第七章-平面直角坐标系培优提高卷(含答案)

合集下载

人教版七年级数学下册第7章平面直角坐标系培优提升卷

人教版七年级数学下册第7章平面直角坐标系培优提升卷

人教版七年级数学下册第7章平面直角坐标系培优提升卷一、选择题(每小题3分,共30分)1.下列选项中的点有可能在如图所示的阴影区域内的是( )A.(1,2) B.(-1,2) C.(-1,-2) D.(1,-2)2.若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2,7),AB∥x轴,AB=3,则B点的坐标为( )A.(5,7) B.(2,10) C.(2,10)或(2,4) D.(5,7)或(−1,7) 4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点M向左平移3个单位长度后的坐标为(-1,2),则点M原来的坐标是()A.(-4,2) B.(2,2) C.(-1,3) D.(-1,-2)6.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,如果点P到x轴的距离等于4,到y轴的距离等于5,这样的点P共有( ).A.1个B.2个C.3个D.4个8.已知点A(-1,0),B(1,1),C(0,-3),D(-1,2),E(0,1),F(6,0),其中在坐标轴上的点有( )A.1个B.2个C.3个D.4个9.在平面直角坐标系中,将点P向左平移2个单位长度后得到点(-1,5),则点P的坐标是()A.(-1,3) B.(-3,5) C.(-1,7) D.(1,5)10.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2019的坐标为( )A.(505,505) B.(-505,506) C.(505,-505) D.(504,504)二.填空题(共7小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P的坐标.13.在平面直角坐标系中,点M在x轴的上方,y轴的左面,且点M到x轴的距离为4,到y 轴的距离为7,则点M的坐标是.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第象限.15.如图,在平面直角坐标系xOy中,点A(3,0),判断在M,N,P,Q四点中,满足到点O和点A 的距离都小于2的点是.16.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排从左到右第n个数,如(4,3)表示正整数9,那么(7,2)表示的正整数是,正整数18用有序数对表示为.17.如图,点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P第2018次碰到长方形的边时,点P的坐标为.三.解答题(共7小题)18.已知点P(8-2m,m-1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.19.如图,点A(1,0),点(2,0),B点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为(2)求x-y+xy的值.20.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(-3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(-1,-1),在图中标出行政楼的位置.21.已知点P(2a-12,1-a)位于第三象限,点Q(x,y)位于第二象限且是由点P向上平移一定单位长度得到的.(1)若点P的纵坐标为-3,试求出a的值;(2)在(1)题的条件下,试求出符合条件的一个点Q 的坐标;22.如图,在平面直角坐标系中,第一次将△OAB 变换成11,OA B 第二次将11OA B 变换成22,OA B 第三次将22OA B 变换成33;OA B 已知变换过程中各点坐标分别为123123(1,3),(2,3),(4,3),(8,3),(2,0),(4,0),(8,0),(16,0)A A A A B B B B .(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将33OA B 变换成44,OA B 则4A 的坐标为 4,B 的坐标为 .(2)按以上规律将△OAB 进行n 次变换得到,n n OA B 则n A 的坐标为,n B 的坐标为 ;(3)n n OA B 的面积为 .答案:1-5 BADCB6-10 DDDDA11.-112.(-1,2)(答案不唯一)13. (-7,4)14. 四15.点M与点N16. 2317. (7,4)(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(-4,3);(3)行政楼的位置如图所示.21. 解:(1)1-a=-3,a=4.(2)由a=4得:2a-12=2×4-12=-4,又点Q(x,y)位于第二象限,所以y>0;取y=1,得点Q的坐标为(-4,1).22.解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).故答案为:(16,3),(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0);故答案为:(2n,3),(2n+1,0);(3)∵A n的坐标为:(2n,3),B n的坐标为:(2n+1,0),∴△OA n B n的面积为×2n+1×3=3×2n.。

【学生卷】初中七年级数学下册第七单元《平面直角坐标系》提高练习(含答案解析)

【学生卷】初中七年级数学下册第七单元《平面直角坐标系》提高练习(含答案解析)

一、选择题1.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 2.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 3.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 4.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 5.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 9.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)11.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-12.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 13.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2) 14.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题16.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 17.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.18.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.19.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.20.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.21.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 22.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.23.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.24.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____25.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .26.点3(2,)A 到x 轴的距离是__________.三、解答题27.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.28.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC关于x轴对称的图形△A1B1C1,并写出点B1的坐标;(2)作出△ABC关于y轴对称的图形△A2B2C2,并写出点B2的坐标;(3)若点P(a,b)是△ABC内部一点,则点P关于直线m对称的点的坐标是.29.如图,已知平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO=8,OA=OB,BC=10,点P的坐标是(-6,a)(1)求△ABC三个顶点A、B、C的坐标;(2)连接PA、PB,并用含字母a的式子表示△PAB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.30.正方形的边长为22,0),并写出另外三个顶点的坐标.。

人教版数学七年级下册第7章平面直角坐标系培优训练【含答案】

人教版数学七年级下册第7章平面直角坐标系培优训练【含答案】

第7章平面直角坐标系培优训练一、单选题1.在平面直角坐标系中,对于坐标()34P ,,下列说法错误的是()A .点P 向左平移三个单位后落在y 轴上B .点P 的纵坐标是4C .点P 到x 轴的距离是4D .它与点()4,3表示同一个坐标2.平面直角坐标系内,下列的点不在任何象限的是()A .(51)-,B .(51)--,C .(5)1-,D .(01),3.下列说法正确的是()A .(32),和(2,3)表示同一个点B .点在x 轴的正半轴上C .点(2,4)-在第四象限D .点(31)-,到x 轴的距离为34.点()32,5P x x --在二、四象限的角平分线上,则x =()A .83B .2C .83-D .2-5.如图,在平面直角坐标系xOy 中有一点被墨迹遮挡了,这个点的坐标可能是()A .()2,3B .()2,3-C .()2,3--D .()2,3-6.在平面直角坐标系中,已知点()3,P a 到x 轴的距离为2,则a 的值为()A .2B .2-C .2±D .不能确定7.如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点()3,9M ,()12,9N ,则顶点A 的坐标是()A .()15,5B .()15,3C .()14,6D .()13,78.点M 到x 轴距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为()A .()2,3-B .()2,3-C .()3,2D .()3,2-9.在平面直角坐标系中,点()23M m -,在y 轴上,则m 的值为()A .2-B .1-C .1D .210.点(1)P m m -,不可能在()A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.如图,若在象棋盘上建立直角坐标系,使“帅”位于点()11-,,“马”位于点()41-,,则“兵”位于点(_____,_____).12.平面直角坐标系的第二象限内有一点P ,到x 轴的距离为1,到y 轴的距离为2,则点P 的坐标是______.13.点()231A a a --+,在y 轴上,则=a ______.14.在平面直角坐标系内,线段AB 平行于x 轴,且3AB =,若点B 的坐标为()2,4,则点A 的坐标是______________.15.已知AB x ∥轴,A 的坐标为()1,6,4AB =,则点B 的坐标是______.16.在平面直角坐标系中,将点()3,1P 向上平移______个单位后得到点()3,3Q 17.已知点()3,A b 在第四象限,那么点()3,B b --在第________象限.18.如图,在平面直角坐标系中()1A -,1,()12B --,,()32C -,,()31D ,,一只瓢虫从点A 出发以3个单位长度/秒的速度沿A B C D A →→→→循环爬行,问第2022秒瓢虫在点____________处(填写坐标).三、解答题19.如图,这是某校的平面示意图,如以正东为x 轴正方向,正北为y 轴正方向建立平面直角坐标系后,得到初中楼的坐标是()42-,,实验楼的坐标是()40-,.(1)坐标原点应为______的位置.(2)在图中画出此平面直角坐标系;(3)校门在第______象限;图书馆的坐标是______;分布在第一象限的是______.20.已知)2040()()(A B C x y -,,,,,.(1)若点C (),x y 在第二象限,且44x y ==,,求点C 的坐标,并求三角形ABC 的面积;(2)若点C 在第四象限,且三角形ABC 的面积为9,|x |=3,求点C 的坐标.21.在平面直角坐标系经xOy 中,给出如下定义:点A 到x 轴、y 轴距离的较小值称为点A 的“短距”,当点P 的“短距”等于点Q 的“短距”时,称P 、Q 两点为“等距点”.(1)点(5,2)A --的“短距”为;(2)点(2,21)B m --+的“短距”为1,求m 的值;(3)若(1,3)C k -+,(4,23)D k -两点为“等距点”,求k 的值.22.已知ABC 在平面直角坐标系中的位置如图所示,将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到111A BC △(图中每个小方格边长均为1个单位长度).(1)直接写出ABC 三个顶点的坐标;(2)在图中画出平移后的111A BC △;(3)直接写出111A BC △三个顶点的坐标;(4)求111A BC △的面积.参考答案:一、选择1.D2.D3.B4.A5.B 6.C7.B8.B9.D10.C二、填空11.1-212.()2,1-13.214.()5,4或()1,4-15.()3,6-或()5,616.217.二18.()02-,三、解答19.【详解】(1)解:由题意得,可以建立如下坐标系,∴坐标原点应为高中楼的位置,故答案为:高中楼;(2)解:如图所示,即为所求;(3)解:由坐标系可知,校门在第四象限,图书馆的坐标为()41,,分布在第一象限的是,图书馆和操场,故答案为:四,()41,,图书馆和操场.20.【详解】(1)因为点C 在第二象限,横坐标为负,纵坐标为正,因为44x y ==,,所以点C 的坐标为(44)-,.因为(20)(40)A B -,,,,所以6AB =,所以164122ABC S =⨯⨯= (2)由(1)可知6AB =,因为点C 在第四象限,3x =,所以3x =,因为1692ABC S y =⨯⨯= ,所以3y =,因为点C 在第四象限,所以=3y -,所以点C 的坐标为(33)-,.21.【详解】(1)解:点(5,2)A --到x 轴、y 轴距离分别为2,5,∴“短距”为2,故答案为:2;(2)点(2,21)B m --+的“短距”为1,21-≠ ,∴211m -+=,,解得:0m =或1m =;(3)点(1,3)C k -+到x 轴的距离为3k +,到y 轴距离为1,点(4,23)D k -到x 轴的距离为23k -,到y 轴距离为4,1<4- ∴当3>1k +时,即>2k -或<4k -时,231k -=,∴231k -=或231k -=-,解得2k =或1k =;当31k +≤时,即42k -≤≤-时,233k k -=+,∴233k k -=+或()233k k -=-+,解得6k =(舍去)或0k =(舍去),综上所诉,2k =或1k =.22.【详解】(1)(2,4),(5,2),(4,5)A B C ---;(2)如图所示;(3)由图可知,111(4,0),(1,2),(2,1)A B C -;(4)11111133131223222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯ 3791322=---=.。

部编数学七年级下册第七章平面直角坐标系提优测试卷(解析版)含答案

部编数学七年级下册第七章平面直角坐标系提优测试卷(解析版)含答案

第七章平面直角坐标系提优测试卷(解析版)总分150分时间120分钟一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系内,下列各点中在第二象限的点是( )A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)思路引领:根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.解:A、(3,2)在第一象限,故本选项错误;B、(3,﹣2)在第四象限,故本选项错误;C、(﹣3,2)在第二象限,故本选项正确;D、(﹣3,﹣2)在第三象限,故本选项错误.故选:C.总结提升:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.线段AB两端点坐标分别为A(﹣1,4),B(﹣4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1,B1的坐标分别为( )A.A1(﹣5,0),B1(﹣8,﹣3)B.A1(3,7),B1(0,5)C.A1(﹣5,4),B1(﹣8,1)D.A1(3,4),B1(0,1)思路引领:直接利用平移中点的变化规律求解即可.解:线段向左平移4个单位长度,即让原横坐标都减4,纵坐标不变即可,A1的横坐标为:﹣1﹣4=﹣5;B1的横坐标为:﹣4﹣4=﹣8.则A1,B1的坐标分别为A1(﹣5,4),B1(﹣8,1),故选C.总结提升:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为( )A.﹣1B.﹣2C.1D.2思路引领:首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a =3,据此可得a的值.解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.总结提升:此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.4.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)思路引领:先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.解:如图,嘴的位置可以表示成(1,0).故选:C.总结提升:本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.5.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限思路引领:直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=−32,n=4,则点C(m,n)在第二象限.故选:B.总结提升:此题主要考查了点的坐标,正确得出m,n的值是解题关键.6.点(a﹣1,3)在y轴上,则a的值为( )A.0B.﹣1C.1D.3思路引领:根据y轴上点的横坐标为0列式计算即可得解.解:∵点(a﹣1,3)在y轴上,∴a﹣1=0,∴a=1,故选:C.总结提升:本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.7.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为( )A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)思路引领:直接利用平移中点的变化规律求解即可.解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.总结提升:此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.8.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为( )A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)思路引领:根据中点坐标公式[12(x A+x B),12(y A+y B)]代入计算即可.解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴−1x2=0,2y2=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.总结提升:本题考查坐标与图形的性质,记住中点坐标公式是解决问题的关键,代入计算时注意符号问题.9.如图,建立适当的直角坐标系后,正方形网格上B、C的坐标分别为(0,1),(1,﹣1),那么点A的坐标为( )A.(﹣1,2)B.(2,﹣1)C.(﹣2,1)D.(1,﹣2)思路引领:直接利用已知点位置得出原点位置进而得出答案.解:如图所示:点A的坐标为:(﹣1,2).故选:A.总结提升:此题主要考查了点的坐标,正确得出原点位置是解题关键.10.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是( )A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)思路引领:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为|n12|,当n12为偶数时符号为负,当n12为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为202112=1011,故选:C.总结提升:本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键.二、填空题(本大题共8小题,第11~12题每题3分,第13~18题每题4分,共30分.)11.在平面直角坐标系内,把点P(﹣5,﹣2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 .思路引领:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解:原来点的横坐标是﹣5,纵坐标是﹣2,向左平移2个单位长度,再向上平移4个单位得到新点的横坐标是﹣5﹣2=﹣7,纵坐标为﹣2+4=2.得到的点的坐标是(﹣7,2).故答案为:(﹣7,2).总结提升:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A ′B ′C ′,且平移前后三角形的顶点坐标都是整数.若点P (12,−15)为三角形ABC 内部一点,且与三角形A ′B ′C ′内部的点P ′对应,则对应点P ′的坐标是 .思路引领:依据对应点的坐标变化,即可得到三角形ABC 向左平移2个单位,向上平移3个单位后得到三角形A ′B ′C ′,进而得出点P ′的坐标.解:由图可得,C (2,0),C '(0,3),∴三角形ABC 向左平移2个单位,向上平移3个单位后得到三角形A ′B ′C ′,又∵点P (12,−15)为三角形ABC 内部一点,且与三角形A ′B ′C ′内部的点P ′对应,∴对应点P ′的坐标为(12−2,−15+3),即P '(−32,145),故答案为:(−32,145).总结提升:此题主要考查了坐标与图形变化,关键是注意观察组成图形的关键点平移后的位置.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.13.(2022•烟台)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 .14.已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(0,﹣6),C(0,﹣1),当AD∥BC且AD=BC 时,D点的坐标为 .思路引领:根据题意直接画出图形,进而分类讨论得出答案.解:如图所示:∵AD∥BC且AD=BC,∴D点的坐标为:(﹣2,8)或(﹣2,﹣2).故答案为:(﹣2,8)或(﹣2,﹣2).总结提升:此题主要考查了坐标与图形的性质,正确分类讨论是解题关键.15.在直角坐标系中,△ABC经过平移得到△A′B′C′,已知△ABC中的一点P的坐标为(x,y),经过平移后的对应点P′的坐标为(x+5,y﹣2).如果点A的坐标为(﹣1,2),请写出对应点A′的坐标为 .思路引领:平移是按照:向右平移5个单位,向下平移2个单位进行,从而可得出各顶点的坐标.解:因为△ABC中的一点P的坐标为(x,y),经过平移后的对应点P′的坐标为(x+5,y﹣2).所以向右平移5个单位,向下平移2个单位进行,点A的坐标为(﹣1,2),对应点A′的坐标为(4,0),故答案为:(4,0),总结提升:本题考查了平移的知识,解答本题需要我们能根据一个点的平移前后的坐标得出平移的规律.16.在平面直角坐标系中,一个点的横、纵坐标都是整数,并且它们的乘积为10,满足上述条件的点共有 个.思路引领:设这个点的坐标为(x,y),则xy=10,然后利用x、y为整数求出方程的整数解,从而确定满足条件的点的个数.解:设这个点的坐标为(x,y),则xy=10,因为x、y为整数,所以x=1,y=10;x=2,y=5;x=5,y=2;x=10,y=1;x=﹣1,y=﹣10;x=﹣2,y=﹣5;x=﹣5,y=﹣2;x=﹣10,y=﹣1;所以这样的点共有8个.故答案为8.总结提升:本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系.记住各象限内点的坐标特征.17.(2022•2…,24;…若2的位置记为(1,2)2,3),则 .思路引领:先找出被开方数的规律,然后再求得解:题中数字可以化成:∴规律为:被开数为从2开始的偶数,每一行4个数,∵=28是第14个偶数,而14÷4=3⋯2,∴4,2),故答案为:(4,2).总结提升:本题考查了类比点的坐标解决实际问题的能力和阅读理解能力,把被开方数全部统一成二次根式的形式是解题的关键.18.已知在平面直角坐标系中,A(0,4),C(3,0),点B在坐标轴上,且△ABC的面积为10,则点B的坐标为 .思路引领:点B在x轴上时,利用三角形的面积求出BC的长,再分点B在点C的左边与右边两种情况写出点C的坐标;点B在y轴上时,利用三角形的面积求出AB的长,再分点B在点A的上方与下方两种情况写出点B的坐标即可.解:点B在x轴上时,BC=10×2÷4=5,3﹣5=﹣2,3+5=8,则点B的坐标为(﹣2,0),(8,0);点B在y轴上时,AB=10×2÷3=20 3,4−203=−83,4+203=323,则点B的坐标为(0,−83),(0,323).综上所述,点B的坐标为(﹣2,0),(8,0),(0,−83),(0,323).故答案为:(﹣2,0),(8,0),(0,−83),(0,323).总结提升:本题考查了坐标与图形性质,三角形的面积,难点在于分情况讨论,坐标轴要分x轴与y轴两种情况.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)已知点A (1+2a ,4a ﹣5),(1)若点A 到两坐标轴的距离相等,求点A 的坐标.(2)若点A 在坐标轴上,求点A 的坐标.思路引领:(1)根据点A 到两坐标轴的距离相等,分两种情况讨论:1+2a 与a ﹣7相等;1+2a 与a ﹣7互为相反数;(2)分点A 在x 轴和y 轴两种情况解答即可.解:(1)根据题意,分两种情况讨论:①1+2a =4a ﹣5,解得:a =3,∴1+2a =7,∴点A 的坐标为(7,7);②1+2a +4a ﹣5=0,解得:a =23,∴1+2a =73,a ﹣7=﹣5,∴点A 的坐标为(73,−73),综上所述:A 点坐标为(4,4)或(73,−73).(2)点A 在x 轴上时,4a ﹣5=0,解得a =54,1+2a =72,∴点A 的坐标为(72,0);点A 在y 轴上时,1+2a ,解得a =−12,4a ﹣5=﹣7,∴点A 的坐标为(0,﹣7).综上所述:A 点坐标为(72,0)或(0,﹣7).总结提升:此题主要考查了点的坐标,解答此题的关键是熟知到两坐标轴的距离相等的点的特点是:横纵坐标相等或横纵坐标互为相反数.20.(10分)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9( 、 ),P12( 、 ),P15( 、 )(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是( 、 );(4)指出动点从点P210到点P211的移动方向.思路引领:由题意可以知道,动点运动的速度是每次运动一个单位长度,(0,1)→(1,1)→(1,0)→(1,﹣1)……通过观察找到有规律的特殊点,如P3、P6、P9、P12,发现其中规律是脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,明确这个规律即可解决以上所有问题.解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0 ),P15(5、0 ).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0 )故答案为(20、0 ).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.总结提升:本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定动点移动的数字与方向上的规律,然后再进一步按规律解决要求的点的位置.21.(10分)如图,在平面直角坐标系中,已知A(﹣2,2),B(2,0),C(3,3),P(a,b)是三角形ABC 的边AC上的一点,把三角形ABC经过平移后得三角形DEF,点P的对应点为P￿(a﹣2,b﹣4).(1)直接写出D,E,F的坐标.(2)画出三角形DEF,求三角形DEF的面积.思路引领:(1)直接利用对应点变化规律进而分别得出对应点位置;(2)利用△DEF所在三角形面积减去周围三角形面积即可得出答案.解:(1)∵P为AC上的点,P平移后P￿(a﹣2,b﹣4)表示向左平移2个单位,再向下平移 4 个单位.∴A(﹣2,2)对应点D(﹣4,﹣2);B(2,0)对应点E(0,﹣4);C(3,3)对应点F(1,﹣1).(2)如图所示,将D,E,F连线即可.三角形DEF的面积为:3×5−12×1×5−12×2×4−12×1×3=15−52−4−32=7.总结提升:此题主要考查了平移变换以及三角形面积求法,正确得出对应点的位置是解题关键.22.(10分)已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.思路引领:(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m的值,再求解即可;(3)根据点P到x轴的距离列出绝对值方程求解m的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.解:(1)∵点P(2m+4,m﹣1)在y轴上,∴2m+4=0,解得m=﹣2,所以,m﹣1=﹣2﹣1=﹣3,所以,点P的坐标为(0,﹣3);(2)∵点P的纵坐标比横坐标大3,∴(m﹣1)﹣(2m+4)=3,解得m=﹣8,m﹣1=﹣8﹣1=﹣9,2m+4=2×(﹣8)+4=﹣12,所以,点P的坐标为(﹣12,﹣9);(3)∵点P到x轴的距离为2,∴|m﹣1|=2,解得m=﹣1或m=3,当m=﹣1时,2m+4=2×(﹣1)+4=2,m﹣1=﹣1﹣1=﹣2,此时,点P(2,﹣2),当m=3时,2m+4=2×3+4=10,m﹣1=3﹣1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,﹣2).总结提升:本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键,(3)要注意点在第四象限.23.(10分)(2021春•围场县期末)四边形ABCD各顶点的坐标分别为A(0,1),B(5,1),C(6,3),D(2,5).(1)如图,在平面直角坐标系中画出该四边形;(2)四边形ABCD内(边界点除外)一共有 个整点(即横坐标和纵坐标都是整数的点);(3)求四边形ABCD的面积.思路引领:(1)根据点的坐标描出四个点,顺次连接可得;(2)根据整点的概念可得;(3)割补法求解即可.解:(1)如图所示,四边形ABCD即为所求;(2)由图可知,四边形ABCD内(边界点除外)的整点有11个,故答案为:11;(3)四边形ABCD的面积为4×6−12×2×4−12×2×4−12×1×2=15.总结提升:本题主要考查坐标与图形的性质,解题的关键是理解有序实数对与平面内的点一一对应及割补法求面积.24.(12分)在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为 ;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.思路引领:(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD =S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC =12•BC•AO=12×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD =S△AOD+S△COD﹣S△AOC=12×2×5+12×4×4−12×2×4=9.②由题意:12×2×|m|=12×2×4,解得m=±4,∴P(﹣4,3)或(4,3).总结提升:本题考查坐标与图形的变化,三角形的面积,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(14分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b)且a,b|b−12|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的线路移动.(1)求点B的坐标为 ;当点P移动5秒时,点P的坐标为 ;(2)在移动过程中,当点P移动11秒时,求△OPB的面积;(3)在(2)的条件下,坐标轴上是否存在点Q,使△OPQ的面积与△OPB的面积相等,若存在,求点Q的坐标;若不存在,说明理由.思路引领:(1)由非负数的性质可得a、b的值,据此可得点B的坐标;由点P运动速度和时间可得其运动5秒的路程,结合OA=8知AP=2,从而得出其坐标;(2)先根据点P运动11秒判断出点P的位置,再根据三角形的面积公式求解可得;(3)分点Q在x轴和y轴上两种情况,根据三角形的面积公式求出OQ的长,从而得出答案.解:(1)∵a,b|b−12|=0,∴a=8,b=12,∴点B(8,12);当点P移动5秒时,其运动路程为5×2=10,∵OA=8,∴AP=2,则点P坐标为(8,2),故答案为:(8,12)、(8,2);(2)如图1,当点P移动11秒时,11×2=22,∵OA+AB=8+12=20<22,OA+AB+BC=8+12+8=28>22,∴点P在边BC上,此时PB=22﹣20=2.∴S△OPB =12×PB×AB=12×2×12=12;(3)①当点Q在x轴上时,∵S△OPQ =12×OQ×BA=12×OQ×12=12,∴OQ=2,∴Q(2,0)或者Q(﹣2,0);②当点Q在y轴上时,CP=6,∵S△OPQ =12×OQ×CP=12×OQ×6=12,∴OQ=4,∴Q(0,4),综上所述,存在点Q使△OPQ的面积与△OPB的面积相等,其坐标为Q1(2,0),Q2(﹣2,0),Q3(0,4).总结提升:本题是四边形的综合问题,解题的关键是掌握非负数的性质、动点运动问题及三角形的面积问题、分类讨论思想的运用等知识点.26.(14分)先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式P1P2=时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.思路引领:(1)根据两点间的距离公式PP2A、B两点间的距离;1(2)根据两点间的距离公式|y2﹣y1|来求A、B两点间的距离.(3)先将A、B、C三点置于平面直角坐标系中,然后根据两点间的距离公式分别求得AB、BC、AC的长度;最后根据三角形的三条边长来判断该三角形的形状.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)△ABC是等腰三角形,理由如下:∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.总结提升:本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.。

河南省实验中学七年级数学下册第七章【平面直角坐标系】提高卷(培优提高)

河南省实验中学七年级数学下册第七章【平面直角坐标系】提高卷(培优提高)

一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)5.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-6.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)7.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 9.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.20.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).23.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.24.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1;(2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上6.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8868.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092m D .2504m 9.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)13.写一个第三象限的点坐标,这个点坐标是_______________.14.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.15.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______. 三、解答题22.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴23.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.24.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)7.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)9.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 11.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.14.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 15.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点. (1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).23.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.24.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P点坐标;若不存在,请说明理由.。

济宁市七年级数学下册第七章【平面直角坐标系】提高卷(答案解析)

济宁市七年级数学下册第七章【平面直角坐标系】提高卷(答案解析)

一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .25.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)-7.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( )A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 9.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 10.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.13.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.14.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.15.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __16.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.17.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次A的坐标是_________.不断移动,每次移动1个单位,其行走路线如图所示.则点201932,,则B点坐标为______.20.已知线段AB的长度为3,且AB平行于y轴,A点坐标为()21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.三、解答题22.如图,在平面直角坐标系中,A(-2,0),C(2,2),过C作CB⊥x轴于B,在y轴上△的面积相等,若存在,求出P点的坐标;若不存在,是否存在点P,使得ABC和ABP请说明理由.23.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的a-﹣6|=0,点B在第一象限内,点P从原点出发,以坐标为(0,b),且a、b4每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.24.如图,在平面直角坐标系中有一个△ABC.(1)将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.(2)写出△A1B1C1,三个顶点的坐标.25.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A点,公共自行车停车处;B点,公园大门;C点,便利店;D点,社会主义核心价值观标牌;E点,健身器械;F点,文化小屋,如果B点和D点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A,C,E,F的坐标.一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-5.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 6.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 7.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .28.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗9.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)10.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.14.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.15.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.16.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 17.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P ,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.18.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.点3(2,)A -到x 轴的距离是__________.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题22.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.23.国庆假期到了,八年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是()4,2-.”王磊说:“丛林飞龙的坐标是()2,1--.”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系xOy ;(2)用坐标描述西游传说和华夏五千年的位置.24.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,2).(1)将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到△A 'B ′C ′.请画出平移后的△A ′B ′C ′,并写出点的坐标A ′( , )、B ′( , )、C ′( , );(2)求出△A′B′C′的面积;(3)若连接AA′、CC′,则这两条线段之间的关系是.25.如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P()是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a +6,b+2 )(1)直接写出点A1,B1,C1的坐标;(2)在图中画出△A1B1C1;(3)求△ABC的面积.一、选择题1.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位2.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)4.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 5.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上7.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ).A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8869.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 10.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.18.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题22.如图①,A 、B 、C 三地依次在一条直线上,两辆汽车甲、乙分别从A 、B 两地同时出发驶向C 地.如图②,是两辆汽车行驶过程中到B 地的距离(km)s 与行驶时间(h)t 的关系图象,其中折线EF-FG 是甲车的图象,线段OM 是乙车的图象.(1)请求出图②中a 的值和点M 的坐标;(2)在行驶过程中,甲车有可能在乙车与B 地中点的位置吗?如有,请求出行驶时间t 的值;若没有,请说明理由.23.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.24.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-; (2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.25.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是A(﹣3,2),B(0,4),C (0,2).(1)将△ABC 以点O 为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.。

人教版七年级下《第七章平面直角坐标系》单元提升试卷(含答案)

人教版七年级下《第七章平面直角坐标系》单元提升试卷(含答案)

2020人教版七年级数学下册第七章平面直角坐标系单元提升一、选择题1.在平面直角坐标系中,点P(2,﹣3)在( D )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( A )A.平行于x轴B.平行于y轴C..经过原点D.无法确定3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( D )A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A 的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是( C )A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2)C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.游戏植物大战僵尸中,一个小正方形土地上可以放一株植物,并且当坚果墙在向日葵正右方时,可以保护向日葵.如图,如果向日葵所在的位置是(0,1),豌豆的位置是(2,2),那么坚果墙在以下 D 处可以保护向日葵.A.(0,2)B.(3,0)C.(2,1)D.(4,1)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是( B )A.(2,0)B.(1,1)C.(2,1)D.(1,1)二、填空题11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.答案:(﹣3,4)12.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.答案:(2016,0).13.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.答案:214.知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a=______.【答案】415.如图,一艘船在A处遇险后向相距50海里位于B处的救生船报警,用方向和距离描述遇险船相对于救生船的位置__________.【答案】南偏西15°,50海里16.如图,圆A经过平移得到圆O.如果圆A上一点P的坐标为(m,n),那么平移后的对应点P′的坐标为__________.【答案】(m+2,n-1)三、解答题17.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).18.据某报社报道,某省4艘渔船(如图)在回港途中,遭遇9级强风,岛上边防战士接到命令后立即搜救.你能告诉边防战士这些渔船的位置吗?[解析] 利用方向角和距离确定物体的位置,其关键在于选择参照点.由题图可知应选小岛为参照点.解:渔船A 在小岛的北偏东40°方向25 km 处;渔船B 在小岛的正南方向20 km 处;渔船C 在小岛的北偏西30°方向30 km 处;渔船D 在小岛的南偏东65°方向35 km 处.19.在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“友好距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“友好距离”为|x 1﹣x 2|; 若|x 1﹣x 2|<|y 1﹣y 2|,则P 1(x 1,y 1)与点P 2(x 2,y 2)的“友好距离”为|y 1﹣y 2|;(1)已知点A (﹣32,0),B 为y 轴上的动点, ①若点A 与B 的“友好距离为”3,写出满足条件的B 点的坐标: .②直接写出点A 与点B 的“友好距离”的最小值 .(2)已知C 点坐标为C (m ,23m+3)(m <0),D (0,1),求点C 与D 的“友好距离”的最小值及相应的C 点坐标.解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵|﹣32﹣0|=32≠3, ∴|0﹣y|=3,解得,y=3或y=﹣3;∴点B 的坐标是(0,3)或(0,﹣3);故填写:(0,3)或(0,﹣3).②根据题意,得:|﹣32﹣0|≥|0﹣y|, 即|y|≤32, ∴点A 与点B 的“友好距离”的最小值为32. 故答案为:32; (2)∵C (m ,23m+3),D (0,1), ∴|m|=|23m+2|, ∵m <0,当m ≤﹣3时,m=23m+2,解得m=6,(舍去); 当﹣3<m <0时,﹣m=23m+2,解得m=﹣65, ∴点C 与点D 的“友好距离”的最小值为:|m|=65, 此时C (﹣65,115). 20.先阅读下列一段文字,再回答问题.已知平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x2-x1|或|y2-y1|.(1)已知点A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知点A,B所在的直线平行于y轴,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离;(3)已知一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),你能判断三角形ABC的形状吗?说明理由.解:(1)∵A(2,4),B(-3,-8),∴AB=(-3-2)2+(-8-4)2=169.∵132=169,∴169=13,即A,B两点间的距离是13.(2)∵点A,B所在的直线平行于y轴,点A的纵坐标为5,点B的纵坐标为-1,∴AB=|-1-5|=6,即A,B两点间的距离是6.(3)三角形ABC是等腰三角形.理由:∵一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴三角形ABC是等腰三角形.21.已知三角形ABC的三个顶点的坐标分别是A(-2,3),B(0,1),C(2,2).(1)在所给的平面直角坐标系中画出三角形ABC.(2)直接写出点A到x轴,y轴的距离分别是多少?(3)求出三角形ABC的面积.解:(1)略.(2)点A(-2,3)到x轴的距离为3,到y轴的距离为2.(3)三角形ABC的面积为3.。

人教版七年级下《第七章平面直角坐标系》综合提升卷(含答案)

人教版七年级下《第七章平面直角坐标系》综合提升卷(含答案)

第七章平面直角坐标系第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如图1是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )图1A.(7,2) B.(2,6) C.(7,6) D.(4,5)2.已知点P(x+3,2x+4)在横轴上,则x的值是( )A.-3 B.-2 C.0 D.23.如图2,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,则点P的对应点P′的坐标是( )图2A.(-1,6) B.(-9,6)C.(-1,2) D.(-9,2)4.点P(m,m+1)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限5.已知平面直角坐标系内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( ) A.-3B.-5C.1或-3D.1或-56.把点A(-2,3)平移到点A′(1,5),平移方式正确的为( )A.先向右平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向左平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度7.如图3,在平面直角坐标系中,将点P(4,6)向左平移4个单位长度后得到点Q,那么三角形POQ的面积为( )图3A.24 B.12 C.8 D.68.下列四点与点(-2,6)连接成的线段中,与x轴和y轴都不相交的是( )A.(-4,2) B.(3,-1)C.(4,2) D.(-3,-1)9.如图4,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在( )图4A.点O1 B.点O2 C.点O3 D.点O410.如图5,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )图5A.(44,5) B.(5,44) C.(44,6) D.(6,44)请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.在电影票上,将“3排6号”简记为(3,6),则(4,12)表示的意义是________.12.已知点M(3,-2),将它先向左平移4个单位长度,再向上平移3个单位长度后得到点N,则点N所处的象限是________.13.在我国沿海地区,几乎每年夏秋两季都会或多或少地遭受台风的侵袭,加强台风的监测和预报是减轻台风灾害的重要措施.图6是气象台2018年发布的某台风的有关信息:2018年10月某天该台风中心位于点A处,则点A的位置是______________.图614.已知线段AB∥x轴,线段AB的长为5.若点A的坐标为(4,5),则点B的坐标为________.15.如图7,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将点A表示为(3,20°),点B 表示为(1,110°),则点C可表示为__________.图716.如图8,三角形ABC的顶点坐标分别是A(3,6),B(1,3),C(4,2).如果将三角形ABC平移,使点A与点A′重合,得到三角形A′B′C′,那么点B的对应点B′的坐标是__________.图8三、解答题(共52分)17.(5分)如图9,在平面直角坐标系中,确定点A,B,C,D,E,F,G的坐标.图918.(5分)已知点P(x,y)在第四象限,它到x轴的距离为3,到y轴的距离为4,求点P的坐标.19.(5分)如图10,在平面直角坐标系中描出下列各点:A(-2,-1),B(2,-1),C(2,2),D(3,2),E(0,3),F(-3,2),G(-2,2),A(-2,-1),并依次将各点连接起来,观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段FD和x轴之间有什么位置关系?点F和点D的坐标有什么特点?图1020.(6分)如图11,方格纸中每个小方格都是边长为1个单位长度的正方形,若学校(A)位置的坐标为(1,2),解答下列问题:(1)请在图中建立适当的平面直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆(C)位置的坐标为(-3,3),请在平面直角坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到三角形ABC,求三角形ABC的面积.图1121.(6分)如图12,已知长方形ABCD四个顶点的坐标分别是A(2,-2 2),B(5,-2 2),C(5,-2),D(2,-2).(1)长方形ABCD的面积是多少?(2)将长方形ABCD向上平移2个单位长度,求所得的长方形A′B′C′D′的四个顶点的坐标.图1222.(8分)如图13,在平面直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求三角形ABC的面积;(2)如果三角形ABC的三个顶点的纵坐标不变,横坐标增加3个单位长度,得到三角形A1B1C1,试在图中画出三角形A1B1C1,并写出点A1,B1,C1的坐标;(3)(2)中三角形A1B1C1与三角形ABC的大小、形状有什么关系?图1323.(8分)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:点P(1,4)的“2属派生点”为点P′(1+2×4,2×1+4),即P′(9,6).(1)点P(-2,3)的“3属派生点”P′的坐标为________;(2)若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长为线段OP长的2倍,求k的值.24.(9分)如图14,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4 cm,OA=5 cm,DE=2 cm,动点P从点A出发,以每秒1 cm的速度,沿ABC路线向点C运动;动点Q从点O出发,以每秒2 cm 的速度,沿OED路线向点D运动.若P,Q两点同时出发,其中一点到达终点时,运动停止.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发3 s时,求三角形PQC的面积;(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积.图14答案详析1.D [解析] (4,5)处没有地雷.2.B [解析]∵点P (x +3,2x +4)在横轴上, ∴2x +4=0,解得x =-2.3.C [解析] 点P (-5,4)向右平移4个单位长度,再向下平移2个单位长度,横坐标加4,纵坐标减2,因此对应点P ′的坐标是(-5+4,4-2),即(-1,2).4.D [解析]∵当m >0时,m +1只能大于0, ∴P (m ,m +1)不可能在第四象限.5.C [解析] 由题意,得2a +2=4或2a +2=-4,解得a =1或a =-3.6.D [解析] 把点A (-2,3)平移到点A ′(1,5),横坐标增加3,纵坐标增加2,所以把点A 向右平移3个单位长度,再向上平移2个单位长度得到点A ′.7.B [解析] 将点P (4,6)向左平移4个单位长度,得点Q (0,6),这时PQ =4,点O 到PQ 的距离OQ =6,所以三角形POQ 的面积为12.8.A [解析] 因为点(-2,6)和(-4,2)都在第二象限,所以连接这两点得到的线段不会与坐标轴有交点.9.A10.A [解析] 粒子所在位置与运动时间的情况如下: 位置:(1,1),运动了2=1×2(分钟),方向向左; 位置:(2,2),运动了6=2×3(分钟),方向向下; 位置:(3,3),运动了12=3×4(分钟),方向向左; 位置:(4,4),运动了20=4×5(分钟),方向向下.由上式规律,到(44,44)处时,粒子运动了44×45=1980(分钟),方向向下, 故到2019分钟,须由(44,44)再向下运动2019-1980=39(分钟),所以在第2019分钟时,这个粒子的纵坐标为44-39=5,所以其坐标为(44,5). 11.4排12号12.第二象限 [解析] 原来点M 的横坐标是3,纵坐标是-2,向左平移4个单位长度,再向上平移3个单位长度得到点N 的横坐标是3-4=-1,纵坐标为-2+3=1,则点N 的坐标是(-1,1),在第二象限.13.东经129°,北纬18°14.(-1,5)或(9,5) [解析]AB 平行于x 轴说明A ,B 两点到x 轴的距离相等,又因为点A ,B 在同一条直线上,不难得出A ,B 两点的纵坐标相同(都是5).由于AB 平行于x 轴,则AB 两点间的距离(即线段AB 的长)等于A ,B 两点横坐标差的绝对值.故本题有两种可能,即点B 的坐标为(-1,5)或(9,5).15.(2,65°) [解析] 用线段的长度和线段与水平直线向右方向的夹角来表示点的位置,因为OC =2,且与水平直线向右方向的夹角为110°-12×(110°-20°)=65°,所以点C 可表示为(2,65°).16.(4,2) [解析] 由点A (3,6)和点A ′(6,5),可得三角形ABC 向右平移了3个单位长度,向下平移了1个单位长度,因此点B (1,3)的横坐标加3,纵坐标减1,得点B ′(4,2).17.解:A (-4,4),B (-3,0),C (-2,-2),D (1,-4),E (1,-1),F (3,0), G (2,3).18.解:∵点P 到x 轴的距离为|y |,到y 轴的距离为|x |,∴|y |=3,|x |=4.又∵点P 在第四象限,∴x =4,y =-3,∴点P 的坐标为(4,-3).19.解:如图所示,图形像一个房子.(1)由图可知点E (0,3)在y 轴上,它的横坐标等于0.(2)线段FD 平行于x 轴;点F 和点D 的纵坐标相同,横坐标互为相反数. 20.解:(1)平面直角坐标系如图所示. 图书馆(B )位置的坐标为(-3,-2).(2)如图所示,观察可得,三角形ABC 中BC 边长为5,BC 边上的高为4,所以三角形ABC 的面积为12×5×4=10.21.解:(1)AB =5-2=3,AD =-2-(-2 2)=2, ∴长方形ABCD 的面积是3 2.(2)四个顶点的坐标分别为A ′(2,-2),B ′(5,-2),C ′(5,0),D ′(2,0). 22.解:(1)S 三角形ABC =15. (2)如图:A 1(3,0),B 1(9,0),C 1(8,5).(3)三角形A 1B 1C 1与三角形ABC 的大小、形状均相同.23.解:(1)(7,-3)(2)∵点P (a ,b )在x 轴的正半轴上,∴b =0,a >0,∴点P 的坐标为(a ,0),点P ′的坐标为(a ,ka ), ∴线段PP ′的长为点P ′到x 轴的距离,为|ka |. ∵点P 在x 轴正半轴上,∴线段OP 的长为a , 根据题意,有|PP ′|=2|OP |,∴|ka |=2a . ∵a >0,∴|k |=2,∴k =±2.24.解:(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点运动3 s 时,点P (3,5),Q (6,0).因为C (4,2),过点P 作PM ⊥x 轴,垂足为M (3,0),所以QM =3,所以三角形PQC 的面积=12×3×5-12×1×3-12×2×2-2×1=2.(3)①当0≤t <4时(如图(a)),OA =5,OQ =2t ,S 三角形OPQ =12OQ ·OA =12×2t ×5=5t ;②当4≤t <5时(如图(b)),OE =8,EM =9-t ,PM =4,MQ =17-3t ,EQ =2t -8, S 三角形OPQ =S 梯形OPME -S 三角形PMQ -S 三角形OEQ=12×(4+8)×(9-t )-12×4×(17-3t )-12×8×(2t -8) =52-8t .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 平面直角坐标系培优提高卷一、选择题。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k(X k ,Y k )处,其中X1=1,Y 1=1,当k ≥2时,X k =Xk –1+1-5([51-k ]-[52-k ]),Y k =Yk–1+[51-k ]-[52-k ],[a]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A.(3,402) B .(3,403) C .(4,403) D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A/B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-y B.2=x ,14-≤≤-yC.14-≤≤-x ,3=y D.14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B ﹣C ﹣D﹣A …的规律绕在四边形AB CD 的边上,则细线另一端所在位置的点的坐标是( )A.(﹣1,0) B.(1,﹣2) C .(1,1) D.(﹣1,﹣1)4.如图,A,B 的坐标为(2,0),(0,1),若将线段A B平移至A 1B1,则a +b 的值为( )A.2 B .3 C.4 D.55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A .(66,34) B.(67,33) C.(100,33) D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2) B.(3,2-,) C .(3-,2) D.(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、B C边上,B D=BE =1.沿直线DE 将△B DE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1) C.(2,2) D.(3,1)8.如图,△A BC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C′的纵坐标是( )A . ﹣(2m ﹣3) B. ﹣(2m ﹣2) C. ﹣(2m ﹣1) D. ﹣2m9.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为▱A BCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A.6、7 B .7、8 C.6、7、8 D.6、8、910.以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米 D.向南直走700米,再向西直走600米二、填空题。

(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1) 在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有_________-个;(3) 若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标.12.已知点A(1,0),点B(0,2)若有点C在X轴上并使S△ABC=2,则点C的坐标为________13.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(−3,3),嘴唇C点的坐标为(−2,1),将此“QQ”笑脸向右平移2个单位后,此“QQ”笑脸右眼B的坐标是. 14.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2017的坐标为。

15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2014个点的横坐标为________________.16.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2014的坐标为________________.三、解答题。

(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0),(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求出A′点的坐标。

(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.18.在正方形网格中建立如图所示的平面直角坐标系,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题。

(1)画出△ABC关于x轴对称的△A1B1C1。

(2)画出△ABC关于原点对称的△A2B2C2。

(3)将△ABC绕点B逆时针旋转900,画出旋转后的A3BC3。

(4)求△A1A2A3的面积。

19.在直角坐标系中,长方形ABCD的边AB可表示为(-2,y)(-1≤y≤2),边AD可表示为(x,2)(-2≤x≤4)。

求:(1)长方形各顶点的坐标;ﻩﻩﻩﻩﻩ(2)长方形ABCD的周长.20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:B A −→−(+1,+4),从A B −→−(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.图中____)(____,C B −→−,_____),1_____(+−→−C 若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的路程;若图中另有两个格点M 、N ,且)4,3(--−→−b a A M ,)2,5(--−→−b a N M ,则AN −→−应记作什么?21.在棋盘中建立如图所示的直角坐标系,一颗棋子A位置如图,它的坐标是(-1,1).(1)如果棋子B 刚好在棋子A 关于x 轴对称的位置上,则棋子B 的坐标为______________;棋子A 先向右平移两格再向上平移两格就是棋子C 的位置,则棋子C 的坐标为_______________;(2)棋子D 的坐标为(3,3),试判断A 、B、C 、D 四棋子构成的四边形是否是轴对称图形,如果是,在图中用直尺作出它的对称轴,如果不是,请说明理由;(3)在棋盘中其他格点位置添加一颗棋子E ,使四颗棋子A ,B ,C ,E 成为轴对称图形,请直接写出棋子E 的所有可能位置的坐标__________________________________. xyO A22.如图,长阳公园有四棵树,A、B、C、D(单位:米)(1)请写出A、B两点坐标﹒(2)为了更好的保护古树,公园决定将如图所示的四边形用围栏圈起来,划为保护区,请你计算保护区面积﹒23.已知:在平面直角坐标系中,四边形ABCD是长方形, ∠A=∠B=∠C=∠D=90°AB∥CD,AB =CD=8cm,AD=BC=6cm,D点与原点重合,坐标为(0,0).(1)写出点B的坐标.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动, 动点Q从点C出发以每秒4个单位长度的速度I沿射线CD方向匀速运动,若P,Q两点同时出发,设运动时间为t秒,当t 为何值时,PQ∥BC?(3)在Q的运动过程中,当Q运动到什么位置时,使△ADQ的面积为9?求出此时Q点的坐标.参考答案与详解1.B【解析】∵T(51-k)﹣T(52-k)组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即yn的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2013棵树种植点的坐标应为(3,403). 故选B.4.A.【解析】由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选A.5.C【解析】由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位, ∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C .6.A.【解析】∵()()f m n m n =-,,,()()g m n m n =--,,, ∴()()()g f 32g 3,23,2⎡-⎤=--=⎣⎦ ,.故选A.7.B .【解析】∵矩形OA BC 的边OA 、OC 分别在x轴、y 轴上,点B 的坐标为(3,2), ∴CB =3,AB =2,又根据折叠得B ′E =BE ,B′D =BD ,而BD =BE =1,∴CE =2,AD=1,∴B ′的坐标为(2,1).故选B .8.A .【解析】设点C 的纵坐标为m ,则A 、C间的纵坐标的长度为(m -1),∵△ABC 放大到原来的2倍得到△A ′B′C ,∴C ′、A 间的纵坐标的长度为2(m -1),∴点C′的纵坐标是-[2(m-1)-1]=-(2m -3).故选:A .9.C.【解析】当t =0时,A(0,0),B (0,4),C (3,4),D (3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t =1时,A (0,0),B (0,4),C (3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A (0,0),B (0,4),C (3,5.5),D(3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t =2时,A(0,0),B (0,4),C(3,6),D (3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A 错误,选项B 错误;选项D 错误,选项C 正确;故选C .10.A【解析】根据题意,画出如图的示意图,可知A正确.11.【解析】(1)根据方格的值,利用勾股定理及逆定理可以做出判断,并作出图形;(2)可以根据AB 做腰和底两种情况分别在图形中找到相应的等腰三角形的点;(3)根据旋转的性质和对称性可以判断.解: (1)(2)满足条件的点P共有 4 个(3)写出旋转后点B 的坐标 (3,1)12.(-1,0)或(3,0)【解析】由题意可设C 点的坐标为(x ,0),则ABC S=12x 122⨯⨯-=,解得x =3或x =-1,所以C点的坐标为(-1,0)或(3,0).13.(1,3)【解析】先确定右眼B 的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.解:∵左眼A的坐标是(-3,3),嘴唇C点的坐标为(-2,1),∴右眼的坐标为(-1,3),向右平移2个单位后右眼B的坐标为(1,3).14.(1010,0)【解析】∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A2(1,-1),A4(2,2),A6(-1,-3),A8(2,4),A10(-1,-5),A12(2,6),…,∵2016÷4=504,∴点A2016在第一象限,横坐标是2,纵坐标是2016÷2=1008,∴A2016的坐标为(2,1008).在第一象限,所以A2017的坐标为(x,0)则x=1008+2。

相关文档
最新文档