数值分析作业答案

合集下载

数值分析作业及参考答案

数值分析作业及参考答案

数值分析第一次作业及参考答案1. 设212S gt =,假定g 是准确的,而对t 的测量有0.1±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。

解:2**22211()0.122()0.10.2()1122,(),().r r e S S S gt gt gt e S gt e S t gt gt t e S e S =-=-====∴↑↑↓2. 设2()[,]f x C a b ∈且()()0f a f b ==,求证2''1max ()()max ().8a x ba xb f x b a f x ≤≤≤≤≤-解:由112,0),(,0)()()0()00.a b L x l x l x =⨯+⨯=(两点线性插值 插值余项为"111()()()()()()[,]2R x f x L x f x a x b a b ξξ=-=--∈ [,].x a b ∴∀∈有12211()()"()()()max "()[()()]221()()1max "()[]()max "().228a x ba xb a x b f x R x f x a x b f x x a b x x a b x f x b a f x ξ≤≤≤≤≤≤==--≤---+-≤=-21max ()()max "()8a xb a x b f x b a f x ≤≤≤≤∴≤-3. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1),(1)用Lagrange 插值求二次插值多项式。

(2)构造差商表。

(3)用Newton 插值求二次插值多项式。

解:(1)Lagrange 插值基函数为0(1)(2)1()(1)(2)(01)(02)2x x l x x x +-==-+-+-同理 1211()(2),()(1)36l x x x l x x x =-=+ 故2202151()()(1)(2)(2)(1)23631i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑(2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为0112155(1)[,]4,[,]20(1)12f x x f x x ---==-==-----0124(2)[,,]102f x x x ---==-22()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+4. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?解:()40000(),(),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及(3)200044343()()[(()]()[()]3!(1)(1)(1)(1)3!3!.(4,4).6f R x x x h x x x x h t t t e t h th t h e h e ξξ=----+-+≤+⋅⋅-=≤∈-则436((1)(1)100.006.t t t h --+±<< 在点 得5. 求2()f x x =在[a,b ]上的分段线性插值函数()h I x ,并估计误差。

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析作业答案

数值分析作业答案

. 证明:(1). 假如 A 是对称正定矩阵,则 A 1也是对称正定矩阵(2). 假如 A 是对称正定矩阵,则 A 能够独一地写成 A L T L ,此中 L 是拥有正对角元的下三角矩阵。

证明:(1). 因 A 是对称正定矩阵,故其特点值i皆大于 0 ,所以 A 1的特点值i 1也皆大于 0 。

因此i1也皆大于 0 ,故 A 是可逆的。

又(A 1)T(A T) 1 A 1则 A 1也是对称正定矩阵。

(2).由A是对称正定,故它的全部次序主子阵均不为零,进而有独一的杜利特尔分解~A LU 。

又u111u12u1nu11u11 u221u2 nU DU 0u22u nn1此中 D 为对角矩阵,U0为上三角矩阵,于是~ ~A L U LDU0由 A 的对称性,得~A A T U0T D L T由分解的独一性得U 0T ~ L进而~ ~A LDL T由 A 的对称正定性,假如设D i (i 1,2, ,n) 表示A的各阶次序主子式,则有d1 D1 0 , d i D i 0 , i 2,3, , nD i 1故d1 d1 d1d2 d2 d2 Dd n d n d n1 1D2D2所以~11~ ~1~1LL T,A LD2D2 L T LD2(LD2)T~1此中 L L D 2为对角元素为正的下三角矩阵。

. 用列主元消去法解线性方程组12 x1 3x2 3x3 1518 x1 3x2 x3 15x1 x2 x3 6并求出系数矩阵 A 的队列式(即 det A )的值。

解18 3 1 15 ( A b) r1 r2 12 3 3 151 1 1 62m2131m311818 3 1 15 0 1 7 / 375 m32 0 7 /6 17 /18 631/ 618 3 1 150 1 7 / 3 50 0 11/ 3 11所以解为 x3 3 , x2 2 , x1 1,det A 66 。

. 用追赶法解三对角方程组Ax b ,此中2 1 0 0 0 1 1 2 1 0 0 0 A012 1 0 , b 0 。

《数值分析》所有参考答案

《数值分析》所有参考答案
解:
等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)

当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)

当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时


, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得

,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]

数值分析练习题加答案(一)

数值分析练习题加答案(一)

数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。

因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。

二、求矩阵A 的条件数1)(A Cond (4分)。

其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。

数值分析课后部分习题答案

数值分析课后部分习题答案


x * = 2.00021 = 0.200021 × 101 ,即 m = 1
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 2 ; y* = 0.032 = 0.32 × 101 ,即 m = 1
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 ,Fra bibliotek2 2=
f [x1 , x2 ,⋯ , x n ]-f [ x0 , x1 ,⋯ , x n−1 ] g[ x1 , x2 ,⋯ , x n ] − g[ x0 , x1 ,⋯ , x n−1 ] + x n − x0 x n − x0
( x − 1)( x − 2)( x − 3) 1 =- ( x − 1)( x − 2)( x − 3) , (0 − 1)(0 − 2)(0 − 3) 6
x ( x − 2)( x − 3) 1 = x ( x − 2)( x − 3) , (1 − 0)(1 − 2)(1 − 3) 2 x( x − 1)( x − 3) 1 =- x( x − 1)( x − 3) , (2 − 0)(2 − 1)(2 − 3) 2 x( x − 1)( x − 2) 1 = x ( x − 1)( x − 2) , (3 − 0)(3 − 1)(3 − 2) 6

数值分析作业答案

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。

(1)用单项式基底。

(2)用Lagrange 插值基底。

(3)用Newton 基底。

证明三种方法得到的多项式是相同的。

解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。

数值分析课后习题答案

第一章习题解答1. 在下列各对数中,X 是精确值a的近似值(1) a=π,x=3.1 (2) a=1/7,x=0.143 (3) a=π/1000,x=0.0031 (4) a=100/7,x=14.3 试估计x 的绝对误差和相对误差。

解:(1) e=∣3.1-π∣≈0.0416, δr = e/∣x ∣≈0.0143 (2) e=∣0.143-1/7∣≈0.0143 δr = e/∣x ∣≈0.1 (3) e=∣0.0031-π/1000∣≈0.0279 δr = e/∣x ∣≈0.9 (4) e=∣14.3-100/7∣≈0.0143 δr = e/∣x ∣≈0.0012. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。

解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[-x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.497073. 设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

数值分析-课后习题答案

(2)如果A为对称正定矩阵,则Cond2(A)=1/n,1和n 分别为A的最大和最小特征值.
证明 (1)A正交,则ATA=AAT=E,Cond2(A)=A2A-12=1. (2)A对称正定,ATA=A2, A2=1. A-12=1/n.
精选课件
12
三.习题3 (第75页)
3-2.讨论求解方程组Ax=b的J迭代法和G-S迭代法的收
计算结果如下:
x x 1 2 ( (k k 1 1 ) ) 3 2 1 2 .x 5 2 (x k ) 1 (k 1 )
k
J法x1(k)
0
1.01
1
0.98
2
2.03
3
1.94
4
5.09
5
4.82
6
14.27
J法x2(k) 1.01 0.485 0.53 -1.045 -0.91 -5.635精选课件 -5.23
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
6
0.518889
3 4精1选 课件
1
1
5
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1

数值分析参考答案

1、确定参数p 、q 、r,使得迭代212512,,,...k k k kqa ra x px k x x +=++==(16分) 解:迭代方程225(),1,2,...qa ra x px k x xϕ=++== 2'3625(),qa ra x p x x ϕ=-- 2''47630(),qa ra x x x ϕ=+ 利用局部收敛性与收敛阶定理4知要使收敛的阶尽可能高,需满足'*''*()0()0x x ϕϕ== 又知 **()x x ϕ= 则可得到以下式子:22235027609qa ra p qa ++=--==......1 ......2 ......3 由以上三式可解得:2539p r a==- 收敛的阶数为3。

题外话:解这样比较复杂的方程组,不太适合手算,最好自己利用MATLAB 编写一个小程序:附带自编小程序:syms p q r a ;s1='sqrt(3)*p+(q*a)/3+(r*a^2)/(9*sqrt(3))=sqrt(3)';s2='p-(2*q*a)/(3*sqrt(3))-(5*r*a^2)/27=0';s3='(6*q*a)/9+(30*r*a^2)/(27*sqrt(3))=0';[p,q,r]=solve(s1,s2,s3,p,q,r)2、用MATLAB编程求著名的Van Der Pol 方程210()x x x x '''+-+= 的数值解并绘制其时间响应曲线和状态轨迹图(给出源程序)(14分)解:先建立一个函数文件fname.m :function xdot=fname(t,x)xdot=zeros(2,1);xdot(1)=(1-x(2)^2)*x(1)-x(2);xdot(2)=x(1);调用函数文件fname.m 求Van Der Pol 方程的数值解并绘制时间响应曲线和状态轨迹图:ts=[0 30]; %设置仿真时间30秒x0=[1;0]; %设置仿真初值[t,x]=ode45('fname',ts,x0);subplot(1,2,1),plot(t,x)subplot(1,2,2),plot(x(:,1),x(:,2))3、试确定常数A ,B ,C ,使得数值求积公式)1()()0()(110Cf x Bf Af dx x f ++≈⎰具有尽可能高的代数精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有
式中
令得
插值点个数
是奇数,故实际可采用的函数值表步长
8、,求及。
解:由均差的性质可知,均差与导数有如下关系:
所以有:
15、证明两点三次Hermite插值余项是
并由此求出分段三次Hermite插值的误差限。
证明:利用[xk,xk+1]上两点三次Hermite插值条件
数值分析作业答案
插值法
1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange插值基底。
(3)用Newton基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底
设多项式为:,
所以:
所以f(x)的二次插值多项式为:
(2)用Lagrange插值基底
(3)
18、用三点公式求在处的导数值,并估计误差。的值由下表给出:
1.01.11.2
0.25000.22680.2066
解:三点求导公式为
取表中,分别将有关数值代入上面三式,即可得导数近似值。
由于
从而可求得误差上限与导数值如下:
X1.01.11.2
三点公式-0.247-0.217-0.187
误差0.00250.001250.0025
综合以上过程有:
确定误差限:
记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。
在区间[xk,xk+1]上有
而最值
进而得误差估计:
16、求一个次数不高于4次的多项式,使它满足,,。
解:满足,的Hermite插值多项式为
设,令得
于是
第3章曲线拟合的最小二乘法
16、观测物体的直线运动,得出以下数据:
解得。所求公式至少具有2次代数精确度。又由于
故具有3次代数精确度。
(2)
分别代入公式两端并令其左右相等,得
解得:
令得
令,得
故求积分公式具有3次精确度。
(3)
当时,易知有
令求积分公式对准确成立,即
则解得或
将代入已确定的积分公式,则
故所求积分式具有2次代数精确度。
(4)
当时,有
故令时求积公式准确成立,即
(1);
(2);
(3)。
解:(1)
00.7717433
1
0.72806990.7135121
2
0.71698280.71328700.7132720
3
0.71420020.71327260.71327170.7132717
(2)
03.4513132*10-6
18.6282830*10-7-4.4469230*10-21
Lagrange插值多项式为:
所以f(x)的二次插值多项式为:
(3)用Newton基底:
均差表如下:
xkf(xk)一阶均差二阶均差
10
-1-33/2
247/35/6
Newton插值多项式为:
所以f(x)的二次插值多项式为:
由以上计算可知,三种方法得到的多项式是相同的。
6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少?
(1)考察用雅可比迭代法,高斯-塞德迭代法解此方程组的收敛性;
(2)用雅可比迭代法,高斯-塞德迭代法解此方程组,要求当时迭代终止。
解:(1)因系数矩阵按行严格对角占优,故雅可比迭代法与高斯-塞德迭代法均收敛。
(2)雅可比迭代法格式为
取,迭代到17次达到精度要求
高斯-塞德迭代格式为
取,迭代到8次达到精度要求
从而有
(2)右矩形公式,同(1),将f(x)在b点处展开并积分,得
(3)中矩形分式,将在处展开,得
两边积分并用积分中值定理,得
6、若分别使用复合梯形公式和复合辛普森公式计算积分,问区间应分多少等份才能使截断误差不超过。
解:由于
由复合梯形公式的余项有:
解得可取
由辛普森公公式的余项有:
解得可取
8、用龙贝格求积方法计算下列积分,使误差不超过
理论解-0.25-0.2159594-0.1878287
数值积分法,令,由
对积分采用梯形公式,得
令k=0,1,得
同样对

从而有
代入数值,解方程,即得如下
X1.01.11.2
三点公式-0.247-0.217-0.187
误差-0.25-0.2159594-0.1878287
理论解-0.25-0.2159594-0.1878287
知有二重零点xk和k+1。设
确定函数k(x):
当或xk+1时k(x)取任何有限值均可;
当时,,构造关于变量t的函数
显然有
在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得
在,,上对使用Rolle定理,存在,和使得
再依次对和使用Rolle定理,知至少存在使得
而,将代入,得到
推导过程表明依赖于及x
i012345
时间t/s00.91.93.03.95.0
距离s/m010305080110
求运动方程。
解:经描图发现t和s近似服从线性规律。故做线性模型,计算离散内积有:

求解方程组得:

运动方程为:
平方误差:
17、已知实验数据如下:
i01234
Xi1925313844
Yi19.032.349.073.397.8
第5章解线性方程的直接方法
7、用列主元消去法解线性方程组
并求出系数矩阵A的行列式的值。
8、用直接三角分解求线性方程组的解。
解:由公式

2
-36
12、设,计算A的行范数,列范数,2-范数及F-范数。
解:
13、求证:(1);(2)
证明:(1)由定义知
(2)由范数定义,有

第6章解线性方程的迭代法
1、设线性方程组
第七章
第八章
第九章
用最小二乘法求形如的经验公式,并计算均方差。
解:,计算离散内积有:

求解方程组得:

所求公式为:
均方误差:
第4章数值积分与数值微分
1、确定下列求积分公式中的待定参数,使其代数精度尽量高,并其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:
(1);
(2);
(3);
(4)。
解:(1);
将分别代入公式两端并令其左右相等,得
解得。
将代入上述确定的求积分公式,有
故所求积公式具有3次代数精确度。
2、分别用梯形公式和辛普森公式计算下列积分:
(1)
(2)
(3)
解(1)复化梯形公式,
复化辛普森公式,
(2),
(3),
5、推导下列三种矩形求积公式:



解:(1)左矩形公式,将f(x)在a处展开,得
两边在[a,b]上积分,得
由于x-a在[a,b]上不变号,故由积分第二中值定理,有
相关文档
最新文档