12.4整式的除法⑴⑵
七年级下1---4章练习题(知识回顾)

七年级下数学期中综合复习题(一)知识回顾填空: 一、整式的运算1. 叫做单项式, 叫做多项式,单项式和多项式统称 .单项式的次数是指 ,多项式的次数是指 .2.整式的加减实质上就是 ,运算的结果是 .3.幂的运算:①=⋅n m a a ,②=n m a )( ,③=n ab )( ,(m 、n 都为正整数)④=÷n m a a ,(a ≠0,m 、n 均为正整数,且m >n )4.整式的乘法:⑴单项式乘法法则:单项式相乘,把它们的 、 分别相乘,对于只在一个单项式中出现的字母,则连同指数 ,作为积的一个因式.⑵单项式乘以多项式:就是根据 ,用单项式去乘多项式的每一项,再把所得的积 .⑶多项式乘以多项式:先用一个多项式的 乘以另一个多项式的 ,再把所得的积 .5.乘法公式:⑴平方差公式:=-+))((b a b a ,⑵完全平方公式:=+2)(b a ;=-2)(b a .6.整式的除法:⑴单项式除以单项式:单项式相除,把 、 分别相除,作为商的因式,对于只被除式里含有的字母,则连同的它字母不变作为商的一个因式.⑵多项式除以单项式,先把这个多项式的 ,再把所得的商 . 二、相交线与平行线1.关于余角、补角及对顶角: ⑴若∠α=27º42′,则∠α的余角等于 ,∠α的补角等于.⑵两直线相交,如果其中一组对顶角互补,则这两条直线相交所得的四个角的度数分别为 .2.如图所示,∠O 的同位角是 , ∠6的内错角为 ,∠7的同旁内角 .3.关于两条直线互相平行的条件:两条直线平行的条件共有三条:① ;两直线平行; ② ;两直线平行; ③ ;两直线平行;另外,如果两条直线都与第三条直线平行,那么 ;如果两条直线都与第三条直线垂直,那么 .4.关于平行线的特征:①两直线平行, ; ②两直线平行, ; ③两直线平行, ; 三、生活中的数据1.某种病毒的直径为200纳米,用科学记数法示为 米,1毫米长的一条线段上可以排 个这样的病毒.2.生活中的数据,有些是精确的,有些是近似的.如小明的身高是1.58米,这个数据是 ,小明家有5口人,这个数据是 .3.有效数字:对于一个近似数,从左边 起,到 止,所有的数字都叫做这个数的有效数字.某种纸一张的厚度为0.017905cm ,精确到千分位为 ,有效数字是 . 四、概率1.游戏的公平性是指 .2.不可能事件发生的概率为 ,必然事件发生的概率为 ,不确定事件发生的概率 .3.概率计算:对于不确定事件A ,0<P (A )<1.掌握两种类型概率计算方法: ⑴古典概型: ; ⑵几何概型: . 训练题: 一、选择题1.下列代数中,单项式的个数是( )①m -,②x1,③y x -2,④π,⑤3a(A )1个 (B )2个 (C )3个 (D )4个2.下列说法正确的是( )(A )x 的系数是1,次数是1(B )0不是整式 (C )532r π的系数是53 (D )a 11+是多项式3.如图,下列说法不正确的是( )(A )∠PEF 与∠M 是同位角(B )∠PEF 与∠N 是内错角(C )∠PEF 与∠EFP 是同旁内角 (D )∠M 与∠P 是同旁内角 4.下列等式中,能够成立的是( )(A )222)(b a b a +=+(B )222241)21(b ab a b a +-=-(C )22244)2y xy x y x +-=- (D )22))((b a b a b a --=---5.1纳米=0.000000001米,则2.5纳米用科学记数法表示为( )(A )9105.2-⨯千米(B )10105.2-⨯千米(C )11105.2-⨯千米(D )12105.2-⨯千米 6、下列计算正确的是( )(A )1243a a a =⋅(B )743)(a a = (C )3632)(b a b a = (D )()043≠=÷a a a a7.若10)42(2)3(----x x 有意义,则x 取值范围是( )(A )x ≠3 (B )x ≠2 (C )x ≠3或x ≠2 (D )x ≠3且x ≠28.如果∠1是的余角∠2,并且∠1=2∠2,则∠1的补角为( )(A )30º (B )60º (C )120º (D )150º9.一棵梨树上一等品的概率为87.5%,那么从树上摘一个梨不是一等品的概率为( )(A )241 (B )81(C )87.5% (D )0 10.已知M 、P 是直线AB 外两点,如果直线MN ⊥AB ,AB ⊥PQ ,那么MN 与PQ 的关系是( )(A )垂直 (B )平行 (C )垂直或平行 (D )平行或重合 二、填空题1.多项式532123--y x x 的次数是 ,其中最高次项的系数是 .2.如图,与∠1成同位角的角有 ;与∠1成内错角的是 ;与∠1成同旁内角的角是 .3.已知∠α是锐角,过∠α的顶点分别作两边的垂线,若这两条垂线所成锐角为60º,则该∠α等于 . 4.如果∠α的补角加上30º后,等于它的余角的4倍,则这个角的度数是 度. 5.化简:=------)3()2(2222b ab a b ab a . 6.如图,AB ∥CD ,EF ⊥CD ,∠1=50º,则∠EFG = .7.近似数31001.1-⨯精确到 位,它有 个有效数字,分别是 . 8.若23=n ,53=m ,则=-+123m n .9.学校要求学生穿校服,但总有一些学生要忘记.若学校有900名学生,某周一升旗仪式没穿校服的学生有18名,则任意叫出一名学生,叫到没穿校服学生的的概率为 .。
整式的除法PPT课件

⑵(8m2n2) ÷(2m2n)
分数线具有括 Biblioteka 的作用⑶(a4b2c) ÷(3a2b)
8m 2 n 2 ⑵原式= 2m 2 n
=
4n
注:以上的单项式除法方法只提供我们参考,想一想还有其他方法吗?
2 2 a 4b 2 c a 2 a 2 b 2 c abc ⑶原式= = = 2 2 3a b 3b 3a b
第⑴个刘正勇同学做
⑶ (3m2n3)÷(mn)2 ⑷ (2x2y)3÷(6x3y2)
第⑶个唐利萍同学做 第⑷个张磊同学做
单项式除法的基本步骤
单项式除以单项式,就是把它们的系数,相同字母,结合在一起分别相 除.再把所得的商相乘 教科书41页第2,3两题
旧教材146页1,2两题目
你能说出a÷b在现实生活中表示的意义吗? 试一试!
②
2 原式=(10÷5 )( · a4÷a3 )( · b3÷b )( · c ÷c ) 4- b3- c2-1 2ab2c = 2a 2 1
单项式相除的方法:
单项式除以单项式,就是把它们的系数,相同 字母,结合在一起分别相除.再把所得的商相乘
=
③(2x2y)3.(-7xy2) ÷(14x4y3)
解:
(3· 84×105 ) ÷ ( 8×102)
原式= (3· ) × (105÷102 ) 84÷8 = 0· 48×103 =480(小时) = 20天
答:如果要乘坐这架飞机到月球大约需要20的时间
真是不可 思议,原 来需要这 么长时间 呀!
教课书40页随堂练习第1题
⑴ (2a6b3) ÷(a3b2)
人教版八年级上册数学各单元知识点归纳总结

第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a+⨯= ⑵幂的乘方:()n m mn a a =⑶积的乘方:()nn n ab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法⑸添项法第十五章分式一、知识框架:二、知识概念:1.分式:形如AB,A B、是整式,B中含有字母且B不等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd ⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n nna ab b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a+⨯=(m n 、是正整数) ⑵()n m mn a a =(m n 、是正整数)⑶()n n n ab a b =(n 是正整数)⑷m n m n a a a-÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
华东师大版八年级数学上册知识点

八年级上册知识点第11章数的平方11.1平方根与立方根一、平方根的概念如果一个数的平方等于a ,那么这个数叫做a 的平方根。
二、平方根的性质1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,就是它本身。
3.负数没有平方根。
三、算术平方根正数a 的正的平方根,叫做a 的算术平方根,记作,读作“根号a ”;另一个平方根是它的相反数,即-。
因此,正数a 的平方根可以记作±,其中a 称为被开方数。
0的算术平方根是0,负数没有算术平方根。
四、平方根与算术平方根的区别与联系1.概念不同;2.表示方法不同;3.个数及取值不同。
五、开平方求一个非负数的平方根的运算,叫做开平方。
六、立方根1.概念:如果一个数的立方等于a ,那么这个数叫做a 的立方根。
2.性质:任何数(正数、负数和0)的立方根只有一个。
a a a3a3.表示:数a的立方根,记作,读作“三次根号a”。
其中a称为被开方数,3是根指数。
4.一个正数只有一个正的立方根,一个负数只有一个负的立方根,0的立方根是0。
七、开立方求一个数的立方根的运算,叫做开立方。
11.2实数一、无理数1.无线不循环小数叫做无理数。
2.无理数与有理数的区别(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数。
(2)所有的有理数都能写成分数的形式(整数可以看成分母是1的分数),而无理数不能写成分数的形式。
二、实数及其分类1.实数的概念有理数和无理数统称为实数,即实数包括有理数和无理数。
2.实数的分类(1)按概念分类正整数整数0有理数负整数正分数分数实数负分数正有理数无理数负有理数(2)按正负分类正整数正有理数正实数正分数正无理数实数0负整数负有理数负实数负分数负无理数三、实数与数轴上点的关系实数与数轴上的点意义对应。
四、实数的有关概念1.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。
,0,00,aaa a a a2.一个数的绝对值是非负数,即a ≥0,因此,在实数范围内,绝对值最小的数是零.两个相反数的绝对值相等.第12章整式的乘除12.1幂的运算12.1.1同底数幂的乘法一、同底数幂的意义及同底数幂的乘法法则1.同底数幂的意义同底数幂是指底数相同的幂。
新人教版八年级数学上册知识点总结-三角形

新人教版八年级数学上册知识点总结三角形一、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n・180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n条对角线,把多边形分成(2)n个三角形.②n边形共有(3)2nn条对角线.全等三角形一、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. 4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过分析,找出由已知推出求证的途径,写出证明过程轴对称一、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P(,)xy关于x轴对称的点的坐标为'P(,)xy. ②点P(,)xy关于y轴对称的点的坐标为"P(,)xy. ⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角)③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短整式的乘除与分解因式一、知识概念:1.基本运算:⑴同底数幂的乘法:⑵幂的乘方:⑶积的乘方:2.整式的乘法:⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式.⑵单项式多项式:用单项式乘以多项式的每个项后相加⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加3.计算公式:⑴平方差公式:⑵完全平方公式:4.整式的除法:⑴同底数幂的除法:⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:②完全平方公式:③立方和:④立方差:⑶十字相乘法:⑷拆项法⑸添项法分式一、知识概念:1.分式:形如AB、是整式,B中含有字母且B不等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:8.整数指数幂:⑴(mn、是正整数)⑵(mn、是正整数)⑶(n是正整数)⑷(a≠0,mn都是正整数,m〉n)⑸(n是正整数)⑹(0a,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根因为在把分式方程化为整式方程的过程中扩大了未知数的取值范围,可能产生增根).。
人教版八年级上册数学各单元知识点归纳总结

人教版八年级上册数学各单元知识点归纳总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a+⨯= ⑵幂的乘方:()n m mn a a =⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=- ⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cb b d bd ±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a+⨯=(m n 、是正整数) ⑵()n m mn a a =(m n 、是正整数)⑶()n n n ab a b =(n 是正整数)⑷m n m n a a a-÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
12.4 整式的除法

12.4 整式的除法一、知识概述1、单项式除以单项式单项式相除,把系数与同底数幂分别相除作为商的因式.对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2、多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.3、整式乘除法的比较跟整式的乘法一样,整式的除法关键是掌握好同底数幂的除法和单项式与单项式相除.为此,不妨将二者进行归纳、比较.二、重难点知识归纳重点:以同底数幂的除法,幂的运算法则的综合应用以及单项式除以单项式,多项式除以单项式.难点:以整式的综合运算.一、基础训练1.计算(14a3b2-21a b2)÷7ab2等于()A.2a2-3 B.2a-3 C.2a2-3b D.2a2b-32.x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy23.(05年江苏省海安市中考)计算(-3a3)2÷a2的结果为()A.9a4 B.-9a4 C.6a4 D.9a34.下列计算正确的是()A.(8a3b8)÷(4ab4)=2a2b2 B.(8a3b8)÷(4ab4)=2a3b4C.(-2x2y4)÷(-12xy2)=xy2 D.(-a4b5c)÷(a2b3)=-a2b2c5.下列计算27a8÷13a3÷9a2的顺序不正确的是()A.(27÷13÷9)a8-3-2 B.(27a8÷13a3)÷9a2C.27a8÷(13a3÷9a2) D.(27a8÷9a2)÷13a36.32a2b2c÷4ab=__________.7.(16a2b4+8a4b2-4a2b2)÷(-4a2b2)=_________.8.一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为_______cm.9.计算:(1)12a4b3c2÷(-3a2bc2);(2)(32a n+3-2a n+1)÷(-13a n-1);(3)7.2×1012÷(-3.6×109);(4)(-13xy4)3÷(16xy4)2·y3.三、能力训练10.已知4a3b m÷36a n b2=19b2,则m、n的值为()A.m=4,n=3 B.m=4,n=1 C.m=1,n=3 D.m=2,n=3 11.若n为正整数,则(-5)n+1÷[5(-5)n]=()A.5n+1 B.0 C.-5n+1 D.-112.化简求值:(34a4b7+12a3b8-19a2b6)÷(-13ab3)2,其中a=12,b=-4.13.8x6y4z÷()=4x2y2,括号内应填的代数式为()A.2x3y2z B.2x3y2 C.2x4y2z D.12x4y2z四、综合训练14.(1)(-52a a+1b2)2÷(-12a n b2)2·(-15a mb n)2(2)[5a4(a2-4)+(-2a2)5÷(-a)2]÷(-2a2)2.15.已知被除式是x3+3x2-1,商式是x,余式是-1,求除式.。
124整式的除法(2)

12.4整式的除法(2)----------多项式除以单项式⑴教学目标1.知识目标:掌握多项式除以单项式的法则;2.能力目标:运用多项式除以单项式的法则进行计算;3.情感目标:通过主动探索与相互之间的交流,理解多项式除以单项式的运算法则,进一步激发自己的学习兴趣,体会数学的应用价值.教学重点与难点1.教学重点:多项式除以单项式的运算法则.2.教学难点:多项式除以单项式计算.教学过程一、复习引入,知识回顾1.单项式除以单项式的运算法则是什么.2.我们知道:m (a+b+c)=ma+mb+mc同时,利用乘法与除法之间又是互为逆运算的关系(ma+mb+mc)÷m=二、揭示规律,总结公式多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:多项式除以单项式的步骤是:⑴先转化成单项式的除法;⑵然后转化成同底数幂的除法,最后相加.三、数学理论,数学运用例1 计算⑴(9 x4-15x2+6x)÷3x⑵(28 a3b2c+a2b3-14a2b2)÷(-7a2b )解:⑴(9 x4-15x2+6x)÷3x=9x4÷3x-15x2÷3x+6x÷3x=3x3-5x+2⑵(28 a3b2c+a2b3-14a2b2)÷(-7a2b )=28 a3b2c÷(-7a2b )+a2b3÷(-7a2b )-14a2b2÷(-7a2b )例2 化简求值:⑴ (34a 4b 7+12a 3b 8-19a 2b 6)÷(-13ab 3)2,其中a =13,b =-2分析:本题应先化简除式,再运用多项式除以单项式的法则运算四、课内练习,巩固提高课内练习1.(3x 3-x 2+6xy )÷3x2.(12 a 3b 2c +2a 2b 2-a 2b )÷(-2a 2b )3.(34a 2n +1b n +1-19a 2n b n )÷13a nb n -14.(34a 4b 7+12a 3b 8-19a 2b 6)÷(-13ab 3)2五、回顾反思,升华提高1.理解并能运用多项式除以单项式的法则进行简单的计算.课后作业课本练习-----------多项式除以单项式⑵教学目标1.知识目标:掌握多项式除以单项式的法则;2.能力目标:进一步运用多项式除以单项式的法则进行计算及实际应用;3.情感目标:通过主动探索与相互之间的交流,理解多项式除以单项式的运算法则,进一步激发自己的学习兴趣,体会数学的应用价值.教学重点与难点1.教学重点:多项式除以单项式的运算法则.2.教学难点:多项式除以单项式计算及其应用.教学过程六、复习提问,知识回顾,1.多项式除以单项式的运算法则是什么.2.计算:⑴(3x3-x2+6x)÷2x ⑵(2a3b2c+a2b-4a2b)÷(-a2b )七、数学理论,数学运用例1 已知一个多项式与单项式-9a5b3的积为21a5b7-36a7b4+6b(3a3b2)2,求这个多项式.分析:利用乘法和除法互为逆运算的关系求解.小结:此题应用了因式=积+另一个因式.例2 解答题:已知2x2-3x+2=0,求x2+1x2的值.八、课内练习,巩固提高课内练习1.(3x3y-x2y2+xy)÷xy2.( a3b2c+2a2b2-a2b)÷(-2a2b )3.(-a4÷a2)2+(-2a)3a2+(-a2)4÷a34.[3(a-b)3-2(a-b)2-a+b]÷(a-b)思考题:若3x4+x3-4x2-17x+5除以x2+x+1的商式是ax2+bx+c,余式是dx+e,求a+b+c+d+e的值.九、回顾反思,升华提高1.理解并能运用多项式除以单项式的法则进行的计算及应用.同时综合运用前面学到的知识,比如例2中用到两数和的平方公式.课后作业课本习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 计算
⑴[(-3xy)2·x3-2x2(2xy2)3· 1 y)÷[-(-3x2y)2] 2 ⑵ 3 x [( x 2 y ) 2 4 y ( y x) 3x] 2 x
2
解:⑴原式=(9x2y2·x3-2x2·8x3y6· =(9x5y2-8x5y7)÷(-9x4y2)
识回顾
12.4整式的除法⑴
1.单项式除以单项式
单项式相除,把系数、同底数幂分别相除作为 商的因式,对于只在被除式中出现的字母,则连同 它的指数一起作为商的一个因式.
2.多项式除以单项式
计算:(ma+mb+mc)÷m. ∵m(a+b+c)=ma+mb+mc ∴(ma+mb+mc)÷m =ma÷m+mb÷m+mc÷m =a+b+c
计算;12a3b2x3÷3ab2 即(12a3b2x3)÷(3ab2)
你能由此总结出 单项式除以单项式的 法则吗?
4a ∵4a2x3 · 3ab2 =12a3b2x3
∴12a3b2x3÷3ab2 =4a2x3
单项式除法法则:
单项式相除,把系数、同底数幂分别相除作为商 的因式,对于只在被除式中出现的字母,则连同它的 指数一起作为商的一个因式.
12(a-b)5÷3(a-b)2 =(12÷3)(a-b)5-2 =4(a-b)3
课本例题自学:
例2地球的质量约为5.98×1024千克,木星的质量 约为1.9×1027千克.问木星的质量约是地球的多少倍?
27
(结果保留三个有效数字)
24
解: (1.9×1027)÷(5.98×1024) =(1.9÷5.98)(1027÷1024)
华东师大版八年级上册《数学》
(第1课时)
制作:遂宁一中HDL
知识回顾
12.1幂的运算⑷
如果m、n是正整数 1.同底数幂的乘法 am·an =am+n
2.幂的乘方 (am)n = amn 3.积的乘方 (ab)n=anbn
4.同底数幂的除法 am÷an =am-n (m>n且a≠0)
1.单项式除以单项式
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除 以这个单项式,再把所得的商相加. 注意:①合并同类项前,商的项与原多项式的项数相 同;②现在只讨论多项式能被单项式整除的情况。
例1 计算
⑴(28a3-14a2+7a)÷7a ⑵ ( 3 a 6 x 3 6 a 3 x 4 9 ax 5 ) 3 ax 3
12.4整式的除法⑴
1.单项式除以单项式 2.多项式除以单项式 多项式除以单项式,先把这个多项式的每一项除 以这个单项式,再把所得的商相加.
2013.9.25
例
计算: ⑴-a2x4y3÷
4
5 ( axy 3 ) 6
3 9
⑵(-2x3y2)3÷2(x2y2)2
⑶ ( 3 a 3b5c 2 ) 5 a 2b 16 b 2c ⑷3(x4y3÷y2)2-5x3y·(3x8y7÷x3y6)
5 6 21 41 33 6 3 3 axy ) [( 1 ( )]a x y ax 6 5 5
3 x x 2 3x 2 x 2
3 1 3 x x 2 2 2
3 3 1 3 x x x 2 2 2 2
有些特殊多项式的除法可用整体法转化成单项式 的除法来解决。
计算⑴(x2+2xy+y2)÷(x+y)
⑵[(a+2b)2-8ab]÷(a-2b) 解:⑴原式=(x+y)2÷(x+y) =x+y ⑵原式=[a2+4ab+4b2-8ab]÷(a-2b) =(a2-4ab+4b2)÷(a-2b) =(a-2b)2÷(a-2b) =a-2b
4 5 10 5
解:⑴原式=28a3÷7a-14a2÷7a+7a÷7a =4a2-2a+1
3 6 3 3 3 6 3 4 3 3 9 5 3 3 ⑵ 原式 a x ax a x ax ax ax 4 5 5 5 10 5 5 5 3 2 2 a 2a x x 4 2
1 y)÷(-9x4y2) 2
8 5 =-9x+ xy 9
例1 计算
⑴[(-3xy)2·x3-2x2(2xy2)3· 1 y)÷[-(-3x2y)2] 2 ⑵ 3 x [( x 2 y ) 2 4 y ( y x) 3x] 2 x
2 3 解:⑵ 原式 x [ x 2 4 xy 4 y 2 4 y 2 4 xy 3x] 2 x 2
≈0.318×103 =318 答:木星的质量约是地球的318倍.
12.4整式的除法⑴
1.单项式除以单项式
单项式相除,把系数、同底数幂分别相除作为 商的因式,对于只在被除式中出现的字母,则连同 它的指数一起作为商的一个因式.
2013.9.24
华东师大版八年级上册《数学》
(第2课时)
制作:遂宁一中HDL
解:
⑴-a2x4y3÷ (
⑵(-2x3y2)3÷2(x2y2)2 =-8x9y6÷2x4y4 =(-8÷2)x9-4y6-4 =-4x5y2
例
计算: ⑴-a2x4y3÷
4
5 ( axy 3 ) 6
3 9
⑵(-2x3y2)3÷2(x2y2)2
⑶ ( 3 a 3b5c 2 ) 5 a 2b 16 b 2c ⑷3(x4y3÷y2)2-5x3y·(3x8y7÷x3y6)
3 3 16 3 2 51 2 21 36 6 3 c ab c 解:⑶ 原式 [( ) ]a b 4 5 5 25
⑷原式=3(x4y)2-5x3y·3x5y =3x8y2-15x8y2
=-12x8y2
思考
你能用(a-b)的幂表示下式的结果吗? 12(a-b)5÷3(a-b)2