(完整版)数值计算方法上机实习题答案
计算方法上机实习题

数值计算方法上机实习题1. 设⎰+=105dx xx I nn , (1) 由递推公式nI I n n 151+-=-,从0=0.1822I , 0=0.1823I 出发,计算20I ; (2) 20=0I ,20=10000I , 用nI I n n 51511+-=-,计算0I ;(3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。
解:(1)程序如下: clear all clc I=0.1822; %题中的已知数据 for n=1:20; I=(-5)*I+1/n; %由递推公式所得 end fprintf('I20=%f\n',I) M=0.1823; %与I 的计算结果形成对比 for i=1:20; M=(-5)*M+1/i; %由递推公式所得 end fprintf('M20=%f\n',M) 输出结果为: I20=-11592559237.912731 M20=-2055816073.851284 (2)程序如下: clear all clc I=0; %赋予I20的初始值 for n=0:19; I=(-1/5)*I+1/(5*(20-n)); %有递推公式得 end fprintf('I0=%f\n',I) M=10000; for i=0:19; M=(-1/5)*M+1/(5*(20-i));%有递推公式得 end fprintf('M0=%f\n',M) 输出结果为: I0=0.182322 M0=0.182322(3)由输出结果可看出第一种算法为不稳定算法,第二中算法为稳定算法。
由于误差*000***21111120115(5)5()555nn n n n n n n n n e I I e I I I I I I e e e n n------=-=-=-+--+=-===第一种算法为正向迭代算法,每计算一步误差增长5倍,虽然所给的初始值很接近,随着n 的增大,误差也越来越大。
(完整版)数值计算方法上机实习题答案

(完整版)数值计算⽅法上机实习题答案1.设?+=105dx xx I nn ,(1)由递推公式nI I n n 151+-=-,从0I 的⼏个近似值出发,计算20I ;解:易得:0I =ln6-ln5=0.1823, 程序为:I=0.182; for n=1:20I=(-5)*I+1/n; end I输出结果为:20I = -3.0666e+010 (2)粗糙估计20I ,⽤nI I n n 515111+-=--,计算0I ;因为 0095.056 0079.01020201020≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2120=+=I 程序为:I=0.0087; for n=1:20I=(-1/5)*I+1/(5*n); end I0I = 0.0083(3)分析结果的可靠性及产⽣此现象的原因(重点分析原因)。
⾸先分析两种递推式的误差;设第⼀递推式中开始时的误差为000I I E '-=,递推过程的舍⼊误差不计。
并记nn n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。
因为=20E 20020)5(I E >>-,所此递推式不可靠。
⽽在第⼆种递推式中n n E E E )51(5110-==-=Λ,误差在缩⼩,所以此递推式是可靠的。
出现以上运⾏结果的主要原因是在构造递推式过程中,考虑误差是否得到控制,即算法是否数值稳定。
2.求⽅程0210=-+x e x的近似根,要求41105-+?<-k k x x ,并⽐较计算量。
(1)在[0,1]上⽤⼆分法;程序:a=0;b=1.0;while abs(b-a)>5*1e-4 c=(b+a)/2;if exp(c)+10*c-2>0 b=c; else a=c; end end c结果:c =0.0903(2)取初值00=x ,并⽤迭代1021x k e x -=+;程序:x=0; a=1;while abs(x-a)>5*1e-4 a=x;x=(2-exp(x))/10; end x结果:x =0.0905(3)加速迭代的结果;程序:x=0; a=0;b=1;while abs(b-a)>5*1e-4 a=x;y=exp(x)+10*x-2; z=exp(y)+10*y-2;x=x-(y-x)^2/(z-2*y+x); b=x; end x结果:x =0.0995(4)取初值00=x ,并⽤⽜顿迭代法;程序:x=0; a=0;b=1;while abs(b-a)>5*1e-4 a=x;x=x-(exp(x)+10*x-2)/(exp(x)+10); b=x; end x结果: x =0.0905(5)分析绝对误差。
计算方法与实习答案1-2

绪论
习题1——10:设 f ( x) = 8 x 5 − 0.4 x 4 + 4 x 3 − 9 x + 1 用秦九韶法求f(3)。 解:
8 − 0.4
24 8 23.6
0
−9
1
x=3
70.8 74.8
224.4 224.4
673.2 664.2
1992.6 1993.6
∴ f(3)=1993.6
第一章 绪论 练习
1.《计算方法》课程主要研究以计算 机为工具的 数值 分析方法 ,并评价 该算法的计算误差。 2.近似值作四则运算后的绝对误差限 公式为 ε ( x1 − x2 ) ≤ ε ( x1 ) + ε ( x2 ) ,近似值 1.0341的相对误差限不大于 1 ×10−2 , 则它至少有三位有效数字。 4
ln(103 ) ∴k ≥ ln(2) ≥ 9.965
2 2 2
∴需二分10次 需二分 次
方程求根——二分法
习题2——2:用二分法求方程2e-x-sinx=0在区 间[0,1]内的1个实根,要求3位有效数字。
解:1)判断是否在该区间有且仅有一个根 f(0)=2>0,f(1)=2/e-sin1≈-0.1<0, f’(x)=-2e-x-cosx,f’=-3,-2/e-cos1<0 2)判断二分次数 由(b-a)/2k+1=1/2k+1≤1/2*10-3,解得k≥3ln10/ln2≥9.965, 所以需要二分10次,才能满足精度要求。
∴ x≈2.981
方程求根
f (xk )(xk − xk −1) xk +1 = xk − f (xk ) − f (xk −1)
习题2——11:用割线法求方程x3-2x-5=0的根,要 求精确到4位有效数字,取x0=2, x1=2.2。
(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
上机数值计算练习题及答案.docx

习题31、在MATLAB 中,先运行指令A=magic(3), B=[l,2,l;3,4,3;5,6,7], C=reshape(l:6,3,2)生成阵列A 珂,B3X2,C3X2 ,然后根据运行结果回答以下问题:(1)计算A*B,B*A,这两个乘积相同吗?(2)计算A\B, B/A,左除、右除结果相同吗?(3)计算B(:,[1,2]).*C和C.*B(:, [1,2]),这两个乘积相同吗?(4)计算A\A和AAA,这两个计算结果相同吗?(5)计算A\eye(3)和inv(A),这两个计算结果相同吗?(提示:根据对计算结果的目测回答问题)解答如下:运行指令:A=magic(3), B=[l,2,l;3,4,3;5,6,7], C=reshape(l:6,3,2)得到结果:8 1 63 5 74 9 2B =1 2 13 4 35 6 7C =1 42 53 6(1)计算A*B,并得到结果如下:» A*Bans =41 56 5353 68 6741 56 45计算B*A, 并得到结果如下:»B*Aans =18 20 2248 50 5286 98 86从以上计算结果可以得出结论:A*BJ (2)计算A\B ,并得到结果如下:» A\Bans =0.0333 0.1000 0.16110.5333 0.6000 0.74440.0333 0.1000 -0.1722计算B/A, 并得到结果如下:B/Aans =0.0056 0.0889 0.17220.1389 0.2222 0.30560.2333 0.7333 0.2333 与B*A这两个乘积不同。
从以上计算结杲可以得出结论:左除、右除结杲不同。
(3)计算B(:,[1,2]).弋,并得到结果如下:A =» B(:,[1,2]).*C ans =1 8 6 20 15 36计算C.*B(:, [1,2]),并得到结果如下: » CFB(:, [1,2]) ans =1 6 20 15 36从以上计算结果可以得出结论:B(: J1,2]).*C 和C ・*B(:, [1,2])的两个乘积相同。
数值分析上机实习题及答案.docx

方詡文金兴:爭[数值分析]2017-2018第二学期上机实习题1:编程计算亍丄,其中C= 4. 4942x10307,给出并观察计算结心C"果,若有问题,分析之。
解:mat lab 编程如下:E) funct ion diy i ti formatlong g;n 二input C 输入ii 值= c= 4.4942E307; sum 二0; s 二 0;E3 for i = l:n s = l/ (c*i);>> diyiti 输入n 值:10 104.6356e-308 >> diyiti输入ri 值:1001004.6356e-308 >> diyiti 输入n 值:1000 10004.6356e-308 >> diyiti揄入n 值* 1000001000004・ 6356e-308 >> diyiti输入n 值;1000000001000000004.6356e-308图二:运行结果Mat lab 中,forma t long g 对双精度,显示15位定点或浮点格式,由上图 可知,当输入较小的n 值5分别取10, 100, 1000, 100000, 100000000)的时候, 结果后面的指数中总是含有e-308,这和题目中的C 值很相似,我认为是由于分 母中的C 值相对于n 值过大,出现了 “大数吃小数”的现彖,这是不符合算法原 则的。
2:利用牛顿法求方程-1^ = 2于区间241的根,考虑不同初值下牛顿法的收敛情况。
解:牛顿法公式为:利用mat lab 编程function di2ti21 3i=l ;2 2.85208156699784 xO 二input ('输入初值x0:‘ );A 二[i x0];3 2.55030468822809 t=x0+ (x0-log (xO) -2) /(1-1/xO) ; %迭代函数4 1.91547247100476 三 while (abs (t _x0)>0.01)i=i+l; 5 0.37867158538991 xO 二 t; 6 0.774964959780275 A = [A;i xO];t =x0+(x0-log(xO)-2)/(1-1/xO): 7 4.11574081641933 cnd| 8 5.04162436446126 disp (A);96.81782826645596当输入初值二3的时候并不能收敛。
数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。
数值计算方法答案

数值计算方法答案(总71页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,9习题一1.设x >0相对误差为2%4x 的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)++; (2)+(+)哪个较精确 解:(1)++ ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+=2(0.3443100.1352)fl ⨯+ =210⨯ (2)+(+) 21(0.319710(0.245610))fl fl ≈⨯+⨯= 21(0.3197100.259110)fl ⨯+⨯=210⨯易见++=210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==%5.下面计算y 的公式哪个算得准确些为什么(1)已知1x <<,(A )11121xy x x -=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x=,(B )1cos 2xy x -=;(4)(A)9y =B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 设⎰+=105dx xx I nn , (1) 由递推公式nI I n n 151+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为:I=0.182; for n=1:20I=(-5)*I+1/n; end I输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用nI I n n 515111+-=--,计算0I ; 因为 0095.056 0079.01020201020≈<<≈⎰⎰dx x I dx x 所以取0087.0)0095.00079.0(2120=+=I 程序为:I=0.0087; for n=1:20I=(-1/5)*I+1/(5*n); end I0I = 0.0083(3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。
首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。
并记nn n I I E '-=,则有01)5(5E E E n n n -==-=- 。
因为=20E 20020)5(I E >>-,所此递推式不可靠。
而在第二种递推式中n nE E E )51(5110-==-= ,误差在缩小,所以此递推式是可靠的。
出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制,即算法是否数值稳定。
2. 求方程0210=-+x e x的近似根,要求41105-+⨯<-k k x x ,并比较计算量。
(1) 在[0,1]上用二分法; 程序:a=0;b=1.0;while abs(b-a)>5*1e-4 c=(b+a)/2;if exp(c)+10*c-2>0 b=c; else a=c; end end c结果:c =0.0903(2) 取初值00=x ,并用迭代1021x k e x -=+;程序:x=0; a=1;while abs(x-a)>5*1e-4 a=x;x=(2-exp(x))/10; end x结果:x =0.0905(3) 加速迭代的结果; 程序:x=0; a=0;b=1;while abs(b-a)>5*1e-4 a=x;y=exp(x)+10*x-2; z=exp(y)+10*y-2;x=x-(y-x)^2/(z-2*y+x); b=x; end x结果:x =0.0995(4) 取初值00=x ,并用牛顿迭代法; 程序:x=0; a=0;b=1;while abs(b-a)>5*1e-4 a=x;x=x-(exp(x)+10*x-2)/(exp(x)+10); b=x; end x结果: x =0.0905(5) 分析绝对误差。
solve('exp(x)+10*x-2=0')3.钢水包使用次数多以后,钢包的容积增大,数据如下:试从中找出使用次数和容积之间的关系,计算均方差。
(注:增速减少,用何种模型) 设y=f(x)具有指数形式xbaey =(a>0,b<0)。
对此式两边取对数,得xba y 1ln ln +=。
记A=lna ,B=b ,程序:t=[0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.0909 0.0833 0.0769 0.0714 0.0667 0.0625];z=[1.8594 2.1041 2.2597 2.2513 2.2721 2.3026 2.2956 2.3016 2.3504 2.3599 2.3609 2.3795 2.3609 2.3888 2.3758]; polyfit(t,z,1) 结果:ans = -1.1107 2.4578由此可得 A=2.4578,B=-1.1107,6791.11==Ae a ,b=B=-1.1107方程即为xey 1107.16791.11-=计算均方差编程:x=[2:16]; y=[6.42 8.2 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.8 10.6 10.9 10.76]; f(x)=11.6791*exp( -1.1107./x); c=0;for i=1:15 a=y(i); b=x(i);c=c+(a-f(b))^2; endaverge=c/15 结果:averge =0.05944.设⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------------=410100141010014101101410010141001014A ,⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=625250b ,b x =A 分析下列迭代法的收敛性,并求42110-+≤-kk x x 的近似解及相应的迭代次数。
(1) JACOBI 迭代; 程序:function y=jacobi(a,b,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); B=D\(L+U); f=D\b;y=B*x0+f;n=1;while norm (y-x0)>1e-4 x0=y;y=B*x0+f;n=n+1; end y n以文件名jacobi.m 保存。
程序: a=[4 -1 0 -1 0 0;-1 4 -1 0 -1 0;0 -1 4 -1 0 -1;-1 0 -1 4 -1 0;0 -1 0 -1 4 -1;0 0 -1 0 -1 4]; b=[0 5 -2 5 -2 6]'; x0=[0 0 0 0 0 0]'; jacobi(a,b,x0);运行结果为:y =1.00002.00001.00002.00001.00002.0000n =28(2)GAUSS-SEIDEL迭代;程序:function y=seidel(a,b,x0)D=diag(diag(a));U=-triu(a,1);L=-tril(a,-1);G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1;while norm(y-x0)>10^(-4)x0=y;y=G*x0+f;n=n+1;endyn以文件名deisel.m保存。
程序:a=[4 -1 0 -1 0 0;-1 4 -1 0 -1 0;0 -1 4 -1 0 -1;-1 0 -1 4 -1 0;0 -1 0 -1 4 -1;0 0 -1 0 -1 4]; b=[0 5 -2 5 -2 6]';x0=[0 0 0 0 0 0]';jacobi(a,b,x0);运行结果为:y =1.00002.00001.00002.00001.00002.0000n =15(3) SOR 迭代(95.0,95.1,334.1=ω)。
程序:function y=sor(a,b,w,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1);lw=(D-w*L)\((1-w)*D+w*U); f=(D-w*L)\b*w; y=lw*x0+f;n=1;while norm(y-x0)>10^(-4) x0=y;y=lw*x0+f;n=n+1; end y n以文件名sor.m 保存。
程序:a=[4 -1 0 -1 0 0;-1 4 -1 0 -1 0;0 -1 4 -1 0 -1;-1 0 -1 4 -1 0;0 -1 0 -1 4 -1;0 0 -1 0 -1 4]; b=[0 5 -2 5 -2 6]'; x0=[0 0 0 0 0 0]'; c=[1.334 1.95 0.95]; for i=1:3 w=c(i); sor(a,b,w,x0); end运行结果分别为: y =1.00002.0000 1.0000 2.0000 1.0000 2.0000 n =13 y =1.00002.0000 1.0000 2.0000 1.0000 2.0000 n =241 y =1.00002.0000 1.0000 2.0000 1.0000 2.0000 n =175.用逆幂迭代法求⎪⎪⎪⎭⎫ ⎝⎛=111123136A 最接近于11的特征值和特征向量,准确到310-。
程序:function [mt,my]=maxtr(A,p,ep) n=length(A); B=A-p*eye(n); v0=ones(n,1); k=1; v=B*v0;while abs(norm(v,inf)-norm(v0,inf))>ep %norm(v-v0)>ep k=k+1;q=v;u=v/norm(v,inf) v=B*u; v0=q; endmt=1/norm(v,inf)+p my=u主界面中输入:A=[1 -2 -3]; maxtr(A,11,0.001) 结果为: 特征值: mt =11.0919特征向量: my =0.3845 -1.0000 0.73066.用经典R-K 方法求解初值问题(1)⎩⎨⎧-+-='++-='x x y y y x y y y sin 2cos 22sin 22212211,]10,0[∈x ,⎩⎨⎧==3)0(2)0(21y y ; 程序:function ydot=lorenzeq(x,y)ydot=[-2*y(1)+y(2)+2*sin(x);y(1)-2*y(2)+2*cos(x)-2*sin(x)] 以文件民lorenzeq.m 保存。
主窗口输入:[x,y]=ode45('lorenzeq',[0:10],[2;3]) 运行结果为: x =0 1 2 3 4 5 6 7 8 9 10 y =2.00003.0000 1.5775 1.2758 1.1802 -0.1457 0.2406 -0.8903 -0.7202 -0.6170 -0.9454 0.2971 -0.2745 0.9652 0.6589 0.7557 0.9901 -0.1449 0.4124 -0.9109 -0.5440 -0.8389 (2)⎩⎨⎧-+-='++-='x x y y y x y y y sin 999cos 999999998sin 22212211,]10,0[∈x ,⎩⎨⎧==3)0(2)0(21y y 。
和精确解⎩⎨⎧+=+=--xe x y xe x y xx cos 2)(sin 2)(21比较,分析结论。
程序:function ydot=lorenzeq1(x,y)ydot=[-2*y(1)+y(2)+2*sin(x);998*y(1)-999*y(2)+999*cos(x)-999*sin(x)]; 以文件名lorenzeq1.m 保存。