表示一颗黄色主序星 参宿七 B8Ia,表示一颗光度特别大的蓝白色超巨星
二、赫罗图——光谱光度图
丹麦天文学家赫茨普龙( E. Hertzsprung )和美国天文 学家罗素(H. N. Russell)各自独立地提出了恒星的光谱 型与光度之间存在相关关系,并以图形来表示,称为赫罗图 或H-R图。
超级“洋葱头”
白矮星
质量 1M
中子星
2M
半径
密度
8000公里
106克/厘米3
10公里
1015克/厘米3
温度
106开
108开
5. 密近双星
五、最后的归宿
1. 简并压力
泡利不相容原理 ——原子中所有围绕原子核运动的电子不允许有相同 的运动状态。禁止两个以上的电子在同一时间占据空间的同一个区域。 简并压力 ——当物质密度高到一定程度的时候,会有另外一种非热辐 射压力起到主要作用。在高度压缩的恒星上,简并压力可与引力抗衡。 由电子的简并压力与引力相平衡而保持稳定的恒星是白矮星。 由中子的简并压力与引力相平衡而保持稳定的恒星是中子星。 当中子的简并压力也无法对抗引力时,就再也没有什么力能抵挡引力, 于是黑洞出现了!

恒星结构及变化讲解

恒星结构及变化讲解
哈佛分类法(对应恒星大气的平均温度)
TiO ZrO
(3.0x103-2.0x103K)
S红
极热兰 C线 热兰 兰白

白黄



WC (4x104-2.5x104K)
(1.15x104-7.7x103K)
(6.0x103-5.0x103K)
(3.6x103-2.6x103K)
WN O
B
A
N线
(2.5x104-1.2x104K)
r = a/sinθ 。
天文单位其实是很小的距离,于是天文学家又提出了秒差 距(pc) 的概念。也就是说,如果恒星的周年视差是1角秒 (1/3600度),那么 它就距离我们1秒差距。很显然,1秒差 距大约就是206265天文单位,同时也等于3.26光年。
3.1 三角视差法 d 1 (3.26光年)
通常有很多方法来确定绝对星等 。比如主星序重叠法。如 果我们认为所有的主序星都具有相同的性质。那 么相同光谱型 的恒星就有相同的绝对星等。如果对照太阳附近恒星的赫 罗图, 我们就可以求出遥远恒星的绝对星等,进而求出距离。
3.3 谱线红移和哈勃定律
人们观测到,更加遥远的星系的光谱 都有红移的现象,也就是说, 星系的光 谱整个向红端移动。根据多普勒效应可 以知道,离我们而去的物体发出的 光的 频率会变低。造成这种现象的原因是: 遥远的系星正在 快速的离开我们。
吸收带强
吸收带弱
2. 赫罗图
1913年美国天文学家赫茨普 龙、罗素各自独立绘出亮星的光 度—温度图,发现大多数恒星分 布在图中左上方至右下方的一条 狭长带内,从高温到低温的恒星 形成一个明显的序列,称为“主 星序”。为了纪念两位科学家作 出的贡献,人们称这种图为赫— 罗图(HR-diagram)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档