基于单片机的草坪花卉喷灌测控系统课程设计

合集下载

《基于单片机智能花卉浇水系统的设计》

《基于单片机智能花卉浇水系统的设计》

基于单片机的自动浇花系统的设计与实现摘要:随着信息化时代的高速发展,人们对环境的质量也越来越注重。

在家养花就成为了人们的第一个选择的东西,在家里养花不仅能够使生活更加丰富,还可以使情操得到陶冶。

并且养殖的植物能够通过植物绿色光合作用,在释放氧气的同时吸收二氧化碳,在这种情况下空气也就能够得到净化,从而变得更加清新,并且,绿色植物能吸收因为装修而产生的有害物质,比如甲醛和苯等。

由于植物的这些优点,越来越多的人,对在家养花情有独钟。

这篇文章设计了一种智能湿度感应浇花系统。

系统以单片机AT89S52为控制芯片,启动浇花之前先有蜂鸣器报警,然后按照每天的定量供水为限,在固定的时间内,自己启动浇花系统,然后按照各种植物需要的不同水量,来进行浇水,其中会有一个装置来控制,供水的时间也就是电磁阀开启和闭合的时间。

在学校供水的时候水棒会进行运转,其他时间停止工作,也就不会有补水,按照温度和湿度来严格控制供给水量,主要用到的是SLHT5-1土壤温度湿度传感器,如果没有呃,检测到温度和湿度达到要求,传感器就会机控智能开始,给花浇水。

在达到了固定的温度,湿度之后关机就会停止给花浇水,这个系统不仅能够使植物得到按时按量的水量,并且还可以为节约水资源做出贡献,然后在这种情况下植物就能够得到更好的生长。

关键词:单片机;自动浇花系统;传感器;AbstractWith the development of society, people pay more and more attention to environmental quality. Farming flowers has become the first choice. Farming at home can enrich people's life. At the same time, flowers can absorb carbon dioxide through photosynthesis to release oxygen and purify air, and flowers can also absorb toxic substances such as benzene and formaldehyde in newly decorated houses. So more and more people like to breed flowers. This paper designs an intelligent humidity induction watering system. The system uses single chip AT89S52 as control chip, buzzer alarm before starting watering, water supply on time and quantity is to automatically start pumping watering at a limited time every day. According to the difference of water requirement of various flowers, a button device is used to control the time of water supply, that is, the time of opening and closing of solenoid valve. The pump will not turn and there will be no water flow in the rest of the time. The main purpose of strictly controlling water supply according to temperature and humidity is SLHT5-1 soil temperature and humidity sensor. If the temperature and humidity of the sensor can not meet the specified requirements, it will start watering flowers and stop watering flowers when the temperature and humidity meet the specified requirements. The system can not only water flowers on time and in quantity, but also save water resources, so that flowers can grow better.Key words: single chip computer; intelligent watering system; sensor一、绪论 (1)1.1选题目的及意义 (2)1.2国内市场发展现状 (3)1.3研究方法和手段 (3)1.4植物、植物的一般生长习性 (4)1.5单片机介绍 (4)二、基于单片机的智能浇花系统 (4)2.1系统的总体设计 (4)2.2系统组成部分 (5)2.3系统工作原理 (5)三、系统硬件设计 (6)3.1AT89S52型单片机 (6)3.2 STM32最小单片机系统 (6)3.3土壤湿度检测电路 (7)3.4键盘及液晶显示电路 (8)3.5水泵调节 (8)3.6报警电路和系统 (9)3.7单片机最小系统 (9)3.7.1晶振电路设计 (9)3.7.2复位电路 (10)3.7.3按键消抖方法 (10)3.8系统的功能设计与实现 (10)四、基于物联网的智能植物养护系统的研究 (11)4.1系统设计 (11)4.1.1系统结构 (11)4.1.2系统工作原理与功能 (12)4.2系统实现 (12)4.3显示界面 (12)五、系统功能调试 (13)六、系统软件设计 (14)七、总结 (16)致谢 (16)参考文献 (16)附录 (17)一、绪论实际上国内国外像这种机控智能浇花系统实际上都在现实都得到了运用,但是很大一部分的机控智能供水灌溉系统都采用虹吸的方式,也就是利用渗透来实现补水浇花,这种方式的补水过程连续不间断,但是这样的方法只能够保证花不会因为缺水而感到干枯,这样的方式不是根据花实际需要多少来给它供水的。

单片机自动浇花系统毕业设计

单片机自动浇花系统毕业设计

单片机自动浇花系统毕业设计毕业设计题目:基于单片机的自动浇花系统1.设计目的和意义为解决现代社会中常见的人们忙碌,缺乏时间照顾植物的问题,利用单片机技术设计一套自动浇花系统,能够实现在一定的时间间隔内根据种植植物的需求自动进行浇水和护理,达到养护植物的目的,减轻人们的负担,提高生活质量。

2.设计方案本系统采用单片机控制浇水,利用温湿度传感器感应土壤湿度情况及环境温湿度,从而确定自动浇花的适宜时机,控制水泵实现自动浇水。

同时采用光照传感器感应环境光照强度,从而确定室内亮度情况,控制LED灯实现自动补光。

此外,系统采用LCD显示屏展示环境温度、湿度、光照强度和浇水状态等信息,方便用户监控植物生长情况。

具体实现方案如下:1)硬件部分:- 单片机:采用51单片机;- 人机交互:采用液晶显示屏;- 传感器:温度传感器、湿度传感器、光照传感器;- 输出设备:水泵、LED灯。

2)软件部分:- 采用C语言编写,利用单片机的定时器和ADC功能实现温度、湿度、光照强度的采集;- 实现温度、湿度和光照强度的数据处理;- 根据采集的土壤湿度情况和植物的需求,确定自动浇水时机,控制水泵实现浇水;- 根据采集的光照强度情况,确定自动补光时机,控制LED灯进行补光;- 实现LCD显示屏显示环境信息和系统状态信息。

3.实现步骤- 电路设计和制作:包括单片机电路、传感器接口、输出设备接口等;- 编写单片机程序:包括温湿度传感器数据采集、光照传感器数据采集、数据处理、控制水泵浇水、控制LED灯补光、LCD显示等功能;- 软硬件测试:测试程序与硬件是否协调运行,是否能正常采集传感器数据并控制输出设备;- 调试和优化:根据测试结果对程序进行修改和优化。

4.预期效果本设计预期实现以下功能:- 根据土壤湿度情况和植物的需求自动浇水;- 根据光照强度情况自动补光;- 通过LCD显示屏实时显示环境温度、湿度、光照强度等信息;- 用户可以通过液晶显示屏进行操作、设置等。

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计智能灌溉系统是一种能够根据土壤湿度和天气情况自动进行灌溉的系统,它能够提高作物的产量并减少水资源的浪费。

本文将介绍一种基于单片机的智能灌溉系统设计,该系统可以根据土壤湿度和天气情况自动进行灌溉,实现智能化的灌溉管理。

1. 系统结构设计智能灌溉系统主要由传感器、执行器、控制器和人机交互界面组成。

传感器用于感知土壤湿度和气象数据,包括土壤湿度传感器、温湿度传感器、光照传感器等。

执行器用于执行灌溉操作,包括电磁阀、水泵等。

控制器则是系统的大脑,根据传感器采集的数据进行智能决策,并控制执行器进行灌溉操作。

人机交互界面可以让用户对系统进行监控和管理。

2. 智能决策算法智能决策算法是智能灌溉系统的核心,它能够根据土壤湿度和气象数据进行灌溉决策。

在这里我们使用模糊控制算法进行灌溉决策。

模糊控制算法是一种能够处理模糊信息的控制算法,它能够根据模糊的输入数据进行模糊的输出控制。

在我们的系统中,土壤湿度和气象数据是模糊的输入数据,而灌溉量是模糊的输出控制。

通过事先设定的模糊规则,系统可以根据土壤湿度和气象数据确定灌溉量,从而实现智能的灌溉决策。

3. 单片机控制在本设计中,我们选择使用Arduino单片机作为智能灌溉系统的控制器。

Arduino单片机具有丰富的接口和易于编程的特点,在智能灌溉系统中具有广泛的应用前景。

Arduino单片机可以通过传感器接口采集土壤湿度和气象数据,并通过执行器接口控制灌溉操作。

Arduino单片机还可以通过串口连接人机交互界面,进行系统监控和管理。

4. 人机交互界面人机交互界面是智能灌溉系统与用户进行交互的接口,它可以让用户对系统进行监控和管理。

在本设计中,我们选择使用LCD显示屏作为人机交互界面,用户可以通过LCD显示屏看到系统的工作状态和数据信息,并可以通过按钮进行操作。

5. 系统测试与优化在完成智能灌溉系统的硬件和软件设计后,我们进行系统测试与优化。

通过实验室和田间试验,我们可以测试系统的稳定性和灌溉效果,并对系统进行优化,不断提高系统的精度和可靠性。

基于单片机的智能浇花系统任务书

基于单片机的智能浇花系统任务书
*********************************************************************
*********************************************************************
*专 抠 专 欢迎 *
*业 抠 为 您的 *
*******************************************************************
*******************************************************************
又快到做毕业设计的时候了,大家这个时候忙碌找工作,忙于考研,无暇做毕业设计,本团队可为大家提供帮助,诚信第一,价格最低,黑狼团队由在校学生组成,作为过来人最懂您的指导老师,为您提供专业服务,三年代做经验,可做电子类和计算机类。
2、要求:具有对本设计详细的介绍说明论文、关于器件的文字说明、电气原理图、程序流程Hale Waihona Puke 、零件表、焊接实物图、参考文献等。
二、计划及进度安排
时间:调研、收集资料、阅读文献、确定研究方向
学习C51编程,学习protel
撰写毕业设计论文(包括绘各种电路图,各部分的程序的编写)
请老师对整体设计做点评,并在老师的指导下对设计做出改进。
*代群大 加入 *
*做 2 学*
*毕 4 生 *
*设 6 服 *
* 3 务 *
* 8 解 *
* 2 决 *
* 2 问 *
* 3 题 *
* *
***********************************************************************

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计随着农业现代化的不断发展,智能化灌溉系统越来越受到农业生产者的关注。

传统的人工灌溉方式不仅浪费了大量水资源,还无法根据作物的需水量进行精准灌溉。

基于单片机的智能灌溉系统应运而生,通过自动监测土壤湿度和环境温湿度,实现对植物的智能定量灌溉,有效节约水资源,并提高作物的产量和质量。

一、系统设计思路基于单片机的智能灌溉系统主要由土壤湿度传感器、温湿度传感器、单片机控制模块、执行模块和用户界面组成。

土壤湿度传感器用于监测土壤湿度,温湿度传感器用于监测环境温湿度,单片机控制模块负责数据采集和灌溉控制,执行模块用于控制灌溉设备的开关,用户界面用于实时监测和设置灌溉参数。

系统采用闭环反馈控制策略,根据监测到的土壤湿度和环境温湿度信息,通过单片机控制执行模块实现对植物的智能定量灌溉。

1. 传感器模块:(1) 土壤湿度传感器:采用数字式土壤湿度传感器,能够准确测量土壤湿度,并输出模拟电压信号。

2. 控制模块:单片机控制模块采用高性能低功耗的微控制器,具有较强的计算和控制能力,能够对传感器采集到的数据进行处理,并控制执行模块实现对植物的智能定量灌溉。

执行模块采用继电器或电磁阀等执行器件,通过单片机控制,实现对灌溉设备的开关控制。

4. 用户界面:用户界面采用液晶显示屏和按键开关,通过单片机控制,实现对灌溉参数的实时监测和设置。

单片机控制程序主要包括数据采集和灌溉控制两部分。

1. 数据采集:单片机通过模拟输入端口接收土壤湿度传感器输出的模拟电压信号,并通过数字输入端口接收温湿度传感器输出的数字信号。

然后,将采集到的土壤湿度和环境温湿度数据进行数字转换和处理,得到实际的湿度和温度数值。

单片机根据采集到的土壤湿度和环境温湿度数据,利用预先设定的灌溉参数,计算出当前植物的需水量。

然后,根据需水量控制执行模块实现对灌溉设备的开关控制,进而实现对植物的智能定量灌溉。

四、系统工作流程1. 初始化设置:用户通过界面设置灌溉参数,包括灌溉时间、灌溉间隔、触发湿度等。

基于-单片机智能化浇花系统设计

基于-单片机智能化浇花系统设计

目录1. 绪论 (2)1.1系统工作原理 (1)1.2系统模块 (1)1.3系统操作界面及其操作过程 (1)1.3.1 系统操作过程 (2)2. 部件的选择 (3)2.1芯片的选择 (3)2.2继电器的选择 (3)2.3阀门的选择 (3)2.3.1 电磁阀的选择 (4)3. 硬件设计 (5)3.1设备的结构 (5)3.1.1 中央处理单元 (5)3.1.2 LED显示部分 (5)3.1.3 电磁阀部分 (5)3.1.4按键部分 (5)3.1.5 指示灯部分 (6)3.2总电路设计图 (7)3.3AT89C51单片机电路 (8)3.4晶振电路 (9)3.5复位电路 (11)3.6按键电路 (12)3.9LED显示电路 (14)3.10电磁阀电路 (16)4. 软件设计 (17)4.1系统组成 (17)4.2消抖流程及程序 (18)4.3总流程及程序 (21)4.4按键处理总流程及程序 (25)4.5工作中的处理流程 (28)5. 结论 (29)参考文献 (32)AT89C51基于单片机智能浇花系统设计摘要:本设计是通过AT89C51单片机采用汇编语言进行编程,在LED液晶屏上实现小时,分,秒的显示;并利用单片机来实现计时,定时功能,同时通过7个按键开关和3个指示灯来实现参数设置和调节功能、浇花间隔时间的设定、浇水持续时间的设定、单片机对电磁阀的自动控制。

根据用户设定的时间顺利的完成浇花任务。

关键词:单片机,控制,显示,电磁阀1.绪论1.1 系统工作原理自动浇花系统的设计,其主要执行装置是一个电磁阀门,其一端连接水管,另外一端连接外置的水管作为浇水口,浇水的水量主要由单片机控制。

设备主要是通过控制浇水的时间间隔和浇水的持续时间来控制浇水量的。

1.2 系统模块系统主要是由单片机、电源、按键、显示、指示灯、复位电路、电机模块等图1-11.3 系统操作界面及其操作过程图1.2 系统操作界面1.3.1 系统操作过程注:用上图中的数字编号代替相关按键A:放置设备,接上水管(注意:保证不漏水),插上插头。

基于单片机智能浇灌系统课设报告

基于单片机智能浇灌系统课设报告

武汉华夏理工学院课程设计报告书课程名称单片机原理及应用课程设计课程设计总评成绩学生姓名、学号周子林102124142217学生专业班级自动化1142指导教师姓名李文彦课程设计起止日期2016.12.19——2016.12.30单片机课程设计任务书题目: 基于单片机的全自动浇花系统电路设计初始条件:1.采用湿度传感器采集数据;2.采用温度传感器采集数据;3.采用单片机组成数据采集系统;4.采用ULN2803芯片驱动直流电机。

要求完成的主要任务:1.对环境的温湿度状态进行数据采集;2.设湿度传感器输出为0-5V的电路;3.设计8位或10位A/D转换接口电路;4.设计单片机的信号显示电路;5.设计单片机的控制电路;6.设计掉电保存数据电路;7.设计驱动直流电机电路;8.严格按照课程设计说明书要求撰写课程设计说明书;时间安排:指导教师签名:年月日基于单片机的全自动浇花系统设计作者:周子林武汉华夏理工学院信息工程学院自动化1142摘要:现代生活中,随着人们生活水平的提高,人们对花卉、树木等绿色植物的喜爱和种植越来越多,然而以前对花木的浇灌、施肥等工作都需要人工来实现,由于现代生活节奏加快,人们往往忙于工作而忘记及时为花卉补充水分和养料,导致花木枯死。

水是植物生存、生长的最基本需要,因此,设计一种能够在无人管理的情况下为花木自动浇水的系统,能够有效解决花木因缺水而枯死的难题。

本系统是采用AT89C52单片机为核心的全自动浇花系统。

系统主要实现的功能是对花木的土壤中的湿度进行实时检测,当土壤湿度低于用户设定值时及时给花木浇水,当土壤湿度高于系统设定值时停止给花木浇水。

关键词:C51单片机 A/D转换 IIC通信协议 LCD1602显示1 系统设计本次设计包括AT89C52单片机及基本外围电路模块、温湿度检测电路模块、A/D转换电路模块、显示电路模块、EEPROM掉电数据保存电路模块、按键控制电路模块、电机驱动电路模块、电源电路模块等部分组成,具体设计方案如图1-1所示。

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计【摘要】智能灌溉系统是一种利用单片机控制的智能设备,能够根据环境条件自动调节灌溉系统,提高作物的生长效率并节约水资源。

本文旨在设计一种基于单片机的智能灌溉系统,包括系统架构设计、传感器模块设计、执行器控制模块设计、数据处理与通信模块设计以及系统测试与性能评估。

通过实验测试,系统表现出良好的稳定性和灵活性,能够根据不同作物的需求自动进行灌溉,提高土地利用效率。

未来,可以进一步完善系统功能,提升系统的智能化水平,实现更精准和有效的灌溉管理。

本设计为农业生产提供了一种智能化的解决方案,有望在未来的农业生产中发挥重要作用。

【关键词】单片机、智能灌溉系统、系统架构、传感器模块、执行器控制模块、数据处理、通信模块、系统测试、性能评估、设计总结、实验结果分析、未来展望。

1. 引言1.1 背景介绍基于单片机的智能灌溉系统的设计,通过采用先进的传感器技术和智能控制算法,能够实现对农田灌溉过程的精准监测和控制。

该系统可以根据不同作物的需水量、土壤湿度等参数,智能地调整灌溉水量和灌溉时间,实现节水、节能的灌溉效果,提高农田灌溉的效率和水资源利用率。

本文将介绍基于单片机的智能灌溉系统的设计及实现过程,旨在通过对系统架构设计、传感器模块设计、执行器控制模块设计、数据处理与通信模块设计等方面的详细描述,为农田灌溉的智能化提供一种有效的解决方案。

本文还将对系统进行测试与性能评估,为系统的实际应用提供参考依据。

1.2 研究目的研究目的是设计一种基于单片机的智能灌溉系统,旨在提高农业灌溉的效率和节约水资源。

当前传统的灌溉系统存在着浪费水资源、人工操作不便等问题,因此需要一种智能化的系统来实现自动化灌溉。

本研究旨在利用单片机技术,结合传感器、执行器和数据处理模块,设计一种智能灌溉系统,实现对植物生长环境的自动监测和智能控制。

通过实时监测土壤湿度、气温、光照等环境参数,并根据植物生长需求自动调节灌溉水量和频率,可以提高农作物的产量和质量,减少浪费的水资源,减轻农民的劳动负担,从而实现节水、高效、智能的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的草坪花卉喷灌测控系统课程设计目录摘要 (2)一总体设计方案 (2)1 设计任务 (2)2 任务分析 (2)3 方案确定 (2)4 整体设计 (2)二硬件部分设计 (3)1 单片机的选择 (3)2温湿度传感器SHT11 (5)3开关三极管 (8)三模块功能简介 (8)1.复位电路 (8)2.传感器电路 (9)3.时钟电路 (9)4.显示电路 (9)5.系统整体硬件图 (10)四软件设计 (10)1 主程序及说明 (10)2 主程序框图 (12)五心得体会 (14)摘要本课程设计设计实现的是单片机温湿度测量与控制系统,通过LCD显示所测量的温湿度,然后通过电磁阀对温湿度进行控制,达到要求的范围。

系统采用集温湿度传感器与A/D转换器为一体的SHT11芯片,通过单片机处理进行显示,其它模块包括了实时时钟/日期产生电路和超限报警处理电路,对所测量的值进行实时显示和报警处理。

并且温湿度传感器的内部比较器的设定值与当前外界温度和适度进行比较,如低于设定值将会打开电磁阀,对花卉进行喷灌,以保证足够的温度和湿度,当高于设定值将关闭电磁阀。

一总体设计方案1、设计任务:设计一个基于AT89C51单片机的草坪花卉喷灌测控电路。

2、任务分析:通过控制电动(电磁)阀门的开关使自来水经过喷头实现。

电动(电磁)阀门有单相交流(~220V)供电和直流(12V—36V不等)供电两大系列,利用微机控制阀门供电实现阀门的开关,经自来水喷头实现草坪花卉喷灌直流电动阀门用三极管开关控制供电;微机智能控制方式为土壤温湿度自动测控方式。

3、方案确定:采用集温湿度传感器于一体的SHT11芯片为主要芯片如图2所示传感器SHT11是A T89C51单片机是三极管控制器是三相步进电机图1总体设计方框图一4.整体设计本设计核心部件为AT89C51,信号采集及处理部分由SHT11构成,进入单片机后经处理后通过LCD1604显示温湿度,信号显示采用的液晶屏为5X7点阵,一行可显示16字,四行。

其他组成部分为实时时钟发生电路,产生同现在相同的时间和具体日期,通过LCD1604液晶模块显示。

在软件设计部分有对测量的温湿度进行上下值的设定,当测量超过限定值,通过电磁阀处理电路对其进行处理,起动装置控制温湿度,以达到目的。

硬件中包括一个开关,为复位开关。

开机后,所有器件初始化,DS1302产生实时时间和日期,温湿度传感器SHT11开始进行温湿度测量和计算,最后通过两个LCD液晶显示器显示结果。

在测量结果中有超过设定的温湿度上下限的,通过超限模块作出反应。

整体电路框图如下:图2二硬件部分设计1、单片机的选择——AT89C51控制器采用AT89C51具有低电压供电和体积小等特点,四个端口能满足电路系统的设计需要,可用二节电池供电。

其外部引脚图如图4所示图3 A T89C51单片机的外部引脚图A.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器·寿命:1000写/擦循环·数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路B.管脚说明:VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为A T89C51的一些特殊功能口,如下表所示:表1 P3口管脚备选功能P3.0 RXD 串行输入口P3.4 T0 计时器0外部输入P3.1 TXD 串行输出口P3.5 T1 计时器1外部输入P3.2 /INT0 外部中断0 P3.6 /WR 外部数据存储器写选通P3.3 /INT1 外部中断1 P3.7 /RD 外部数据存储器读选通2、温湿度传感器SHT112.1.SHT11 简介SHT11 是瑞士Scnsirion 公司推出的一款数字温湿度传感器芯片。

温湿度传感器SHT11集温度传感器和湿度传感器于一体,因此采用SHT11 进行温湿度实时监测的系统具有精度高、成本低、体积小、接口简单等优点;另外SHT11 芯片内部集成了14位A/D 转换器,且采用数字信号输出,因此抗干扰能力也比同类芯片高。

该芯片在温湿度监测、自动控制等领域均已得到广泛应用。

其主要特点:◆高度集成,将温度感测、湿度感测、信号变换、A/D 转换和加热器等功能集成到一个芯片上;◆提供二线数字串行接口SCK和DATA,接口简单,支持CRC 传输校验,传输可靠性高;◆测量精度可编程调节,内置A/D 转换器(分辨率为8~12位,可以通过对芯片内部寄存器编程选择);◆测量精确度高,由于同时集成温湿度传感器,可以提供温度补偿的湿度测量值和高质量的露点计算功能;◆封装尺寸超小(7.62 mm×5.08mm×2.5 mm),测量和通信结束后,自动转入低功耗模式;◆高可靠性,采用cmosens工艺,测量时可将感测头完全浸于水中。

2.2.SHT11 的引脚功能SHT11温湿度传感器采用SMD(LCC)表面贴片封装形式,接口非常简单,引脚名称及排列顺序如图5 所示。

图4各引脚的功能如下:◇脚1和4--信号地和电源,其工作电压范围是2.4~5.5 V;◇脚2和脚3--二线串行数字接口,其中DA-TA为数据线,SCK为时钟线;◇脚5~8--未连接。

2.3.SHT11的内部结构和工作原理温湿度传感器SHT11将温度感测、湿度感测、信号变换、A/D转换和加热器等功能集成到一个芯片上,其内部结构如图3.5所示。

该芯片包括一个电容性聚合体湿度敏感元件和一个用能隙材料制成的温度敏感元件。

这两个敏感元件分别将湿度和温度转换成电信号,该电信号首先进入微弱信号放大器进行放大;然后进入一个14位的A/D 转换器;最后经过二线串行数字接口输出数字信号。

SHT11在出厂前,都会在恒湿或恒温环境巾进行校准,校准系数存储在校准寄存器中;在测量过程中,校准系数会自动校准来自传感器的信号。

此外,SHT11内部还集成了一个加热元件,加热元件接通后可以将SHT11 的温度升高5℃左右,同时功耗也会有所增加。

此功能主要为了比较加热前后的温度和湿度值,可以综合验证两个传感器元件的性能。

在高湿(>95%RH)环境中,加热传感器可预防传感器结露,同时缩短响应时间,提高精度。

加热后SHT11温度升高、相对湿度降低,较加热前,测量值会略有差异。

图5 SHT11内部结构图微处理器是通过二线串行数字接口与SHT11进行通信的。

通信协议与通用的I2C总线协议是不兼容的,因此需要用通用微处理器I/O口模拟该通信时序。

微处理器对SHT11的控制是通过5个5位命令代码来实现的,命令代码的含义如表2所列。

命令代码含义00011 测量温度00101 测量湿度00111 读内部状态寄存器00110 写内部状态寄存器11110 复位命令,使内部状态寄存器恢复默认值。

下一次命令前至少等待11ms 其他保留2.4.SHT11 应用设计微处理器采用二线串行数字接口和温湿度传感器芯片SHT11进行通信,所以硬件接门设计非常简单;然而,通信协议是芯片厂家自己定义的,所以在软件设计中,需要用微处理器通用I/O口模拟通信协议。

硬件设计SHT11通过二线数字串行接口来访问,所以硬件接口电路非常简单。

需要注意的地方是:DATA数据线需要外接上拉电阻,时钟线SCK用于微处理器和SHT11之间通信同步,由于接口包含了完全静态逻辑,所以对SCK最低频率没有要求;当工作电压高于4.5V时,SCK频率最高为10MHz,而当工作电压低于4.5V 时,SCK最高频率则为1MHz。

硬件连接如图7 所示。

图6 微处理器和SHT11之间的硬件连接图由于微处理器通过二线串行数字接口访问湿度传感器SHT11,而访问协议是芯片生产商定义的,所以需要用通用I/O口模拟该通信协议。

通过对I/O口寄存器的编程,该处理器的I/O口可以根据需要设置成输入、输出、高阻等状态。

这为模拟该通信协议提供了条件。

在软件实现过程中,通过宏定义来实现I/O口状态的改变。

#define set_data_0() DDRB|=(1<<PB5);PORTB&=~(1<<PB5) //DATA输出0#define set_data_1() DDRB|=(1<<PB5);PORTB|=(1<<PB5) //DATA输出1#define release_data_1() DDRB&=~(1<<PB5)//释放总线,总DATA设为输入状态,因为外接上拉电阻,DATA总线被上拉为高电平#define set_sck_output() DDRB|=(1<<PB4) //设置SCK为输出#define set_sck_1() PORTB|=(1<<PB4) //SCK输出高电平#define set_sck_0() PORTB&=~(1<<PB4) //SCK输出为低电平2.5 传感器技术参数测量精度:±5%测量范围:温度:-50℃∽+70℃湿度:20%∽90%分辨率:温度:0.1℃湿度:1%工作电压:5~12V工作电流:21~26mA,典型值21mA测量主频:100Mhz输出信号:0~1.875V DC测量稳定时间:2秒响应时间:<1秒测量区域:以中央探针为中心,围绕中央探针的直径为7cm、高为7cm的圆柱体电缆长度:1.5米 (标配)3.开关三极管:图8中三极管为NPN型硅管。

相关文档
最新文档