数值计算方法I上机实验考试题
计算方法上机实习题

数值计算方法上机实习题1. 设⎰+=105dx xx I nn , (1) 由递推公式nI I n n 151+-=-,从0=0.1822I , 0=0.1823I 出发,计算20I ; (2) 20=0I ,20=10000I , 用nI I n n 51511+-=-,计算0I ;(3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。
解:(1)程序如下: clear all clc I=0.1822; %题中的已知数据 for n=1:20; I=(-5)*I+1/n; %由递推公式所得 end fprintf('I20=%f\n',I) M=0.1823; %与I 的计算结果形成对比 for i=1:20; M=(-5)*M+1/i; %由递推公式所得 end fprintf('M20=%f\n',M) 输出结果为: I20=-11592559237.912731 M20=-2055816073.851284 (2)程序如下: clear all clc I=0; %赋予I20的初始值 for n=0:19; I=(-1/5)*I+1/(5*(20-n)); %有递推公式得 end fprintf('I0=%f\n',I) M=10000; for i=0:19; M=(-1/5)*M+1/(5*(20-i));%有递推公式得 end fprintf('M0=%f\n',M) 输出结果为: I0=0.182322 M0=0.182322(3)由输出结果可看出第一种算法为不稳定算法,第二中算法为稳定算法。
由于误差*000***21111120115(5)5()555nn n n n n n n n n e I I e I I I I I I e e e n n------=-=-=-+--+=-===第一种算法为正向迭代算法,每计算一步误差增长5倍,虽然所给的初始值很接近,随着n 的增大,误差也越来越大。
(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法上机

数值计算方法上机实习题1. 设⎰+=105dx xx I nn , (1) 由递推公式n I I n n 151+-=-,从0I 的几个近似值出发,计算20I ; (2) 粗糙估计20I ,用nI I n n 51511+-=-,计算0I ;(3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。
解:(1)由题可得:0I =ln6-ln5=0.1823, 源程序为:>> I=0.182;>> for n=1:20, I=(-5)*I+1/n; end >> I运行结果为:I = -3.0666e+010 即20I =-3.0666e+010(2)由12000.00796x dx ≈⎰,1200.00955x dx ≈⎰1120202065x x dx I dx ⎰⎰20I =1(0.00790.0095)2+=0.0087源程序为:>> I=0.0087; >> for n=1:20,I=(-1/5)*I+1/(5*n); end >> I运行结果为:I = 0.0083 即0I =0.0083(3) 首先分析两种递推式的误差;设第一递推式中开始时的误差为'000E I I =-,递推过的舍入误差不计。
并记'n n n E I I =-,则有105(5)n n n E E E -=-==-。
因为2020020(5)E E I =-,所此递推式不可靠。
而在第二种递推式中0111()55n n E E E =-==-,误差在缩小,所以此递推式是可靠的。
出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制,即算法是否数值稳定。
2. 求方程0210=-+x e x的近似根,要求41105-+⨯<-k k x x ,并比较计算量。
(1) 在[0,1]上用二分法; (2) 取初值00=x ,并用迭代1021x k e x -=+;(3) 加速迭代的结果;(4) 取初值00=x ,并用牛顿迭代法; (5) 分析绝对误差。
数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。
数值计算方法上机题目资料

2. 程序输入、输出用文件形式。 3. 编程语言要求用C, 编程环境TC或VC 4. 程序要求调试通过。 5. 每个方法要求给出一个具体的算例(可选
作业题)来验证。
五、上机报告要求
1.报告内容包括:
每种方法的算法原理及程序框图。 程序使用说明 具体算例及结果
上机调试体会及收获。
2.报告要手写。
六、上机报告及源程序提交时间
1.上机报告在考试当天提交。 2.源程序在考试前提交。
提交格式:文件夹(班级+姓名)
输入文件 程序文件夹 输出文件
不要拷贝其它文件!!! 源程序
六、上机报告及源程序提交时间
源程序提交: 把以上文件压缩后,发送到以下邮箱:
haoyq@
七、考核方式
1.算法手算笔试(80%)+上机内容笔试 (10%)+上机报告(10%)
2.上机内容笔试可能形式:
编一段算法程序 给出一段算法程序,说明算法的名称。 程序填空 程序改错(包括算法和语法的错误)
数值计算方法上机练习
一、上机练习目的
复习和巩固数值计算方法的基本数学模型, 全面掌握运用计算机进行数值计算的具体 过程及相关问题。
利用计算机语言独立编写、调试数值计算 方法程序,培养学生利用计算机和所学理 论知识分析解决实际问题的能力。
二、上机练习任务
• 利用计算机基本C语言编写并调试一系列 数值方法计算通用程序,并能正确计算给 定题目,掌握调试技能。
• 掌握文件使用编程技能,如文件的各类操 作,数据格式设计、通用程序运行过程中 文件输入输出运行方式设计等。
• 写出上机练习报告。
三、数值计算方法上机题目
数值计算方法试题及答案

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次.2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( ).4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk k x l)(( ),∑==nk k j kx lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。
6、5个节点的牛顿—柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法上机实习题

数值计算方法上机实习题1 1(2)丨20=0, 120 = 10000,用 I n 」I n 」 一,计算丨0 ; 5 5n答:第一个算法可得出易知第一个算法每一步计算都把误差放大了5倍,n 次计算后更是放大了 5n倍,可靠性低。
第二个算法可得出(1 )由递推公式I n = -51心-,从nI o =O.1823出发,计算* ;(3)分析结果的可靠性及产生此现象的原因重点分析原因。
可以看出第二个算法每一步计算就把误差缩小5倍,n次后缩小了5n倍,可靠性高。
2.求方程e^+IOx —2=0的近似根,要求 x k *—x k <^10-,并比较计算量。
(1)在[0 , 1]上用二分法;(1) [0, 1]上的二分法二分法子程序:function [root,n]=EFF3(f,x1,x2) %第二题⑴二分法f1= subs(f,symvar(f),x1);% 函数在 x=x1 的值 f2=subs(f,symvar(f),x2);%x=x2 n=0;%步数 er=5*10A-4;% 误差 if(f1==0)root=x1; return;elseif(f2==0)root=x2; return;elseif(f1*f2>0)disp('两端点函数值乘积大于 0!');return;elsewhile(abs(x1-x2)>er)% 循环 x3=(x1+x2)/2;f3=subs(f,symvar(f),x3);n=n+1; if(f3==0)root=x3; break; elseif(f1*f3>0)x1=x3; elsex2=x3; end endroot=(x1+x2)/2;%while 循环少一步需加上 end、2 _e (2) 取初值x 0 =0,并用迭代x k d :10(2)初值x o =O 迭代计算根与步数程序:迭代法子程序:syms x;function [root,n]=DDF(g,x0,err,max) (接下页) f=(2-exp(x))/10;(接下页)计算根与步数程序:fplot(@(x) exp(x)+10*x-2,[0,1]); grid on; syms x; f=exp(x)+10*x-2; [root,n]=EFF3(f,0,1);fprintf('root=%6.8f ,n=%d \n',root,n);计算结果显示:root=0.09057617 ,n=11(3)加速迭代的结果(4)取初值X。
数值计算方法试题一

数值计算方法试题一集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算方法I 上机实验考试题(两题任选一题)
1.小型火箭初始质量为900千克,其中包括600千克燃料。
火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。
设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数为0.4(千克/米).重力加速度取9.8米/秒2.
A. 建立火箭升空过程的数学模型(微分方程);
B. 求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时间和高度.
2.小型火箭初始质量为1200千克,其中包括900千克燃料。
火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生40000牛顿的恒定推力.当燃料用尽时引擎关闭。
设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数记作k ,火箭升空过程的数学模型为
0)0(,0,01222==≤≤-+⎪⎭
⎫ ⎝⎛-==t dt dx x t t mg T dt dx k dt x d m 其中)(t x 为火箭在时刻t 的高度,m =1200-15t 为火箭在时刻t 的质量,T (=30000牛顿)为推力,g (=9.8米/秒2)为重力加速度, t 1 (=900/15=60秒)为引擎关闭时刻.
今测得一组数据如下(t ~时间(秒),x ~高度(米),v ~速度(米/秒)):
现有两种估计比例系数k 的方法:
1.用每一个数据(t,x,v )计算一个k 的估计值(共11个),再用它们来估计k 。
2.用这组数据拟合一个k .
请你分别用这两种方法给出k 的估计值,对方法进行评价,并且回答,能否认为空气阻力系数k=0.5(说明理由).。