沪科版七年级下学期数学竞赛测试卷含答案)
七年级下册数学竞赛题沪科版

沪 科 版 七 年级 数 学 下 学 期1.考试时间120分钟;2.满分150分。
一、选择题1.如果有理数a 、b 、c 满足关系a <b <0<c ,那么代数式32c ab ca bc -的值为:( )。
(A )必为正数 (B )必为负数 (C )可正可负 (D )可能为0 2.() 8008160061400413003120021=-+++。
(A )60061 (B )70071- (C ) 80081 (D )90091- 3.350,440,530的大小关系为( )。
(A )350<440<530 (B )530<350<440 (C )530<440<350 (D )440<530<350 4.对于任意实数a, b, c, d, 定义有序实数对(a, b )与(c, d)之间的运算 “△”为:(a, b )△(c, d )=(ac+bd, ad+bc )。
如果对于任意实数u, v, 都有(u, v )△(x, y )=(u, v ),那么(x, y )为:( )。
(A )(0, 1) (B)(1, 0) (C)(﹣1, 0) (D)(0, ﹣1) 5 5.a 是有理数,则112000a +的值不能是( ). (A)1 (B)-1 (C) -2000 (D) 0 6.已知n 是整数,现有两个代数式:(1)2n +3,(2)14-n ,其中能表示“任意奇数”的( ). (A ).只有(1) (B ).只有(2) (C ).有(1)和(2) (D ).一个也没有 7.如果不等式1>ax 的解集是a x 1<,则( ) (A )、0≥a (B )、0≤a (C )、0>a (d )、0<a 8.QQ 空间是一个展示自我和沟通交流的网络平台.它既是网络日记本,又可以上传图片、视频等.QQ 空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11 级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是 490……若某用户的空间积分达到1000,则他的等级是( ) (A )18 (B).17 (C).16 (D).15 9.正整数n 小于100,并且满足等式n n n n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡632,其中[ x ]表示不超过x 的最大整数,这样的正整数n 为( )个.(A )2 (B )3(C )12 (D )16 10.设3333991312111+⋅⋅⋅+++=S ,则S 的整数部分等于( ) (A )1 (B )2 (C )3 (D )4二、填空与解答:(每小题5分,共50分)班级:---------------------- 姓名:--------------------11.计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-120111201011151411131211 的结果是 。
沪科版七年级数学下册期末测试卷-带参考答案

沪科版七年级数学下册期末测试卷-带参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.下列各数是无理数的是()A.2 024 B.0 C.227 D. 32.某细胞的直径约为0.000 006 m,将数据0.000 006用科学记数法表示为() A.6×10-6B.0.6×10-5 C.6×10-7 D. 6×10-53.下列运算正确的是()A.(a4)3=a7B.a6÷a3=a2C.(3a-b)2=9a2-b2D.-a4·a6=-a104.下列各选项中正确的是()A.若a>b,则a-1<b-1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若a|c|>b|c|,则a>b5.下列因式分解正确的是()A. a2-2a+1=a(a-2)+1B. a2+b2=(a+b)(a-b)C. a2+4ab-4b2=(a-2b)2D. -ax2+4ax-4a=-a(x-2)26.已知a+b=5,ab=3,则ba+ab的值为()A.6 B.193 C.223D.87.如图,不能说明AB∥CD的有()①∠DAC=∠BCA;②∠BAD=∠CDE;③∠DAB+∠ABC=180°;④∠DAB=∠DCB.A. 1个B. 2个C. 3个D. 4个(第7题)8.如图,直线l1∥l2,AB⊥CD,∠1=22°,那么∠2的度数是()(第8题)A .68°B .58°C .22°D .28°9.若关于x 的不等式组⎩⎪⎨⎪⎧x2-1<2-x 3,a -3x ≤4x -2有且仅有3个整数解,且关于y 的方程a -y 3=2a -y5+1的解为负整数,则符合条件的整数a 的个数为( ) A .1B .2C .3D .410.我国宋朝数学家杨辉提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的有关规律.(第10题)例如: (a +b )0=1; (a +b )1=a +b ; (a +b )2=a 2+2ab +b 2; (a +b )3=a 3+3a 2b +3ab 2+b 3; (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4; ……请你猜想(a +b )9的展开式中所有系数的和是( ) A .2 048B .512C .128D .64二、填空题(本大题共4小题,每小题5分,共20分) 11.181的算术平方根为________.12.已知a 2-2a -3=0,则代数式3a (a -2)的值为________.13.将两个直角三角尺按如图的方式放置,点E 在AC 边上,且ED ∥BC ,∠C第 3 页 共 10 页=30°,∠F =∠DEF =45°,则∠AEF =______.(第13题)14.观察下列方程和它们的解:①x +2x =3的解为x 1=1,x 2=2;②x +6x =5的解为x 1=2,x 2=3;③x +12x =7的解为x 1=3,x 2=4.(1)按此规律写出关于x 的第n 个方程为________________________; (2)(1)中方程的解为__________________. 三、(本大题共2小题,每小题8分,共16分) 15.计算:-12+|-2|+3-8+(-3)2.16.解不等式组:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),x +13<x -x -12.四、(本大题共2小题,每小题8分,共16分) 17. 先化简,再求值:⎝ ⎛⎭⎪⎫1-1a +1÷2a a 2-1,其中a =-3.18.已知5a +2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a -b +c 的平方根.五、(本大题共2小题,每小题10分,共20分) 19.在如图所示的网格中,画图并填空:(1)画出三角形ABC 向右平移6个小格得到的三角形A 1B 1C 1; (2)画出三角形A 1B 1C 1向下平移2个小格得到的三角形A 2B 2C 2;(3)如果点M 是三角形ABC 内一点,点M 随三角形ABC 经过(1)、(2)两次平移后得到的对应点是M 2,那么线段MM 2与线段AA 2的位置关系是________.(第19题)20.已知点A,B在数轴上所对应的数分别为mx-7,x-87-x,若A,B两点在原点的两侧且到原点的距离相等.(1)当m=2时,求x的值;(2)若不存在满足条件的x的值,求m的值.六、(本题满分12分)21.如图,已知∠EDC=∠GFD,∠DEF+∠AGF=180°.(1)请判断AB与EF的位置关系,并说明理由;(2)过点G作线段GH⊥EF,垂足为H,若∠DEF=30°,求∠FGH的度数.(第21题)第5 页共10 页七、(本题满分12分)22.实践与探索:如图①,边长为a的大正方形里有一个边长为b的小正方形,把图①中的阴影部分通过剪切拼成一个长方形(如图②所示).(第22题)(1)上述操作能验证的等式是:__________.(填“A”“B”或“C”)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)请应用这个等式完成下列各题:①已知4a2-b2=24,2a+b=6,则2a-b=________.②计算:9×(10+1)(102+1)(104+1)(108+1)(1016+1).八、(本题满分14分)23.已知直线PQ∥MN,把一个三角尺(∠A=30°,∠C=90°)按如图①的方式放置,点D,E,F是三角尺的边与平行线的交点.(1)①∠PDC,∠MEC,∠BCE之间有怎样的数量关系?请说明理由;②若∠AEN=∠A,则∠BDF=________;(2)将图①中的三角尺进行适当转动,得到图②,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求∠BDF∠GEN的值.(第23题)第7 页共10 页答案一、1.D 2.A 3.D 4.D 5.D 6.B 7.C 8.A9.C 思路点睛:解不等式组得⎩⎪⎨⎪⎧x <2,x ≥a +27.根据不等式组有且仅有3个整数解得到a 的取值范围.再解方程a -y 3=2a -y 5+1得y =-a +152.根据解为负整数,得到另一个a 的取值范围.再取两个a 的取值范围的公共部分即可. 10.B二、11.13 12.9 13.165° 14.(1)x +n (n +1)x=2n +1 (2)x 1=n ,x 2=n +1三、15.解:原式=-1+2+(-2)+3=-1+2-2+3=2. 16.解:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),①x +13<x -x -12,② 解不等式①,得x ≤5.解不等式②,得x >-1. 所以不等式组的解集为-1<x ≤5.四、17.解:原式=⎝ ⎛⎭⎪⎫a +1a +1-1a +1÷2a(a +1)(a -1)=a a +1·(a +1)(a -1)2a =a -12.当a =-3时,原式=-3-12=-2.18.解:因为5a +2的立方根是3, 3a +b -1的算术平方根是4,所以5a +2=27,3a +b -1=16.所以a =5,所以3×5+b -1=16,所以b =2.因为c 是13的整数部分,3<13<4,所以c =3.所以3a -b +c =3×5-2+3=16.所以3a -b +c 的平方根是±4. 五、19.解:(1)如图,三角形A 1B 1C 1即为所作.(2)如图,三角形A 2B 2C 2即为所作.(第19题) (3)平行20.解:(1)根据题意,得mx-7+x-87-x=0.把m=2代入,得2x-7+x-87-x=0,解得x=10.经检验,x=10是分式方程的解.所以x=10.(2)将mx-7+x-87-x=0化为整式方程为m-(x-8)=0.根据题意,得x-7=0,所以x=7.把x=7代入m-(x-8)=0,得m-(7-8)=0,解得m=-1.六、21.解:(1)AB∥EF,理由:因为∠EDC=∠GFD,所以DE∥GF,所以∠DEF=∠GFE.因为∠DEF+∠AGF=180°,所以∠GFE+∠AGF=180°,所以AB∥EF.(2)如图,因为GH⊥EF,所以∠GHF=90°.因为∠GFE=∠DEF=30°所以∠FGH=180°-∠GHF-∠GFE=180°-90°-30°=60°.(第21题)七、22.解:(1)A(2) ①4②9×(10+1)(102+1)(104+1)(108+1)(1016+1)=(10-1)(10+1)(102+1)(104+1)(108+1)(1016+1)第9 页共10 页=(102-1)(102+1)(104+1)(108+1)(1016+1)=(104-1)(104+1)(108+1)(1016+1)=(108-1)(108+1)(1016+1)=(1016-1)(1016+1)=1032-1.八、23.解:(1)①∠BCE=∠PDC+∠MEC.理由:过点C向右作CH∥PQ,所以∠PDC=∠DCH.因为PQ∥MN,所以CH∥MN所以∠MEC=∠ECH所以∠BCE=∠DCH+∠ECH=∠PDC+∠MEC.②60°(2)设∠CEG=∠CEM=x,则∠GEN=180°-2x.由(1)可得∠PDC+∠MEC=∠BCE=90°所以∠CDP=90°-∠CEM=90°-x所以∠BDF=90°-x.所以∠BDF∠GEN=90°-x180°-2x=12.。
最新七年级下册数学竞赛题沪科版优秀名师资料

七年级下册数学竞赛题沪科版第一教育沪科版七年级数学下学期1.考试时间120分钟;2.满分150分。
一、选择题bc,ca 1(如果有理数a、b、c满足关系a,b,0,c,那么代数式的值为:( )。
23abc(A)必为正数 (B)必为负数 (C)可正可负 (D)可能为0111112(。
,,,,,,, 200230034004600680081111(A) (B) (C) (D) ,,60067007800890095040303(3,4,5的大小关系为( )。
504030 305040 (A)3,4,5(B)5,3,4304050403050(C)5,4,3 (D)4,5,3 4(对于任意实数a, b, c, d, 定义有序实数对(a, b)与(c, d)之间的运算“?”为:(a, b)?(c, d),(ac+bd, ad+bc)。
如果对于任意实数u, v,(u, v),那么(x, y)为:( )。
都有(u, v)?(x, y),(A)(0, 1) (B)(1, 0) (C)(,1, 0) (D)(0, ,1)115 5.a是有理数,则的值不能是( ). a,2000(A)1 (B)-1 (C) -2000 (D) 06(已知n是整数,现有两个代数式:(1)2n+3,(2),其中能表示“任意奇数”的4n,1( )((A).只有(1) (B).只有(2)(C).有(1)和(2) (D).一个也没有17(如果不等式ax,1的解集是,则( ) x,aa,0(A)、 (B)、a,0 (C)、a,0 (d)、a,08(QQ空间是一个展示自我和沟通交流的网络平台(它既是网络日记本,又可以上传图片、视频等(QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级(当用户在10级以上,每个等级与对应的积分有一定的关系(现在知道第10级的积分是90,第11 级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490……若某用户的空间积分达到1000,则他的等级是( ) (A)18 (B).17 (C).16 (D).15nnn,,,,,,,,,n9(正整数n小于100,并且满足等式,其中[ x ]表示不超过x的最大整数,这样的正整班级:---------------------- 姓名:-------------------- ,,,,,,236,,,,,,数n为( )个((A)2 (B)3 (C)12 (D)161111S,,,,,,,,10(设,则S的整数部分等于( ) 333312399(A)1 (B)2 (C)3 (D)4二、填空与解答:(每小题5分,共50分)追求卓越,成功会在不经意间追上你 1第一教育111111,,,,,,,,,,,,1,,11,,1?1,,111(计算:的结果是。
上海初一初中数学竞赛测试带答案解析

上海初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.六位数由三位数重复构成,如256256,或678678等等,这类数能被何数整除(15届江苏初一2试)六位数六位数A.11;B.101;C.13;D.1001.2.两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是A.75分;B.74分;C.72分;D.77分.3.一个数被10除余9,被9除余8,被8除余7,…,被2除余1,则此数为A.59 ;B.1259;C.2519;D.非以上结论.4.0.000000375与下列数不等的是A.;B.;C.;D..5.若1+2+3+…+k之和为一完全平方,若n小于100,则k可能的值为A.8;B.1,8 ;C.8,49;D.1,8,49.6.若,则z等于(15届江苏初二1试)若A.;B.;C.;D..7.一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
则n最小为A.7;B.9;C.10 ;D.11.8.如表所示,则x与y的关系式为()+x+1C.y=(x2+x+1)(x-1) D.非以上结论9.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A.1 ;B.2;C.3;D.4.二、填空题1.计算: .2.(17届江苏初一1试)计算等式,式中的应为 .3.三个连续的自然数的最小公倍数是168,那么这三个自然数的和等于 .4.将1,2,3,…,49,50任意分成10组,每组5个数,在每组中取数值居中的那个数为“中位数”,则这10个中位数的最大值是 .5.(15届江苏初一1试)时钟在2点时,分针与时针所夹的角为60°.从0时到3时,会有个时刻,分针与时针也能构成60°的角.6.图中阴影部分占(15届江苏初二1试)图中图形的(填几分之几).7.如图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长为1,则这个六边形的周长是 (17届江苏初一1试)如图如 .8.已知,点O在三角形内,且,则的度数是(17届江苏初一1试) 度.9.(17届江苏初三)在在在4点钟与5点钟之间,分钟与时钟成一条直线,那么此时时间是 .10.(15届江苏初一1试)一条一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k (k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.上海初一初中数学竞赛测试答案及解析一、选择题1.六位数由三位数重复构成,如256256,或678678等等,这类数能被何数整除(15届江苏初一2试)六位数六位数A.11;B.101;C.13;D.1001.【答案】D【解析】析:六位数由三位数重复构成,说明这类数一定能被此三位数整除,不妨用构成的六位数除以三位数得到的数即所求的数.解答:解:256256÷256=1001,678678÷678=1001,设三位数abc,则重复构成的六位数为abcabc,abcabc÷abc=1001.故选D.点评:此题考查了学生对数的整除性问题的解答与掌握,此题解答的关键是用构成的六位数除以三位数得出要求的数.2.两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是A.75分;B.74分;C.72分;D.77分.【答案】B【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:根据题意得:该组数据的平均数==74.故选B.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80,70这四个数的平均数,对平均数的理解不正确.3.一个数被10除余9,被9除余8,被8除余7,…,被2除余1,则此数为A.59 ;B.1259;C.2519;D.非以上结论.【答案】C【解析】分析:这个最小正整数加上1是2、3、4、5、…10的最小公倍数,求得最小公倍数减1即可求得答案.解答:解:由题意可知所求最小正整数是2,3,4,5,…,10的最小公倍数减去1,2,3,4,5,…,10的最小公倍数是实际就是7,8,9,10的最小公倍数为2520,则所求最小数是2520-1=2519.故选C.点评:此题考查了带余数除法,主要利用求几个数的最小公倍数的方法解决问题.4.0.000000375与下列数不等的是A.;B.;C.;D..【答案】D【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.注意小数和分数相互间的转化.解答:解:0.000 000 375=3.75×10-7=3×10-7=≠.故选D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若1+2+3+…+k之和为一完全平方,若n小于100,则k可能的值为A.8;B.1,8 ;C.8,49;D.1,8,49.【答案】D【解析】分析:本题直接求解难度较大,故采用代入法,间接验证.解答:解:∵1+2+3+…+k=k(k+1)∴k(k+1)=n2,当k=1时,则k(k+1)=1,n=1,显然成立.当k=8时,则k(k+1)=36,此时n=6,成立;当k=49时,则k(k+1)=25×49,n=35,成立.故答案为D.点评:本题考查完全平方数.同学们对于做选择题目,采用将选项代入验证的方法,有时候起到事半功倍的效果,本题就是这样,如直接求解,难度非常大,这样求解简单多了.6.若,则z等于(15届江苏初二1试)若A.;B.;C.;D..【答案】D【解析】略7.一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
(完美版)沪科版七年级下册数学期末测试卷及含答案(配有卷)

沪科版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD于点G.若∠CFE=120°,则∠BEG的大小为()A.20°B.30°C.60°D.120°2、下列运算正确的是()A.5a 2+3a 2=8a 4B.a 3•a 4=a 12C.(a+2b)2=a 2+4b 2D.(a-b)(-a-b)=b 2-a 23、下列计算正确的是()A.x 2+x 2=x 5B.x 2•x 3=x 6C.x 3÷x 2=xD.(2x 2)3=6x 64、已知成立,则k的值为()A.3B.-3C.-6D.65、如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B. (-,)C.(,-)D. (,- )6、若分式有意义,则应满足的条件是()A. B. C. D.7、下列说法中,不正确的是()。
A.0的平方根是0B.-4的平方根是-2C.1的立方根是1D.-8的立方根是-28、(3a+2)(4a2-a-1)的结果中二次项系数是( )A.-3B.8C.5D.-59、将展开后,项的系数为()A.1B.2C.3D.410、下列运算正确的是()A. B.|﹣3|=3 C. D.11、下列运算不正确的是()A.x 6÷x3=x 3B.(﹣x 3)4=x 12C.x 2•x 3=x 5D.x 3+x 3=x 612、若,则等于()A. B. C. D.13、不改变分式的值,把它的分子与分母中各项的系数化为整数,其结果正确的是( )A. B. C. D.14、下列各数中,最小的数是()A.-lB.0C.1D.15、李刚同学在黑板上做了四个简单的分式题:①(﹣3)0=1;②a2÷a2=a;③(﹣a5)÷(﹣a)3=a2;④4m﹣2=.其中做对的题的个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,一副三角板GEF和HEF按如图所示放置,过E的直线AB与过F的直线CD相互平行,若∠CFG=72°,则∠BEH=________°.17、比较大小:________ .18、分解因式:m2+2m=________.19、已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为________.20、方程x²=2x的根为________。
沪科版七年级(下)期末数学试卷含答案

4321D CBA 21abc初中七年级数学试卷1.如果a 的平方根是4±= .2.一种病毒的直径是0.000 000 12m ,用科学计数法表示为 m.3. 比较大小:1.4. 关于x 的某个不等式组的解集在数轴上表示为:(如下图)则原不等式组的解集是 .5.不等式组1023x x +≥⎧⎨+<⎩的整数解是 .6. 若∠1和∠2是对顶角,∠1=25°,则∠2的余角是 °.7. 分解因式:34m m -= .8. 如下图,直线a 、b 被直线c 所截,且a ∥b ,若∠2=38°,则∠1的度数是 °.9. 当x 时,分式24xx -有意义. 10. 某住宅小区5月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区5月份的总用水量约是 吨.二 选择题(每小题3分)11. 已知,如右图AB ∥CD ,可以得到 ( ) A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4 12. 在223.14,,7π这五个数中,无理数的个数是 ( )342ab1A. 1个B. 2个C. 3个D. 4个13. 已知a b <则下列各式正确的是 ( )A. a b <-B. 33a b ->-C. 22a b <D. 33a b ->-14. 下列计算中,正确的个数是 ( )①347x x x += ②33623y y y ⋅= ③ 538()()a b a b ⎡⎤+=+⎣⎦④2363()a b a b = A. 1个 B.2个 C.3个 D. 4个15. 32-与32 的关系是 ( ) A. 互为倒数 B.绝对值相等 C. 互为相反数 D. 和为零 16. 下列各式中,正确的是 ( )A. 22a b a b a b +=++B. 1a b a b --=-+C.1a ba b--=-- D. 22a b a b a b -=-- 17. 下列多项式能用完全平方公式分解因式的有 ( )A .222x x y +- B. 2469x x -+ C. 22x xy y ++ D. 22293x xy y -+18. 如图,下列不能判定a ∥b 条件是 ( ) A.∠1=∠3 B.∠2+∠3=180° C.∠2=∠3 D. ∠2=∠419. 为了考察某班学生的身高情况,从中抽出20名学生进行身高测量,下列说法中正确的是 ( ) A. 这个班级的学生是总体 B. 抽取的20名学生是样本 C. 抽取的每一名学生是个体 D. 样本容量是2020.下列图形中,是由①仅通过平移得到的是 ( )B. C.A. ①(18题图)密 封 线 内 不 要 答 题D.三 解答题(40分)21. 解不等式组,并把其解集在数轴上表示出来(6分)211841x x x x ->+⎧⎨+<-⎩22. 先化解,再求值(8分)2131()111x x x x +-÷+-- ,其中 1x =24. 某校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也住不满,问有多少间宿舍,多少名女生?(8分)25.某车间加工300个零件,在加工完成60个以后,由于改进操作方法,每天加工的零件是原来的2倍,前后共用30天完成了任务,那么改进操作方法后每天加工多少个零件?(8分)参考答案一 填空(每小题3分,共30分)1. 42. 71.210-⨯3. <4. 23x -<≤5. 1,0x x =-=6. 657. (21)(21)m m m +-8. 1429. 2x ≠± 10. 992 二 选择(每小题3分,共30分) 三 解答题(40分)22.解:…………(3分)………………(5分) …………………… (6分)当 1x =时,原式=4211-=-+ ………………………(8分)24. 解:设有x 间宿舍,则女生数为(55)x +人,根据题意得 (1分)55358(1)55x x x +<⎧⎨->+⎩………………………………………(5分) 解得 1463x << ………………………………………(6分) 因为房间数为整数,所以5x =,(55)30x += ………(7分) 答:有5间宿舍,30名女生. ……………………(8分)25.解:设改进方法后每天加工的零件数为x ,则改进方法前每天加工的零件数为12x ,根据题意得 ……………………………(1分)12603006030xx-+= ……………………………(5分) 解这个分式方程得12x = ……………………………(6分) 经检验 ,12x =是原方程的根 ……………………………(7分) 答:改进方法后每天加工零件12个. …………………………(8分)2131()11113()(1)(1)(1)(1)(1)4(1)(1)(1)41x x x x x x x x x x x x x x x +-÷+---+=-⨯-+-+--=⨯-+-=-+。
七年级数学竞赛试卷沪科版

一、选择题(每题5分,共25分)1. 下列各数中,属于有理数的是()A. $\sqrt{2}$B. $\pi$C. $-3.14$D. $\frac{1}{2}$2. 若$a$、$b$、$c$为等差数列,且$a+b+c=0$,则$3a+5b+c$的值为()A. $0$B. $3$C. $-3$D. 无法确定3. 下列函数中,在其定义域内单调递增的是()A. $y=x^2$B. $y=-x^2$C. $y=x^3$D. $y=-x^3$4. 在$\triangle ABC$中,$a=3$,$b=4$,$c=5$,则$\cos A$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{5}{4}$5. 下列各图中,能够通过平移、旋转、翻折得到的是()A.B.C.D.二、填空题(每题5分,共25分)6. 已知数列$\{a_n\}$中,$a_1=1$,$a_n=2a_{n-1}+1$,则$a_5$的值为______。
7. 若$a$、$b$、$c$、$d$为等比数列,且$a+b+c+d=20$,$ab+ac+ad+bc+bd+cd=40$,则$abc$的值为______。
8. 若函数$f(x)=2x+1$,则$f(3)$的值为______。
9. 在$\triangle ABC$中,$a=5$,$b=7$,$c=8$,则$\sin B$的值为______。
10. 已知直线$y=2x+1$与直线$y=-x+3$的交点坐标为______。
三、解答题(每题10分,共30分)11. 已知数列$\{a_n\}$中,$a_1=2$,$a_n=2a_{n-1}-1$,求证:数列$\{a_n\}$是等比数列。
12. 已知函数$f(x)=x^2-4x+3$,求函数$f(x)$的最小值。
13. 在$\triangle ABC$中,$a=3$,$b=4$,$c=5$,求$\sin A$的值。
沪科版2022-2023学年七年级数学下册素养试卷(竞赛)

沪科版2022-2023学年七年级数学下学期素养竞赛试卷满分:100分 ,时间:90分钟一、选择题(每小题4分,共32分)题号 1 2 3 45 6 7 8 答案1.若a+b<0,b>0,则a 、-a 、b 、-b 的大小关系是( )A. a<-b <b< -aB.-b<a<-a<bC.a<-b <-a<bD.-b<a<b<-a2.在数轴上任取一条长度为 2021 的线段,则这条线段最多能覆盖的整数点有( )个A.2020B. 2021C. 2022D. 20193.设k 是正整数,且0=+b ka ,则21-+-a bb a 值为( ) A. 3 B.2 C.k 23+ D.k2-24.分式xyyx 22+中,x ,y 同时扩大 5 倍,那么分式的值( )A. 不变B. 扩大5倍C. 缩小5倍D. 无法计算5.若63=a ,29=b ,则=-b a 223( ) A.34 B. 32 C. 18 D. 96.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且BC 31=CF ,则长方形ABCD 的面积是阴影部分面积的( )倍。
A.2 B. 3 C. 4 D. 57. 若5=+b a ,且1522=+b a ,则=b a -( ) A. 5± B. 5± C. 5 D. 158.如图所示,分别延长∆ABC 的三边AB 、BC 、CA 至 A'、B'、C',使得 AA'=3AB 、 BB'=3BC 、CC'=3AC 。
若1S ABC =∆,则 ='''∆C B A S ( ) A.18 B. 19 C. 24 D. 27(6题)(7题)二、填空题(每小题5分,共20分)9.数轴上A 点到原点的距离是3,B 点到原点的距离是4,则线段AB = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二中实验学校七年级下学期数学竞赛试卷(初赛)2008-5-13一、选择题(每小题5分,共50分)1. 下列各式计算正确的是( )A .93=±B . 93±=C .2(3)3-=D . 244-=2. 去年“五一”黄金周,我省实现社会消费的零售总额约为94亿元.若用科学记数法表示,则94亿可写为( )A . 0.94×109B . 9.4×108C . 9.4×107D . 9.4×109 3.某商店出售一种商品每件可获利m 元,利润率为20℅(利润率=-售价进价进价).若这种商品的进价提高25℅,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( )A . 25℅B . 20℅C . 16℅D . 12.5℅4.如图,是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为( )A .4B .6C .12D .155.如果线段5AB cm =,3BC cm =,那么A 、C 两点间的距离为( )A . 8cmB . 2cmC . 2cm 或 8cmD . 无法确定6. 若26x ->,则不等式的解集为( )A . 8x >B .4x <-C . 8x >±D . 以上都不对7.若a ,b 均为正整数,且2a b >,210a b +=,则b 的值为( )A . 2或4B .2或4或6或8C .2或4或6D . 一切偶数8.计算231()2a b -的结果正确的是( ) A . 4314a b B . 4318a b C . 6318a b - D . 5318a b - 9.若10a -<<,那么代数式(1)(1)a a a -+的值一定是( )A .负数B .正数C .非负数D .正负数不能确定10.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数; ③负数没有立方根;④17-是17的平方根.其中正确的有( )A . 0个B . 1个C . 2个D . 3个二、填空题(每小题5分,共50分)11. x 与y 的立方的差不小于x 与y 和的一半,用不等式表示为 .12. 用科学记数法表示数0.0000000280.005⨯= .13.一个矩形,两边长分别为xcm 和10cm ,如果它的周长小于80cm ,面积大于2100cm ,则x 的取值范围是 .14.若25a b =,则分式324a b a b -+的值为 . 15. 方程29(3)250x +-=的解为 .16. 分解因式222222()8x y x y +-= . 17. 如果不等式组217x m x m>+⎧⎨>-⎩的解集是7x m >-,则满足条件的m 的最大值是 .18. 若2y =,则22x y += .19. 已知x y +=14xy =,则x y -= .20. 若210x x +-=,则3222007x x ++= .三、解答题(21题至26题每小题5分,27题、28题每小题10分)21.计算 11+.(5分)22.解不等式 232x -≤,并在数轴上表示解集. (5分)23.若2222440a ab b a -+++=,求22a b ab a b ++的值. (5分)24. 先化简,后求值:(5分)2222(69)(3)(49)(23)m mn n n m m n m n -+-÷---÷- 其中1,1m n =-=.25. 若2510a b ==,请你比较a b +与ab 的大小关系,并加以说明. (5分)26. 已知20082000a x =+,20082001b x =+,20082002c x =+,请你求出多项式222a b c ab bc ca ++---的值. (5分)27. 某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆.经了解:甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案. (5分)(2)如果甲、乙两种汽车每辆的租金分别为2000元和1800元,请你选择最省钱的一种租车方案. (5分)28. 已知x 、y 、z 为3个非负实数,且满足325x y z ++=,2x y z +-=,若2S x y z =+-,请你求出S 的最大值和最小值. (10分)二中实验学校七年级下学期数学竞赛试卷(初赛)答案2008-5二、选择题(每题4分,共40分)1. 下一列各式正确的是( C )A .93=±B . 93±=C .2(3)3-=D . 244-=2. 今年“五一”黄金周,我省实现社会消费的零售总额约为94亿元.若用科学记数法表示,则94亿可写为( B )A . 0.94×109B . 9.4×108C . 9.4×107D . 9.4×1093.某商店出售某种商品每件可获利m 元,利润率为20℅(利润率=-售价进价进价).若这种商品的进价提高25℅,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为(C )A . 25℅B . 20℅C . 16℅D . 12.5℅4.如图,是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为(B )A .4B .6C .12D .155.如果线段5AB cm =,3BC cm =,那么A 、C 两点间的距离为( C )A . 8cmB . 2cmC . 2cm 或 8cmD . 无法确定6. 若26x ->,则不等式的解集为(D )A . 8x >B .4x <-C . 8x >±D . 以上都不对7.若,a b 均为正整数,且2a b >,210a b +=,则b 的值为( A )A . 2或4B .2或4或6或8C .2或4或6D . 一切偶数8. 计算231()2a b -的结果正确的是( C ) A . 4314a b B . 4318a b C . 6318a b - D . 5318a b - 9.若10a -<<,那么代数式(1)(1)a a a -+的值一定是( A )A .负数B .正数C .非负数D .正负数不能确定10.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数; ③负数没有立方根;④17-是17的平方根.其中正确的有( B )A . 0个B . 1个C . 2个D . 3个二、填空题(每题5分,共50分)11. x 与y 立方的差不小于x 与y 和的一半,用不等式表示为 31()2x y x y -≥+. 12. 用科学记数法表示数0.0000000280.005⨯是 101.410-⨯ .13.一个矩形,两边长分别为xcm 和10cm ,如果它的周长小于80cm ,面积大于2100cm ,则x 的取值范围是1030x <<.14.若25a b =,则分式324a b a b -+的值为12. 15. 方程29(3)250x +-=的解为(143x =-2143x =-. 16. 分解因式22222()8x y x y +-=222()()x y x y +-.17. 如果不等式组217x m x m >+⎧⎨>-⎩的解集是7x m >-,则m 2m ≤18. 若2y =,则22x y +=6 .19. 已知 x y +=14xy =,则 x y -= 2 . 20. 若210x x +-=,则3222007x x ++=2008. 三、解答题21.计算 11+.13) 22.解不等式 232x -≤,并在数轴上表示解集.(1522x ≤≤) 23.若2222440a ab b a -+++=,求22a b ab a b++的值. 2a b ==-,原式=22a b ab ab a b+=+=4 24. 先化简,后求值:2222(69)(3)(49)(23)m mn n n m m n m n -+-÷---÷- 其中1,1m n =-=. 原式=6m n --=-525. 若2510a b ==,请你比较a b +与ab 的大小关系,并加以说明. 由条件210ab b =,510ab a =,所以(25)1010ab a b ⨯=⨯,故a b +与ab 相等26. 某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆.经了解:甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆的租金分别为2000元和1800元,请你选择最省钱的一种租车方案.4030(8)2901020(8)100x x x x +-≥⎧⎨+-≥⎩,56x ≤≤,两种方案;甲用5辆,乙用3辆,费用为15400元 27. 已知19992000,19992001,19992002a x b x c x =+=+=+,求多项式222a b c ab bc ca ++---的值.(原式=2221()()()2a b b c c a ⎡⎤-+-+-⎣⎦=3) 28. 已知x 、y 、z 为3个非负实数,且满足325x y z ++=,2x y z +-=, 若2S x y z =+-,请你求出S 的最大值与最小值.2453113x S y S z S ⎧⎪=-⎪⎪=-⎨⎪⎪=-⎪⎩,则23S ≤≤,从而S 的最大值是3,最小值是2.。