高一数学上册第一次月考检测试卷3

合集下载

2023-2024学年河南省高一上册第一次月考数学试题(含解析)

2023-2024学年河南省高一上册第一次月考数学试题(含解析)

2023-2024学年河南省高一上册第一次月考数学试题一、单选题1.已知集合{}220A x x x =-≤,{}1,0,3B =-,则()R A B ⋂=ð()A .∅B .{}0,1C .{}1,0,3-D .{}1,3-【正确答案】D【分析】先由一元二次不等式的解法求得集合A ,再由集合的补集和交集运算可求得答案.【详解】因为{}{}22002A x x x x x =-≤=≤≤,所以{R |0A x x =<ð或}2x >,又{}1,0,3B =-,所以(){}1,3R A B ⋂=-ð,故选:D .2.已知函数()f x =()()3y f x f x =+-的定义域是()A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]【正确答案】D【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥,解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤,所以函数的定义域为[1,4].故选:D 3.不等式3112x x-≥-的解集是()A .3{|2}4x x ≤≤B .3{|2}4x x ≤<C .{>2x x 或3}4x ≤D .3{|}4x x ≥【正确答案】B【分析】把原不等式的右边移项到左边,通分计算后,然后转化为()()432020x x x ⎧--⎨-≠⎩,求出不等式组的解集即为原不等式的解集.【详解】解:不等式3112x x --可转化为31102x x ---,即4302x x --,即4302x x --,所以不等式等价于()()432020x x x ⎧--⎨-≠⎩,解得:324x <,所以原不等式的解集是3{|2}4x x <.故选:B .4.命题“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式是()A .∀x ∈R ,∃n ∈N+,有n<2x+1B .∀x ∈R ,∀n ∈N+,有n<2x+1C .∃x ∈R ,∃n ∈N+,使n<2x+1D .∃x ∈R ,∀n ∈N+,使n<2x+1【正确答案】D【分析】根据全称命题、特称命题的否定表述:条件中的∀→∃、∃→∀,然后把结论否定,即可确定答案【详解】条件中的∀→∃、∃→∀,把结论否定∴“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式为“∃x ∈R ,∀n ∈N+,使n<2x+1”故选:D本题考查了全称命题、特称命题的否定形式,其原则是将原命题条件中的∀→∃、∃→∀且否定原结论5.已知12a b ≤-≤,24a b ≤+≤,则32a b -的取值范围是()A .3,92⎡⎤⎢⎥⎣⎦B .5,82⎡⎤⎢⎥⎣⎦C .5,92⎡⎤⎢⎥⎣⎦D .7,72⎡⎤⎢⎥⎣⎦【正确答案】D【分析】令32()()a b m a b n a b -=-++求,m n ,再利用不等式的性质求32a b -的取值范围.【详解】令32()()()()a b m a b n a b m n a n m b -=-++=++-,∴32m n n m +=⎧⎨-=-⎩,即51,22m n ==,∴55()5,121()222a b a b ≤-≤≤+≤,故73272a b ≤-≤.故选:D6.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,16AB =,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC (或边CB )于点Q ,设AP x =,APQ △的面积为y ,则y 与x 之间的函数图象大致是()A .B .C .D .【正确答案】D【分析】首先过点C 作CD AB ⊥于点D ,由ABC 中,90ACB ∠= ,30A ∠= ,可求得B ∠的度数与AD 的长度,再分别从当012AD ≤≤与当1216x <≤时,去分析求解即可求得y 与x 之间的函数关系式,进一步选出图象.【详解】过点C 作CD AB ⊥于点D ,因为90ACB ∠= ,30A ∠= ,16AB =,所以60B ∠= ,142BD BC ==,12AD AB BD =-=.如图1,当012AD ≤≤时,AP x =,tan 30PQ AP x =⋅ ,所以21236y x x x ==,如图2:当1216x <≤时,16BP AB AP x =-=-,所以)tan 6016PQ BP x =⋅=-,所以)211622y x x x =-=-+,故选:D此题考查了动点问题,注意掌握含30 直角三角形的性质与二次函数的性质;注意掌握分类讨论的思想.属于中档题.7.已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为()A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+C .()()211xf x x x =≠-+D .()()211xf x x x =-≠-+【正确答案】A 【分析】令11x t x -=+,则11tx t-=+,代入已知解析式可得()f t 的表达式,再将t 换成x 即可求解.【详解】令11x t x -=+,则11tx t-=+,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭,所以()()2211xf x x x=≠-+,故选:A.8.已知0x >,0y >,且2121x y+=+,若2231x y m m +>--恒成立,则实数m 的取值范围是()A .1m ≤-或4m ≥B .4m ≤-或m 1≥C .14-<<mD .41m -<<【正确答案】C 由2121x y +=+得121y x=+,利用基本不等式求出2x y +的最小值,再将不等式恒成立转化为最值,解不等式可得结果.【详解】由2121x y +=+得212(1)y x x y ++=+,所以12x xy +=,所以121y x=+,所以121x y x x +=++13≥=,当且仅当1,1x y ==时,等号成立,所以()min 23x y +=,所以2231x y m m +>--恒成立,可化为2331m m >--,即2340m m --<,解得14-<<m .故选:C结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;二、多选题9.有以下判断,其中是正确判断的有().A .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数B .函数()22122x f x x =+++的最小值为2C .函数()y f x =的图象与直线1x =的交点最多有1个D .若()1f x x x =--,则112f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭【正确答案】CD【分析】根据函数的定义域可判断A 的正误,根据基本不等式可判断B 的正误,根据函数的定义可判断C 的正误,根据函数解析式计算对应的函数值可判断D 的正误.【详解】对于A ,()xf x x=的定义域为()(),00,∞-+∞U ,而()1,01,0x g x x ≥⎧=⎨-<⎩的定义域为R ,两个函数的定义域不同,故两者不是同一函数.对于B ,由基本不等式可得()221222f x x x =++≥+,但221x +=无解,故前者等号不成立,故()2f x >,故B 错误.对于C ,由函数定义可得函数()y f x =的图象与直线1x =的交点最多有1个,故C 正确.对于D ,()1012f f f ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,故D 正确.故选:CD.10.下面命题正确的是()A .“3x >”是“5x >"的必要不充分条件B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件C .“1x ≠”是“2430x x -+≠”的必要不充分条件D .设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的充分不必要条件【正确答案】ABC【分析】利用充分条件,必要条件的定义逐项判断作答.【详解】对于A ,3x >不能推出5x >,而5x >,必有3x >,“3x >”是“5x >"的必要不充分条件,A 正确;对于B ,若0ac <,一元二次方程20ax bx c ++=判别式240b ac ∆=->,方程有二根12,x x ,120cx x a=<,即12,x x 一正一负,反之,一元二次方程20ax bx c ++=有一正一负两个实根12,x x ,则120cx x a=<,有0ac <,所以“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件,B 正确;对于C ,当1x ≠时,若3x =,有2430x x -+=,当2430x x -+≠时,1x ≠且3x ≠,因此“1x ≠”是“2430x x -+≠”的必要不充分条件,C 正确;对于D ,,R x y ∈,若4x y +≥,取1,4x y ==,显然“2x ≥且2y ≥”不成立,而2x ≥且2y ≥,必有4x y +≥,设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的必要不充分条件,D 不正确.故选:ABC11.函数()1,Q0,Qx D x x ∈⎧=⎨∉⎩被称为狄利克雷函数,则下列结论成立的是()A .函数()D x 的值域为[]0,1B .若()01D x =,则()011D x +=C .若()()120D x D x -=,则12x x -∈Q D .x ∃∈R ,(1D x =【正确答案】BD【分析】求得函数()D x 的值域判断选项A ;推理证明判断选项B ;举反例否定选项C ;举例证明x ∃∈R ,(1D x =.判断选项D.【详解】选项A :函数()D x 的值域为{}0,1.判断错误;选项B :若()01D x =,则0Q x ∈,01Q x +∈,则()011D x +=.判断正确;选项C :()()2ππ000D D -=-=,但2ππ=πQ -∉.判断错误;选项D :当x =时,((()01D x D D ===.则x ∃∈R ,(1D x =.判断正确.故选:BD12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A .224a b -≤B .214a b+≥C .若不等式20x ax b +-<的解集为()12,x x ,则120x x >D .若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【正确答案】ABD【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题13.已知21,0()2,0x x f x x x ⎧+≥=⎨-<⎩,求()1f f -=⎡⎤⎣⎦________.【正确答案】5【分析】先求()1f -,再根据()1f -值代入对应解析式得()1.f f ⎡⎤-⎣⎦【详解】因为()()1212,f -=-⨯-=所以()[]1241 5.f f f ⎡⎤-==+=⎣⎦求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.14.已知正实数a 、b 满足131a b+=,则()()12a b ++的最小值是___________.【正确答案】13+13+【分析】由已知可得出3ba b =-且3b >,化简代数式()()12a b ++,利用基本不等式可求得结果.【详解】因为正实数a 、b 满足131a b +=,则03b a b =>-,由0b >可得3b >,所以,()()()()()()32312122222333b b a b b b b b b b +⎛⎫⎛⎫++=++=++=++⎪ ⎪---⎝⎭⎝⎭()()()33515222313131333b b b b b -+=++=-++≥+=+--当且仅当62b =时,等号成立.因此,()()12a b ++的最小值是13+.故答案为.13+15.对于[]1,1a ∈-,()2210x a x a +-+->恒成立的x 取值________.【正确答案】()(),02,-∞+∞ 【分析】设()()()2221121f a x a x a x a x x =+-+-=-+-+关于a 的一次函数,只需()()1010f f ⎧>⎪⎨->⎪⎩即可求解.【详解】令()()()2221121f a x a x a x a x x =+-+-=-+-+,因为对于[]11a ∈-,,不等式()2210x a x a +-+->恒成立,所以()()1010f f ⎧>⎪⎨->⎪⎩即220320x x x x ⎧->⎨-+>⎩解得:0x <或2x >.故答案为.()()02-∞⋃+∞,,方法点睛:求不等式恒成立问题的方法(1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.(2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.(3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.16.若函数2()2f x x x =+,()2(0)g x ax a =+>,对于1x ∀∈[]1,2-,[]21,2x ∃∈-,使12()()g x f x =,则a 的取值范围是_____________.【正确答案】(]0,3【分析】由题意可知函数()g x 在区间[]1,2-的值域是函数()f x 在区间[]1,2-的值域的子集,转化为子集问题求a 的取值范围.【详解】()()20g x ax a =+>在定义域上是单调递增函数,所以函数在区间[]1,2-的值域是[]2,22a a -+函数()22f x x x =+在区间[]1,2-是单调递增函数,所以函数()f x 的值域是[]1,8-,由题意可知[][]2,221,8a a -+⊆-,所以21228a a -≥-⎧⎨+≤⎩,解得.3a ≤故答案为.(]0,3本题考查双变量等式中任意,存在问题求参数的取值范围,重点考查函数的值域,转化与化归的思想,属于中档题型.四、解答题17.已知{|13}A x x =-<≤,{|13}B x m x m =≤<+(1)若1m =时,求A B ⋃;(2)若R B A ⊆ð,求实数m 的取值范围.【正确答案】(1)(1,4)A B =-U ;(2)()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ .(1)利用集合的并集定义代入计算即可;(2)求出集合R A ð,利用集合包含关系,分类讨论B =∅和B ≠∅两种情况,列出关于m 的不等式,求解可得答案.【详解】(1)当1m =时,{|14}B x x =≤<,则{|14}A B x x ⋃=-<<即(1,4)A B =-U .(2){|1R A x x =≤-ð或}(]()3,13,x >=-∞-⋃+∞,由R B A ⊆ð,可分以下两种情况:①当B =∅时,13m m ≥+,解得:12m ≤-②当B ≠∅时,利用数轴表示集合,如图由图可知13131m m m <+⎧⎨+≤-⎩或133m m m <+⎧⎨>⎩,解得3m >;综上所述,实数m 的取值范围是:12m ≤-或3m >,即()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ 易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)已知a b c <<,且0a b c ++=,证明:a a a c b c<--.(2213a a a a ---(3)a ≥【正确答案】(1)证明见解析;(2)证明见解析【分析】(1)利用不等式的性质证明即可;(2)a 3a -<1a -2a -,对不等式两边同时平方后只需证明()3a a -<()()12a a --.【详解】证明:(1)由a b c <<,且0a b c ++=,所以0a <,且0,a cbc -<-<所以()()0a c b c -->,所以()()a c a c b c -<--()()b c a c b c ---,即1b c -<1a c -;所以a b c ->a a c -,即a a c -<a b c-.(2213a a a a ---,(3)a ≥a 3a -<1-a 2a -,即证(3)(3)(1)(2)2(1)(2)a a a a a a a a +-+--+-+--()3a a -<()()12a a --即证(3)(1)(2)a a a a -<--;即证02<,显然成立;213a a a a ---19.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【正确答案】(1)a =﹣1,b =2(2)见解析【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【详解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.20.(1)求函数()3f x x 在区间[]2,4上的值域.(2)已知二次函数2()1(R)f x x mx m m =-+-∈.函数在区间[]1,1-上的最小值记为()g m ,求()g m 的值域;【正确答案】(1)12,4⎤-⎦;(2)(]0-∞,【分析】(1)t =,可得函数()22()36318g t t tt t =--=+-,讨论其值域即可求解;(2)分类讨论二次函数的对称轴与给定区间[]1,1-的关系,分别表示出函数的最小值,表示为分段函数形式,作出图象即可求解.【详解】(1)函数()3f x x =,t =,则26x t =-∵[]2,4x ∈2t ≤≤那么函数()f x 转化为()22()36318g t t t t t =--=+-其对称轴16t =-,2t ≤≤时()g t 单调递增,∴()(2)g g t g ≤≤,12()4g t -≤≤-,故得()f x的值域为12,4⎤--⎦.(2)2()1f x x mx m =-+-,二次函数对称轴为2m x =,开口向上①若12m <-,即2m <-,此时函数()f x 在区间[]1,1-上单调递增,所以最小值()(1)2g m f m =-=.②若112m -≤≤,即22m -≤≤,此时当2m x =时,函数()f x 最小,最小值2()124m m g m f m ⎛⎫==-+- ⎪⎝⎭.③若12m >,即m>2,此时函数()f x 在区间[]1,1-上单调递减,所以最小值()(1)0g m f ==.综上22,2()1,2240,2m m m g m m m m <-⎧⎪⎪=-+--≤≤⎨⎪>⎪⎩,作出分段函数的图像如下,所以当2m <-时,()(,4);g m ∈-∞-当22m -≤≤时,[]4,0;g(m)∈-当m>2时,()0g m =,综上知()g m 的值域为(]0.,-∞21.今年,我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且()2101001000,040100007018450,40x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元【分析】(1)根据已知条件求得分段函数()W x 的解析式.(2)结合二次函数的性质、基本不等式求得()W x 的最大值以及此时的产量.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;∴()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元.22.已知()11282,0,11f x f x x x x x ⎛⎫+=+-≠≠ ⎪-⎝⎭,(1)求()f x 的解析式;(2)已知()()()22,22g x mx mx g x x f x m =--<-+在()1,3上有解,求m 的取值范围.【正确答案】(1)1()2f x x=+,0,1x x ≠≠;(2)3m <.【分析】(1)根据给定条件,用11,1x x x--依次替换x ,再消元求解作答.(2)由(1)结合已知,变形不等式,分离参数构造函数,求出函数在()1,3的最大值作答.【详解】(1)0,1x x ≠≠,11()2()821f x f x x x +=+--,用11x-替换x 得:11()2912()1x f f x x x x -+=-+--,则有1114()4()8222(9)1011x f x f x x x x x x x --=+---+=-+---,用1x x-替换x 得:1112()2()82(1)711x f f x x x x x x x -+=+--=++--,于是得99()18f x x =+,则1()2f x x=+,所以()f x 的解析式为1()2f x x=+,0,1x x ≠≠.(2)(1,3)x ∈,2221()()22(2)22g x x f x m mx mx x m x-<-+⇔--+<-+,即22(2)22m x x x x -+<++,于是得22222x x m x x ++<-+,令2222(),132x x h x x x x ++=<<-+,依题意,(1,3)x ∈,()m h x <有解,当(1,3)x ∈时,222223()22323()22222222[()][()]23333x x x x h x x x x x x x -++-==+=+-+-+-+--++322316219(2333x x =+≤+-++-,当且仅当1629233x x -=-,即2x =时取等号,因此当2x =时,max ()(2)3h x h ==,则3m <,所以m 的取值范围是3m <.。

高一(上)第一次月考数学试卷

高一(上)第一次月考数学试卷

高一〔上〕第一次月考数学试卷一、选择题:本大题共12个小题,每题每题给出的四个选项中,只有一项是符合题目要求的.A={x∈Q|x>−1},则〔〕A.⌀∉AB.√2∉AC.√2∈AD.{√2}⊆AA到B的映射f:x→y=2x+1,那么集合A中元素2在B中对应的元素是〔〕A.2B.5C.6D.8A={x|1<x<2},B={x|x<a},假设A⊆B,则a的范围是〔〕A.a≥2B.a≥1C.a≤1D.a≤2y=√2x−1的定义域是〔〕A.(12, +∞) B.[12, +∞) C.(−∞, 12) D.(−∞, 12]U={0, 1, 3, 5, 6, 8},集合A={1, 5, 8 },B={2},则集合(∁U A)∪B=( ) A.{0, 2, 3, 6} B.{0, 3, 6}C.{2, 1, 5, 8}D.⌀A={x|−1≤x<3},B={x|2<x≤5},则A∪B=( )A.(2, 3)B.[−1, 5]C.(−1, 5)D.(−1, 5]7.以下函数是奇函数的是〔〕A.y =xB.y =2x 2−3C.y =√xD.y =x 2,x ∈[0, 1]8.化简:√(π−4)2+π=( )A.4B.2π−4C.2π−4或4D.4−2πM ={x|−2≤x ≤2},N ={y|0≤y ≤2},给出以下四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是〔 〕A. B.C. D.f(x)=g(x)+2,且g(x)为奇函数,假设f(2)=3,则f(−2)=( )A.0B.−3C.1D.311.f(x)={x 2,x >0π0,x <0,x =0,则f{f[f(−3)]}等于〔 〕 A.0B.πC.π2D.9f(x)是 R 上的增函数,A(0, −1),B(3, 1)是其图象上的两点,那么|f(x)|<1的解集是〔 〕A.(−3, 0)B.(0, 3)C.(−∞, −1]∪D.(−∞, 0]∪[3, +∞) [1, +∞)二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕f(x)={x +5(x >1)2x 2+1(x ≤1),则f[f(1)]=________.f(x −1)=x 2,则f(x)=________.R 上的奇函数f(x),当x >0时,f(x)=2;则奇函数f(x)的值域是________.以下命题:①假设函数y =2x +1的定义域是{x|x ≤0},则它的值域是{y|y ≤1};②假设函数y =1x 的定义域是{x|x >2},则它的值域是{y|y ≤12};③假设函数y =x 2的值域是{y|0≤y ≤4},则它的定义域一定是{x|−2≤x ≤2}; ④假设函数y =x +1x 的定义域是{x|x <0},则它的值域是{y|y ≤−2}.其中不正确的命题的序号是________.〔注:把你认为不正确的命题的序号都填上〕三、解答题〔本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.〕U ={1, 2, 3, 4, 5, 6, 7, 8},A ={x|x 2−3x +2=0},B ={x|1≤x ≤5, x ∈Z},C ={x|2<x <9, x ∈Z}(1)求A ∪(B ∩C);(2)求(∁U B)∪(∁U C)A ={x|x 2−ax +a 2−19=0},B ={x|x 2−5x +6=0},C ={x|x 2+2x −8=0}.(1)假设A =B ,求实数a 的值;(2)假设⌀⊊A∩B,A∩C=⌀,求实数a的值.f(x)=x+1 x(1)判断函数的奇偶性,并加以证明;(2)用定义证明f(x)在(0, 1)上是减函数;(3)函数f(x)在(−1, 0)上是单调增函数还是单调减函数?〔直接写出答案,不要求写证明过程〕.f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图象,如下图,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;(2)写出函数f(x)的解析式和值域.f(x)=ax2+bx+1(a≠0, b∈R),假设f(−1)=0,且对任意实数x(x∈R)不等式f(x)≥0恒成立.(1)求实数a、b的值;(2)当x∈[−2, 2]时,g(x)=f(x)−kx是增函数,求实数k的取值范围.f(x)是定义在R上的函数,假设对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x> 0,有f(x)>0.(1)求证:f(0)=0;(2)判断函数的奇偶性;(3)判断函数f(x)在R上的单调性,并证明你的结论.答案1.【答案】B【解析】根据题意,易得集合A的元素为全体大于−1的有理数,据此分析选项,综合可得答案.【解答】解:∵集合A={x∈Q|x>−1},∴集合A中的元素是大于−1的有理数,对于A,“∈”只用于元素与集合间的关系,故A错;对于B,√2不是有理数,故B正确,C错,D错;故选:B.2.【答案】B【解析】由已知集合A到B的映射f:x→y=2x+1中的x与2x+1的对应关系,可得到答案.【解答】解:∵集合A到B的映射f:x→y=2x+1,∴2→y=2×2+1=5.∴集合A中元素2在B中对应的元素是5.故选:B.3.【答案】A【解析】根据两个集合间的包含关系,考查端点值的大小可得2≤a.【解答】解:∵集合A={x|1<x<2},B={x|x<a},A⊆B,∴2≤a,故选:A.4.【答案】B【解析】原函数只含一个根式,只需根式内部的代数式大于等于0即可.【解答】解:要使函数有意义,则需2x−1≥0,即x≥12,所以原函数的定义域为[12, +∞).故选:B.5.【答案】A【解析】利用补集的定义求出(C U A),再利用并集的定义求出(C U A)∪B.【解答】解:∵U={0, 1, 3, 5, 6, 8},A={ 1, 5, 8 },∴(C U A)={0, 3, 6}∵B={2},∴(C U A)∪B={0, 2, 3, 6}故选:A6.【答案】B【解析】分别把两集合的解集表示在数轴上,根据数轴求出两集合的并集即可.【解答】解:把集合A={x|−1≤x<3},B={x|2<x≤5},表示在数轴上:则A∪B=[−1, 5].故选B7.【答案】A【解析】由条件利用函数的奇偶性的定义,得出结论.【解答】解:∵函数y=f(x)=x的定义域为R,且满足f(−x)=−x=−f(x),故函数f(x)是奇函数;∵函数y=f(x)=2x2−3的定义域为R,且满足f(−x)=2(−x)2−3=2x2−3=f(x),故函数f(x)是偶函数;∵函数y=√x的定义域为[0, +∞),不关于原点对称,故函数为非奇非偶函数;∵函数y=x2,x∈[0, 1]的定义域不关于原点对称,故函数为非奇非偶函数,故选:A.8.【答案】A【解析】由π<4,得√(π−4)2=4−π,由此能求出原式的值.【解答】解:√(π−4)2+π=4−π+π=4.故选:A.9.【答案】B【解析】此题考查的是函数的概念和图象问题.在解答时首先要对函数的概念从两个方面进行理解:一是对于定义域内的任意一个自变量在值域当中都有唯一确定的元素与之对应,二是满足一对一、多对一的标准,绝不能出现一对多的现象.【解答】解:由题意可知:M={x|−2≤x≤2},N={y|0≤y≤2},对在集合M中(0, 2]内的元素没有像,所以不对;对不符合一对一或多对一的原则,故不对;对在值域当中有的元素没有原像,所以不对;而符合函数的定义.故选:B.10.【答案】C【解析】由已知可知f(2)=g(2)+2=3,可求g(2),然后把x=−2代入f(−2)=g(−2)+2=−g(2)+2可求【解答】解:∵f(x)=g(x)+2,f(2)=3,∴f(2)=g(2)+2=3∴g(2)=1∵g(x)为奇函数则f(−2)=g(−2)+2=−g(2)+2=1故选:C11.【答案】C【解析】应从内到外逐层求解,计算时要充分考虑自变量的范围.根据不同的范围代不同的解析式.【解答】解:由题可知:∵−3<0,∴f(−3)=0,∴f[f(−3)]=f(0)=π>0,∴f{f[f(−3)]}=f(π)=π2故选C12.【答案】B【解析】|f(x)|<1等价于−1<f(x)<1,根据A(0, −1),B(3, 1)是其图象上的两点,可得f(0)<f(x)<f(3),利用函数f(x)是R上的增函数,可得结论.【解答】解:|f(x)|<1等价于−1<f(x)<1,∵A(0, −1),B(3, 1)是其图象上的两点,∴f(0)<f(x)<f(3)∵函数f(x)是R上的增函数,∴0<x<3∴|f(x)|<1的解集是(0, 3)故选:B.13.【答案】8【解析】先求f(1)的值,判断出将1代入解析式2x2+1;再求f(3),判断出将3代入解析式x+5即可.【解答】解:∵f(1)=2+1=3∴f[f(1)]=f(3)=3+5=8故答案为:814. 【答案】(x +1)2【解析】可用换元法求解该类函数的解析式,令x −1=t ,则x =t +1代入f(x −1)=x 2可得到f(t)=(t +1)2即f(x)=(x +1)2【解答】解:由f(x −1)=x 2,令x −1=t ,则x =t +1代入f(x −1)=x 2可得到f(t)=(t +1)2∴f(x)=(x +1)2故答案为:(x +1)2.15. 【答案】{−2, 0, 2}【解析】根据函数是在R 上的奇函数f(x),求出f(0);再根据x >0时的解析式,求出x <0的解析式,从而求出函数在R 上的解析式,即可求出奇函数f(x)的值域.【解答】解:∵定义在R 上的奇函数f(x),∴f(−x)=−f(x),f(0)=0设x <0,则−x >0时,f(−x)=−f(x)=−2∴f(x)={2x >00x =0−2x <0∴奇函数f(x)的值域是:{−2, 0, 2}故答案为:{−2, 0, 2}16. 【答案】②③【解析】逐项分析.①根据一次函数的单调性易得;②根据反比例函数的图象和性质易知其值域应为(0, 12);③可举反例说明;④利用均值不等式可得.【解答】解:①当x ≤0时,2x +1≤1,故①正确;②由反比例函数的图象和性质知,当x >2时,0<1x <12,故②错误;③当函数定义域为[0, 2]时,函数值域也为[0, 4],故③错误;④当x <0时,y =x +1x =−[(−x)+1−x ].因为(−x)+1−x ≥2√(−x)⋅1−x =2,所以y ≤−2,故④正确.综上可知:②③错误.故答案为:②③.17. 【答案】解:(1)依题意有:A ={1, 2},B ={1, 2, 3, 4, 5},C ={3, 4, 5, 6, 7, 8}, ∴B ∩C ={3, 4, 5},故有A ∪(B ∩C)={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁U B ={6, 7, 8},∁U C ={1, 2};故有(∁U B)∪(∁U C)={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.【解析】(1)先用列举法表示A 、B 、C 三个集合,利用交集和并集的定义求出B ∩C ,进而求出A ∪(B ∩C).; (2)先利用补集的定义求出(∁U B)和(∁U C),再利用并集的定义求出(∁U B)∪(∁U C).【解答】解:(1)依题意有:A ={1, 2},B ={1, 2, 3, 4, 5},C ={3, 4, 5, 6, 7, 8}, ∴B ∩C ={3, 4, 5},故有A ∪(B ∩C)={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁U B ={6, 7, 8},∁U C ={1, 2};故有(∁U B)∪(∁U C)={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.18. 【答案】解:(1)由题意知:B ={2, 3}∵A =B∴2和3是方程x 2−ax +a 2−19=0的两根.由{4−2a +a 2−19=09−3a +a 2−19=0得a =5.; (2)由题意知:C ={−4, 2}∵⌀⊂A ∩B ,A ∩C =⌀∴3∈A∴3是方程x 2−ax +a 2−19=0的根.∴9−3a +a 2−19=0∴a =−2或5当a =5时,A =B ={2, 3},A ∩C ≠⌀;当a =−2时,符合题意故a =−2.【解析】(1)先根据A =B ,化简集合B ,根据集合相等的定义,结合二次方程根的定义建立等量关系,解之即可;; (2)先求出集合B 和集合C ,然后根据A ∩B ≠⌀,A ∩C =⌀,则只有3∈A ,代入方程x 2−ax +a 2−19=0求出a 的值,最后分别验证a 的值是否符合题意,从而求出a 的值.【解答】解:(1)由题意知:B ={2, 3}∵A =B∴2和3是方程x 2−ax +a 2−19=0的两根.由{4−2a +a 2−19=09−3a +a 2−19=0得a =5.; (2)由题意知:C ={−4, 2}∵⌀⊂A ∩B ,A ∩C =⌀∴3∈A∴3是方程x 2−ax +a 2−19=0的根.∴9−3a +a 2−19=0∴a =−2或5当a =5时,A =B ={2, 3},A ∩C ≠⌀;当a =−2时,符合题意故a =−2.19. 【答案】证明:(1)函数为奇函数f(−x)=−x −1x =−(x +1x )=−f(x); (2)设x 1,x 2∈(0, 1)且x 1<x 2f(x 2)−f(x 1)=x 2+1x 2−x 1−1x 1=(x 2−x 1)(1−1x 1x 2)=(x 2−x 1)(x 1x 2−1)x 1x 2∵0<x 1<x 2<1,∴x 1x 2<1,x 1x 2−1<0,∵x 2>x 1∴x 2−x 1>0.∴f(x 2)−f(x 1)<0,f(x 2)<f(x 1)因此函数f(x)在(0, 1)上是减函数; (3)f(x)在(−1, 0)上是减函数.【解析】(1)用函数奇偶性定义证明,要注意定义域.; (2)先任取两个变量,且界定大小,再作差变形看符号,; (3)由函数图象判断即可.【解答】证明:(1)函数为奇函数f(−x)=−x −1x =−(x +1x )=−f(x); (2)设x 1,x 2∈(0, 1)且x 1<x 2f(x 2)−f(x 1)=x 2+1x 2−x 1−1x 1=(x 2−x 1)(1−1x 1x 2)=(x 2−x 1)(x 1x 2−1)x 1x 2∵0<x 1<x 2<1,∴x 1x 2<1,x 1x 2−1<0,∵x 2>x 1∴x 2−x 1>0.∴f(x 2)−f(x 1)<0,f(x 2)<f(x 1)因此函数f(x)在(0, 1)上是减函数; (3)f(x)在(−1, 0)上是减函数.20. 【答案】解:(1)因为函数为偶函数,故图象关于y 轴对称,补出完整函数图象如有图:所以f(x)的递增区间是(−1, 0),(1, +∞).; (2)设x >0,则−x <0,所以f(−x)=x 2−2x ,因为f(x)是定义在R 上的偶函数,所以f(−x)=f(x),所以x >0时,f(x)=x 2−2x ,故f(x)的解析式为f(x)={x 2+2x,x ≤0x 2−2x,x >0值域为{y|y ≥−1}【解析】(1)因为函数为偶函数,故图象关于y 轴对称,由此补出完整函数f(x)的图象即可,再由图象直接可写出f(x)的增区间.; (2)可由图象利用待定系数法求出x >0时的解析式,也可利用偶函数求解析式,值域可从图形直接观察得到.【解答】解:(1)因为函数为偶函数,故图象关于y 轴对称,补出完整函数图象如有图:所以f(x)的递增区间是(−1, 0),(1, +∞).; (2)设x >0,则−x <0,所以f(−x)=x 2−2x ,因为f(x)是定义在R 上的偶函数,所以f(−x)=f(x),所以x >0时,f(x)=x 2−2x ,故f(x)的解析式为f(x)={x 2+2x,x ≤0x 2−2x,x >0值域为{y|y ≥−1}21. 【答案】解:(1)∵f(−1)=0,∴a −b +1=0.…∵任意实数x 均有f(x)≥0成立,∴{a >0△=b 2−4a ≤0. 解得a =1,b =2.…; (2)由(1)知f(x)=x 2+2x +1,∴g(x)=f(x)−kx =x 2+(2−k)x +1的对称轴为x =k−22.… ∵当x ∈[−2, 2]时,g(x)是增函数,∴k−22≤−2,…∴实数k 的取值范围是(−∞, −2].…【解析】(1)利用f(−1)=0,且对任意实数x(x ∈R)不等式f(x)≥0恒成立,列出方程组,求解即可.; (2)求出函数的对称轴,利用函数的单调性列出不等式,求解即可.【解答】解:(1)∵f(−1)=0,∴a −b +1=0.…∵任意实数x 均有f(x)≥0成立,∴{a >0△=b 2−4a ≤0. 解得a =1,b =2.…; (2)由(1)知f(x)=x 2+2x +1,∴g(x)=f(x)−kx =x 2+(2−k)x +1的对称轴为x =k−22.… ∵当x ∈[−2, 2]时,g(x)是增函数,∴k−22≤−2,…∴实数k 的取值范围是(−∞, −2].…22. 【答案】解:(1)由f(x +y)=f(x)+f(y),令x =y =0,∴f(0)=2f(0),∴f(0)=0.; (2)由f(x+y)=f(x)+f(y),令x=−y,∴f(0)=f(x)+f(−x),即f(−x)=−f(x),且f(0)=0,∴f(x)是奇函数.; (3)f(x)在R上是增函数.证明:在R上任取x1,x2,并且x1>x2,∴f(x1−x2)=f(x1)−f(x2).∵x1>x2,即x1−x2>0,∴f(x1−x2)=f(x1)−f(x2)>0,∴f(x)在R上是增函数.【解析】(1)直接令x=y=0,代入f(x+y)=f(x)+f(y)即可;; (2)令x=−y,所以有f(0)=f(x)+f(−x),即证明为奇函数;; (3)直接利用函数的单调性定义证明即可;【解答】解:(1)由f(x+y)=f(x)+f(y),令x=y=0,∴f(0)=2f(0),∴f(0)=0.; (2)由f(x+y)=f(x)+f(y),令x=−y,∴f(0)=f(x)+f(−x),即f(−x)=−f(x),且f(0)=0,∴f(x)是奇函数.; (3)f(x)在R上是增函数.证明:在R上任取x1,x2,并且x1>x2,∴f(x1−x2)=f(x1)−f(x2).∵x1>x2,即x1−x2>0,∴f(x1−x2)=f(x1)−f(x2)>0,∴f(x)在R上是增函数.。

高一数学第一学期第一次月考测试题(有详细答案)

高一数学第一学期第一次月考测试题(有详细答案)

高一数学上学期第一次月考测试题一、选择题:1.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为 ()A .1B .—1C .1或—1D .1或—1或02.函数22232x y x x -=--的定义域为() A 、(],2-∞B 、(],1-∞C 、11,,222⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎭⎝⎦D 、11,,222⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭ 3.已知集合{}2{|3},|log 1M x x N x x =<=>,则M ∩N=()(A )∅ (B ){}|03x x << (C ){}|13x x << (D )4.若U 为全集,下面三个命题中真命题的个数是() (1)若()()U B C A C B A U U == 则,φ(2)若()()φ==B C A C U B A U U 则,(3)若φφ===B A B A ,则A .0个B .1个C .2个D .3个5.不等式042<-+ax ax 的解集为R ,则a 的取值范围是()A .016<≤-aB .16->aC .016≤<-aD .0<a6.{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 为()A .1-B .0或1C .0D .27.在同一坐标系内作出的两个函数图像图1所示,则这两个函数为()A 、y=a x 和y=loga (-x)B 、y=a x 和y=log a x -1C 、y=a -x 和y=log a x -1D 、y=a -x 和y=log a (-x)8.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是()A 、()MP S B 、()M P S C 、()u M P C S D 、()u M P C S9.函数f(x)=x 2+2(a -1)x+2在区间(-∞,4)上递减,则a 的取值范围是()A.[)3,-+∞B.(],3-∞-C.(-∞,5)D.[)3,+∞10.{}2A |22,y y x x x R ==-+∈,{}2B |22,m m n n n R ==--+∈,则A ∩B=()A .[1,)+∞B .[1,3]C .(,3]-∞D .∅11.下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速、A 、(1)(2)(4)B 、(4)(2)(3)C 、(4)(1)(3)D 、(4)(1)(2)12.函数()12ax f x x +=+在区间()2,-+∞上单调递增,则实数a 的取值范围() A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()2,-+∞D .()(),11,-∞-+∞二、填空题:13.设集合}4)2(|{2≤-=x x A ,B ={1,2,3,4},则B A =_______.14.已知集合A={a ,b ,2},B={2,2b ,2a }且,A =B ,则a =.15.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是__16.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(只要求写出命题的序号) ①若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数;③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数;④若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数。

2023-2024学年陕西省高一上册第一次月考(10月)数学试题(含解析)

2023-2024学年陕西省高一上册第一次月考(10月)数学试题(含解析)

2023-2024学年陕西省高一上册第一次月考(10月)数学试题一、单选题1.已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A B ⋂=ðA .}{1,5,7B .}{3,5,7C .}{1,3,9D .}{1,2,3【正确答案】A【详解】试题分析:N A B ⋂ð为在集合A 但不在集合B 中的元素构成的集合,因此{1,5,7}N A B ⋂=ð集合的交并补运算2.函数11y x =+的定义域为()A .{}1x x >-B .{}1x x ≥C .{}0x x ≥D .{|1x x ≤且1}x ≠-【正确答案】B【分析】根据偶次根式下的被开方数为非负数、分式分母不等于零列不等式组,解不等式组求得函数的定义域.【详解】要使函数11y x =+有意义,则10110x x x -≥⎧⇒≥⎨+≠⎩,所以函数的定义域为{}1x x ≥.故选:B3.设集合{|03}A x N x =∈<的真子集个数为()A .16B .8C .7D .4【正确答案】C【分析】首先判断集合A 的元素个数,再求真子集个数.【详解】{}0,1,2A =,所以集合A 的真子集个数是3217-=.故选:C4.已知函数()y f x =的对应关系如下表所示,函数()y g x =的图象是如图所示的曲线ABC ,则()2f g ⎡⎤⎣⎦的值为()x 123()f x 23A .3B .0C .1D .2【正确答案】D【分析】根据图象可得()21g =,进而根据表格得()12f =.【详解】由题图可知()21g =,由题表可知()12f =,故()22f g =⎡⎤⎣⎦.故选:D .5.设集合{|04},{|02}A x x B y y =≤≤=≤≤,则下列对应f 中不能构成A 到B 的映射的是A .1:2f x y x →=B .:2f x y x →=+C .:f x y →=D .:|2|f x y x →=-【正确答案】B【详解】根据映射定义,1:2f x y x →=,:f x y →=,:2f x y x →=-中的对应f 中均能构成A 到B 的映射,而对于:2f x y x →=+,当4x =,6y =,而6B ∉,不能构成A 到B 的映射,选B.6.设集合{}41,Z M x x n n ==+∈,{}21,Z N x x n n ==+∈,则()A .MN B .N M C .M N∈D .N M∈【正确答案】A【分析】根据集合M 和N 中的元素的特征,结合集合间的关系,即可得解.【详解】对集合M ,其集合中的元素为4的整数倍加1,对集合N ,其集合中的元素为2的整数倍加1,4的整数倍加1必为2的整数倍加1,反之则不成立,即M 中的元素必为N 中的元素,而N 中的元素不一定为M 中的元素,故M 为N 的真子集,即M N ,故选:A7.设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫⎪ ⎪⎝⎭的值为A .1516B .2716-C .89D .18【正确答案】A【详解】因为1x >时,2()2,f x x x =+-所以211(2)2224,(2)4f f =+-==;又1x ≤时,2()1f x x =-,所以211115(()1().(2)4416f f f ==-=故选A.本题考查分段函数的意义,函数值的运算.8.下列各组函数()f x 和()g x 的图象相同的是()A .()f x x =,()2g x =B .()2f x x =,()()21g x x =+C .()1f x =,()0g x x=D .()f x x =,()()()00x x g x xx ⎧≥⎪=⎨-<⎪⎩【正确答案】D【分析】若两个函数图象相同则是相等函数,分别求每个选项中两个函数的定义域和对应关系,即可判断是否为相同函数,进而可得正确选项.【详解】对于A 中,函数()f x x =的定义域为R ,()2g x x ==的定义域为[)0,+∞,所以定义域不同,不是相同的函数,图象不同;对于B 中,()2f x x =,()()21g x x =+的对应关系不同,所以不是相同的函数,两个函数图象不同;对于C 中,函数()1f x =的定义域为R ,与()01g x x ==的定义域为{|0}x x ≠,所以定义域不同,所以不是相同的函数,两个函数图象不同;对于D 中,函数(),0,0x x f x x x x ≥⎧==⎨-<⎩与(),0,0x x g x x x ≥⎧=⎨-<⎩的定义域相同,对应关系也相同,所以是相同的函数,两个函数图象相同;故选:D.9.如果函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,那么实数a 的取值范围是()A .3a ≤-B .3a ≥-C .5a ≤D .5a ≥【正确答案】A【分析】根据二次函数的单调性列式可求出结果.【详解】因为函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,所以(1)4a --≥,解得3a ≤-.故选:A10.若函数()1f x +的定义域为[]1,15-,则函数()2f xg x =A .[]1,4B .(]1,4C .⎡⎣D .(【正确答案】B先计算()f x 的定义域为[]0,16,得到201610x x ⎧≤≤⎨->⎩,计算得到答案.【详解】设1x t +=,则()()1f x f t +=.由()1f x +的定义域为[]1,15-知115x -≤≤,0116x ∴≤+≤,即016t ≤≤()y f t ∴=的定义域为[]0,16,∴要使函数()2f xg x =201610x x ⎧≤≤⎨->⎩,即441x x -≤≤⎧⎨>⎩,解得14x <≤,故选:B .本题考查了函数的定义域,意在考查学生的计算能力.11.设P ,Q 是两个非空集合,定义(){},,P Q a b a P b Q ⨯=∈∈,若{}3,4,5P =,{}4,5,6,7Q =,则P Q ⨯中元素的个数是()A .3B .4C .12D .16【正确答案】C【分析】根据集合新定义,利用列举法写出集合的元素即可得答案.【详解】因为定义(){},,P Q a b a P b Q ⨯=∈∈,且{}3,4,5P =,{}4,5,6,7Q =,所以()()()()()()()()()()()(){}3,4,3,5,3,6,3,7,4,4,4,5,4,6,4,7,5,4,5,5,5,6,5,7P Q ⨯=,P Q ⨯中元素的个数是12,故选:C.12.已知函数(3)5,1()2,1a x x f x a x x-+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是()A .(0,3)B .(0,3]C .(0,2)D .(0,2]【正确答案】D【分析】直接由两段函数分别为减函数以及端点值的大小关系解不等式组即可.【详解】由函数是(-∞,+∞)上的减函数可得()3020352a a a a ⎧-<⎪>⎨⎪-+≥⎩解得02a <≤.故选:D.二、填空题13.已知集合A ={x|125x-∈N ,x ∈N },则用列举法表示为__________________.【正确答案】{}1,2,3,4A =【分析】由题设集合A ={x|125x -∈N ,x ∈N },可通过对x 赋值,找出使得125x-∈N ,x ∈N 成立的所有x 的值,用列举法写出答案.【详解】由题意A ={x|125x-∈N ,x ∈N }∴x 的值可以为1,2,3,4,故答案为A={1,2,3,4}.考查学生会用列举法表示集合,会利用列举法讨论x 的取值得到所有满足集合的元素.做此类题时,应注意把所有满足集合的元素写全且不能相等.14.已知()123f x x +=+,则()3f =______;【正确答案】7【分析】由13x +=,求出x ,然后代入()123f x x +=+中可求得结果.【详解】由13x +=,得2x =,所以()212237f +=⨯+=,即()37f =,故715.已知集合11,2A ⎧⎫=-⎨⎬⎩⎭,{}10B x mx =-=,若A B A ⋃=,则所有实数m 组成的集合是______;【正确答案】{}1,0,2-【分析】由A B A ⋃=可得B A ⊆,然后分0m =和0m ≠两种情况求解即可.【详解】因为A B A ⋃=,所以B A ⊆,当0m =时,B =∅,满足B A ⊆,当0m ≠时,则{}110B x mx x x m ⎧⎫=-===⎨⎬⎩⎭,因为B A ⊆,11,2A ⎧⎫=-⎨⎬⎩⎭,所以11m =-或112m =,得1m =-或2m =,综上,所有实数m 组成的集合是{}1,0,2-,故{}1,0,2-16.定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠,若()()1f m f m -<,则m 的取值范围是______.【正确答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意可得函数在[]22-,上单调递减,然后根据函数的单调性解不等式即可.【详解】因为定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠,所以()f x 在[]22-,上单调递减,所以由()()1f m f m -<,得212221m m m m-≤-≤⎧⎪-≤≤⎨⎪->⎩,解得112m -≤<,即m 的取值范围是11,2⎡⎫-⎪⎢⎣⎭,故11,2⎡⎫-⎪⎢⎣⎭三、解答题17.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.【正确答案】01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据集合相等的定义,结合集合元素的互异性,通过解方程组进行求解即可.【详解】∵A =B ,∴集合A 与集合B 中的元素相同∴22x x y y =⎧⎨=⎩或22x y y x⎧=⎨=⎩,解得x ,y 的值为00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩,验证得,当x =0,y =0时,A ={2,0,0}这与集合元素的互异性相矛盾,舍去.∴x ,y 的取值为01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩本题考查了已知两集合相等求参数取值问题,考查了数学运算能力.18.已知函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩(1)求((2))f f -的值;(2)若3()2f a =,求a .【正确答案】(1)2;(2)2,2±,34-.【分析】(1)根据函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,先求得(2)f -,再求((2))f f -的值.(2)根据3()2f a =,分1a >,11a -≤≤,1a <-讨论求解.【详解】(1)因为函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,所以()(2)2231f -=⨯-+=-()2((2))(1)112f f f -=-+==-(2)当1a >时,1312a +=,解得2a =;当11a -≤≤时,2312a +=,解得2a =±当1a <-时,3232a +=,解得34a =-;综上:a 的值为:2,34-.本题主要考查分段函数求值和已知函数值求参数,还考查了分类讨论的思想和运算求解的能力,属于中档题.19.已知集合{}|22A x a x a =-≤≤+,{|1B x x =≤或}4x ≥.(1)当3a =时,求A B ⋂;A B ⋃;(2)若A B ⋂=∅,求实数a 的取值范围.【正确答案】(1){|11A B x x ⋂=-≤≤或45}x ≤≤;A B ⋃=R ;(2)(),1-∞.【分析】(1)直接求A B ⋂和A B ⋃;(2)对集合A 分A =∅和A ≠∅两种情况讨论分析得解.【详解】(1)当3a =时,{}|15A x x =-≤≤,{|1B x x =≤或}4x ≥,∴{|11A B x x ⋂=-≤≤或45}x ≤≤,A B ⋃=R .(2)若A =∅,此时22a a ->+,∴a<0,满足A B ⋂=∅,当A ≠∅时,0a ≥.{}|22A x a x a =-≤≤+,∵A B ⋂=∅,∴21{24a a ->+<,∴01a ≤<.综上可知,实数a 的取值范围是(,1)-∞.本题主要考查集合的运算,考查集合的运算结果求参数的取值范围,意在考查学生对这些知识的理解掌握水平.20.已知()f x 是定义在(0,)+∞上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:(8)3f =;(2)求不等式()(2)3f x f x -->的解集.【正确答案】(1)证明见解析;(2)1627x <<.【分析】(1)根据()21f =,结合f (xy )=f (x )+f (y ),利用赋值法即可求得()8f ,则问题得证;(2)等价转化不等式,利用函数单调性,即可求得不等式解集.【详解】(1)由题意得(8)(42)(4)(2)(22)(2)3(2)3f f f f f f f =⨯=+=⨯+==(2)原不等式可化为()(2)(8)(8(2))f x f x f f x >-+=-由函数()f x 是(0,)+∞上的增函数得8(2)0x x >->,解得1627x <<.故不等式()(2)3f x f x -->的解集为162,7骣琪琪桫.本题考查抽象函数函数值的求解,以及利用函数单调性解不等式,属综合基础题.21.已知集合{|210}P x x =-,{|11}Q x m x m =-+.(1)求集合P R ð;(2)若P Q ⊆,求实数m 的取值范围;(3)若P Q Q ⋂=,求实数m 的取值范围.【正确答案】(1){|2x x <-或10}x >;(2)9m ≥;(3)3m ≤.【分析】(1)由补集定义得结论;(2)由包含关系得不等式组,求解可得;(3)由P Q Q ⋂=,则Q P ⊆,然后分类讨论:按Q =∅和Q ≠∅分类.【详解】(1)因为{|210}P x x =-≤≤,所以R {|2P x x =<-ð或10}x >;(2)因为P Q ⊆,所以12110m m -≤-⎧⎨+≥⎩,解得9m ≥;(3)P Q Q ⋂=,则Q P ⊆,若11m m ->+即0m <,则Q =∅,满足题意;若0m ≥,则Q ≠∅,由题意12110m m -≥-⎧⎨+≤⎩,解得03m ≤≤,综上,3m ≤.22.设函数1()1ax f x x -=+,其中a ∈R .(1)若1a =,()f x 的定义域为区间[]0,3,求()f x 的最大值和最小值;(2)若()f x 的定义域为区间(0,+∞),求a 的取值范围,使()f x 在定义域内是单调减函数.【正确答案】(1)max min 1(),()12f x f x ==-(2)1a <-【详解】1()1ax f x x -=+=(1)11a x a x +--+=a -11a x ++,设x 1,x 2∈R ,则f (x 1)-f (x 2)=211111a a x x ++-++=1212(1)()(1)(1)a x x x x +-++.(1)当a =1时,设0≤x 1<x 2≤3,则f (x 1)-f (x 2)=12122()(1)(1)x x x x -++.又x 1-x 2<0,x 1+1>0,x 2+1>0,所以f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),所以f (x)在[0,3]上是增函数,所以f (x)max =f (3)=1-24=12;f (x)min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0要f (x)在(0,+∞)上是减函数,只要f (x 1)-f (x 2)<0而f (x 1)-f (x 2)=1212(1)()(1)(1)a x x x x +-++,所以当a +1<0即a <-1时,有f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),所以当a<-1时,f(x)在定义域(0,+∞)上是单调减函数.。

2023-2024学年河南省郑州市高一上学期第一次月考数学质量检测模拟试题(含解析)

2023-2024学年河南省郑州市高一上学期第一次月考数学质量检测模拟试题(含解析)

2023-2024学年河南省郑州市高一上册第一次月考数学试题一、单选题1.下列各命题中,真命题是()A .2,10x R x ∀∈-<B .2x N,x 1∀∈≥C .3,1x x ∃∈<Z D .2,2x Q x ∃∈=【正确答案】C【分析】分别对选项中的等式或不等式求解,依次判断是否正确即可【详解】对于选项A,210x -<,即1x >或1x <-,故A 不正确;对于选项B,当0x =时,201x =<,故B 不正确;对于选项D,x =,故D 不正确;对于选项C,当0x =时,301x =<,故C 为真命题,故选C本题考查不等式的求解,考查命题真假的判断,考查全称量词、存在性量词的应用2.已知集合{}20A xx x =-+≥∣,{10}B x x =-<∣,则A B ⋃=()A .{1}∣≤xx B .{1}∣<x x C .{01}x x ≤<∣D .{01}xx ≤≤∣【正确答案】A先求出集合A 和集合B ,然后,直接求解A B ⋃即可【详解】集合{}20A x x x =-+≥∣}{10x x =≥≥,集合{10}{1}B x x x x =-<=<∣∣,A B ⋃={1}∣≤xx 本题考查集合的运算,属于基础题3.若集合{}230A x x x =-<∣,{}1B x x =≥∣则图中阴影部分表示的集合为()A .{}0x x >∣B .{}01x x <≤∣C .{}13x x ≤<∣D .{|0<<1x x 或}3x ≥【分析】解一元二次不等式求得集合A ,通过求A B ⋂求得正确答案.【详解】()2330x x x x -=-<,解得03x <<,故{}|03A x x =<<,阴影部分表示A B ⋂,则{}|13A B x x ⋂=≤<.故选:C4.命题“x ∃∈R ,2220x x -+≤”的否定是()A .x ∃∈R ,2220x x -+≥B .x ∃∈R ,2220x x -+>C .x ∀∈R ,2220x x -+≤D .x ∀∈R ,2220x x -+>【正确答案】D【分析】根据特称命题的否定直接得出答案.【详解】因为特称命题的否定是全称命题,所以命题“x ∃∈R ,2220x x -+≤”的否定是为:x ∀∈R ,2220x x -+>,故选:D.5.设集合{}13A x x =-≤<,{}02B x x =<≤,则“a A ∈”是“a B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】根据已知条件,推得B A ,即可判断.【详解】解: 集合{}13A x x =-≤<,{}02B x x =<≤,B ∴A ,∴“a A ∈”是“a B ∈”的必要不充分条件.故选:B .6.若0a b <<,则下列不等式成立的是()A 2a b a b +<<<B 2a ba b+≤<<C .2a b a b +<<D .2a ba b +<≤<2a b +<,再结合0a b <<可得出结果.【详解】由已知0a b <<2a b +<,因为0a b <<,则22a ab b <<,2a b b +<,所以a b <,2a b b +<,∴2a b a b +<<.故选:C.7.若a >b ,则下列结论一定成立的是()A .a 2>b 2B .a >b +1C .a >b -1D【正确答案】C利用特殊值排除ABD ,再根据不等式的性质判断C ;【详解】解:因为a b >,对于A :当0a b >>时,22a b <,故A 错误;对于B :当0a =,12b =-时,满足a b >,但是1a b <+,故B 错误;对于D :当0a b >>D 错误;对于C :因为a b >,1b b >-,所以1a b >-,故C 正确;故选:C8.设a ,b ∈R ,则下列命题正确的是().A .若a b >,则22a b >B .若a b ¹,则22a b ≠C .若a b <,则22a b <D .若a b >,则22a b >【正确答案】D列举特殊数值,排除选项.【详解】A.1,2a b ==-时,22a b <,故A 不成立;B.当1,1a b ==-时,22a b =,故B 不成立;C.当2,1a b =-=时,22a b >,故C 不成立;D.若0a b >≥,根据函数2y x =在[)0,∞+的单调性可知,22a b >成立,故D 正确.故选:D9.不等式x2-2x -3>0的解集是()A .{x ∣-1<x <3}B .{x ∣x <-3或x >1}C .{x ∣-3<x <1}D .{x ∣x <-1或x >3}【正确答案】D 将不等式左边分解因式,根据两数相乘积为正,得到两因式同号,转化为两个一元一次不等式组,求出一元一次不等式的解集,即可得到原不等式的解集.【详解】解:2230x x -->,因式分解得:(3)(1)0x x -+>,可化为:3010x x ->⎧⎨+>⎩或3010x x -<⎧⎨+<⎩,解得:3x >或1x <-,则原不等式的解集是{|1x x <-或3}x >.故选:D .10.若2x >-,则22x x ++的最小值为()A .2B .C .2D .0【正确答案】C 将所求不等式变形为()222222x x x x +=++-++,利用基本不等式可求得22x x ++的最小值.【详解】2x >- ,则20x +>,()22222222x x x x ∴+=++-≥-=++.当且仅当()2222x x x +=>-+时,即当2x =时,等号成立,因此,当2x >-时,22x x ++的最小值为2.故选:C.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.11.若不等式-x 2+ax-1≤0对x R ∈恒成立,则实数a 的范围为()A .{a ∣-2≤a≤2}B .{a ∣a ≤-2,或a ≥2}C .{a ∣-2<a<2}D .{a ∣a<-2,或a >2}【正确答案】A根据题意利用判别式0∆即可求得a 的取值范围.【详解】解: 不等式210x ax -+-对一切x R ∈恒成立;∴不等式210x ax -+对任意x R ∈恒成立,则240a ∆=-,22a -,∴实数a 的取值范围是[2-,2].故选:A .本题考查一元二次不等式恒成立问题:常见的处理技巧为①()200ax bx c a ++≠恒成立,则00a <⎧⎨∆≤⎩;②()200ax bx c a ++<≠恒成立,则00a <⎧⎨∆<⎩;③()200ax bx c a ++>≠恒成立,则00a >⎧⎨∆<⎩;④()200ax bx c a ++≥≠恒成立,则00a >⎧⎨∆≤⎩;12.若不等式20x ax b ++<(),a b R ∈的解集为{}|25x x <<,则a ,b 的值为()A .a =﹣7,b =10B .a =7,b =﹣10C .a =﹣7,b =﹣10D .a =7,b =10【正确答案】A 【分析】根据二元一次不等式的解集得出对应方程的实数根,由根与系数的关系求出a 、b 的值.【详解】因为不等式20x ax b ++<的解集为{}|25x x <<,所以对应方程20x ax b ++=的两个根为2和5,即2525a b +=-⎧⎨⨯=⎩,解得a =﹣7,b =10.故选:A【点评】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.二、双空题13.用符号语言表示命题:对于所有的实数x ,满足210x x -+=:__________;该命题的否定为:___________.【正确答案】x ∀∈R ,210x x -+=;0x ∃∈R ,20010x x -+≠.先根据题意写出命题的符号语言表示,再写出该命题的否定即可.【详解】解:命题“对于所有的实数x ,满足210x x -+=”的符号语言表示:x ∀∈R ,210x x -+=;该命题的否定为:0x ∃∈R ,20010x x -+≠.故x ∀∈R ,210x x -+=;0x ∃∈R ,20010x x -+≠.本题考查含有一个量词的命题的符号表示、含有一个量词的命题的否定,是基础题.三、填空题14.不等式220x x -->的解集为______.【正确答案】{}20x x -<<将所求不等式变形为()20x x +<,解此二次不等式即可得解.【详解】原不等式即为220x x +<,即()20x x +<,解得20x -<<.故答案为.{}20x x -<<解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.15.已知集合{|4},{|}A x x B x x a =<=<,若“x A ∈”是“x B ∈”的必要不充分条件,则实数a 的取值范围是______.【正确答案】(,4)-∞【分析】由“x A ∈”是“x B ∈”的必要不充分条件,即集合B 是集合A 的真子集,根据集合的运算,即可求解.【详解】由题意,“x A ∈”是“x B ∈”的必要不充分条件,即集合B 是集合A 的真子集,又由{|4},{|}A x x B x x a =<=<,则4a <,即实数a 的取值范围是(,4)-∞.故答案为(,4)-∞.本题主要考查了充分条件,必要条件的应用,其中解答中把“x A ∈”是“x B ∈”的必要不充分条件,即集合B 是集合A 的真子集是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.16.已知0x >,0y >,若22x y +=,则xy 的最大值是______.【正确答案】12利用配凑法,结合基本不等式,求得xy 的最大值.【详解】依题意221121212222222x y xy x y +⎛⎫⎛⎫=⋅⋅≤⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,当且仅当21x y ==时等号成立.故xy 的最大值为12.故答案为.12易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方四、解答题17.求下列不等式的解集:(1)23100x x -->;(2)23540x x -+->【正确答案】(1){|5x x >或}2x <-(2)∅【分析】(1)因式分解后,结合一元二次方程的根可得解集;(2)化二次项系数为正,然后由判别式判断可得答案.【详解】(1)原不等式化为()()250x x +->,解得5x >或<2x -,所以原不等式解集为{|5x x >或}2x <-;(2)原不等式化为23540x x -+<,又2(5)434230∆=--⨯⨯=-<,所以原不等式无解,解集为∅.18.已知集合2{|37},{|12200}=≤<=-+<A x x B x x x ,{|}C x x a =<.(1)求;A B ()R C A B ;(2)若A C ⋂≠∅,求a 的取值范围.【正确答案】(1){|210}A B x x ⋃=<<;(){|23710}R C A B x x x =<<≤< 或;(2)a >3.【分析】(1)先化简集合B ,再利用集合的并集、补集和交集运算求解;(2)根据A C ⋂≠∅,结合{|}C x x a =<,利用数轴求解.【详解】(1)因为集合2{|37},{|12200}{|210}A x x B x x x x x =≤<=-+<=<<,所以{|210}A B x x ⋃=<<,{|3R C A x x =<或}7x ≥,(){|23R C A B x x =<< 或710}x ≤<;(2)因为A C ⋂≠∅,且{|}C x x a =<,所以a >3,所以a 的取值范围是()3,+∞.19.(1)已知0,0a b >>,且41a b +=,求ab 的最大值;(2)已知54x <,求14245x x -+-的最大值.【正确答案】(1)116;(2)1.【分析】(1)直接利用基本不等式求出ab 的最大值;(2)先求出154254x x -+≥-,进而求出142145x x -+≤-.【详解】(1)因为0,0a b >>,且41a b +=,所以14a b =+≥116ab ≤(当且仅当4+=14=a b a b ⎧⎨⎩即1=81=2a b ⎧⎪⎪⎨⎪⎪⎩时等号成立).所以ab 的最大值为116.(2)因为54x <,所以540x ->.所以154254x x -+≥-(当且仅当15454x x -=-,即=1x 时等号成立).所以11142453543231454554x x x x x x ⎛⎫-+=-++=--++≤-+= ⎪---⎝⎭(当=1x 时等号成立).即14245x x -+-的最大值为1.20.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥.(1)当3a =时,求A B ⋂;(2)若“x A ∈”是“R x B ∈ð”的充分不必要条件,且A ≠∅,求实数a 的取值范围.【正确答案】(1){11A B x x ⋂=-≤≤或45}x ≤≤;(2){}01a a ≤<.【分析】(1)根据两个集合交集运算性质即可解得;(2)“x A ∈”是“R x B ∈ð”的充分不必要条件即AB R ð,然后求解出集合B 的补集,根据集合间的关系列出关于a 的不等式即可解得范围.【详解】(1)当3a =时,{}15A x x =-≤≤,又{1B x x =≤或}4x ≥,{11A B x x ⋂=-≤≤或45}x ≤≤(2){1B x x =≤或}4x ≥,{}R 14B x x =<<ð.由“x A ∈”是“R x B ∈ð”的充分不必要条件,得AB R ð,.又{}22,A x a x a A =-≤≤+≠∅,222124a a a a -≤+⎧⎪∴->⎨⎪+<⎩,01a ∴≤<即实数a 的取值范围是{}01a a ≤<.:本题考查了集合交集的运算、利用集合间的关系求解参数的范围,属于中档题目,解题中需要准确的将充分条件和必要条件的关系转化为集合间的关系.。

2023-2024学年吉林省吉林市吉林高一上册第一次月考数学试题(含解析)

2023-2024学年吉林省吉林市吉林高一上册第一次月考数学试题(含解析)

2023-2024学年吉林省吉林市吉林高一上册第一次月考数学试题一、单选题1.下列说法正确的是()A .0∈∅B .πQ∈C .∅⊆∅D .A ⋃∅=∅【正确答案】C【分析】根据元素与集合、集合与集合之间的关系,以及空集的定义,逐项分析判断即可.【详解】对于A :0∉∅,选项A 错误;对于B :π是无理数,πQ ∉,选项B 错误;对于C :∅是它本身的子集,即∅⊆∅,选项C 正确;对于D :仅当A 为空集时,A ⋃∅=∅成立,否则不成立,选项D 错误.故选:C .2.设集合{|03}A x x =<<,1{|4}2B x x =≤≤,则A B = ()A .1{|0}2x x <≤B .1{|3}2x x ≤<C .{|34}x x <≤D .{|04}x x <≤【正确答案】B【分析】利用交集定义直接求解.【详解】因为集合{|03}A x x =<<,1{|4}2B x x =≤≤,则1{|3}2A B x x ⋂=≤<.故选:B .3.已知{}{}1,21,2,3,4,5A ⊆⊆,则满足条件的集合A 的个数为()A .5B .6C .7D .8【正确答案】D【分析】由条件分析集合A 的元素的特征,确定满足条件的结合A 即可.【详解】因为{}{}1,21,2,3,4,5A ⊆⊆,所以{}1,2A =或{}1,2,3或{}1,2,4或{}1,2,5或{}1,2,3,4或{}1,2,3,5或{}1,2,4,5或{}1,2,3,4,5,即满足条件的集合A 的个数为8,故选:D .4.设x ∈R ,则“01x <<”成立是“1x <”成立的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【正确答案】A【分析】利用充分条件和必要条件的定义判断即可.【详解】由01x <<成立可推出1x <成立,所以“01x <<”成立是“1x <”成立充分条件当0x =时,1x <,但{}01x x x ∉<<,即由1x <成立不能推出01x <<成立,所以“01x <<”成立不是“1x <”成立必要条件所以01x <<成立是1x <成立的充分不必要条件,故选:A .5.已知a b >,则下列不等关系中一定成立的是()A .2ab b <B .22a b >C .11a b<D .33a b >【正确答案】D【分析】举反例可判断ABC ,利用函数3y x =在R 上单调递增,可判断D .【详解】对于A 选项,取2a =,1b =,满足a b >,但是221ab b =>=,故A 错误,对于BC 选项,取1a =,2b =-,满足a b >,但是2214a b =<=,11112a b =>=-,故BC 错误,对于D 选项,因为函数3y x =在R 上单调递增,所以由a b >可得33a b >,故D 正确,故选:D .6.若不等式组232x a x a ⎧>⎨<-⎩有解,则实数a 的取值范围为()A .12a <<B .1a <或2a >C .12a ≤≤D .1a ≤或2a ≥【正确答案】A【分析】由题意可知232a a <-,从而求出a 的取值范围即可.【详解】 不等式组232x a x a ⎧>⎨<-⎩有解,232a a ∴<-,解得12a <<,即实数a 的取值范围为(1,2).故选:A .7.已知正数,x y 满足1x y +=,则14x y+的最小值为()A .5B .143C .92D .9【正确答案】D【分析】由已知利用乘1法,结合基本不等式即可求解.【详解】因为正数,x y 满足1x y +=,则14144()()559y x x y x y x y x y +=++=++≥+=,当且仅当4y x x y =,即13x =,23y =时取等号,故选:D .8.已知命题236:1,1x x p x a x ++∃>-<+,若命题p 是假命题,则实数a 的取值范围为()A .5a >B .6a >C .5a ≤D .6a ≤【正确答案】C【分析】由题意可知236:1,1x x p x a x ++⌝∀>-≥+为真命题,问题转化为只需2min 36()1x x a x ++≤+,然后利用基本不等式求出最小值,进而可以求解.【详解】若命题p 是假命题,则236:1,1x x p x a x ++⌝∀>-≥+为真命题,即2361x x a x ++≤+在(1,)∈-+∞x 上恒成立,只需2min 36()1x x a x ++≤+,又2236(1)1441115111x x x x x x x x ++++++==+++≥=+++,当且仅当411x x +=+,即1x =时取得最小值为5,所以5a ≤,故选:C .二、多选题9.已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B = ,则a 的取值可以是()A .2B .3C .4D .5【正确答案】AB【分析】根据并集的结果可得{}1,4,a {}1,2,3,4,即可得到a 的取值;【详解】解:因为{}1,2,3,4A B = ,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB10.若a ,b ,c ∈R ,则下列命题正确的是()A .若0ab ≠且a b <,则11a b>B .若01a <<,则2a a<C .若0a b >>且0c >,则b c ba c a+>+D .()221222a b a b ++≥--【正确答案】BCD【分析】由不等式的性质逐一判断即可.【详解】解:对于A ,当0a b <<时,结论不成立,故A 错误;对于B ,2a a <等价于()10a a -<,又01a <<,故成立,故B 正确;对于C ,因为0a b >>且0c >,所以b c ba c a+>+等价于ab ac ab bc +>+,即()0a b c ->,成立,故C 正确;对于D ,()221222a b a b ++≥--等价于()()22120a b -++≥,成立,故D 正确.故选:BCD.11.已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤-或}4x ≥,则下列说法正确的是()A .0a >B .不等式0bx c +>的解集为{}4x x <-C .不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭D .0a b c ++>【正确答案】AC【分析】由题知二次函数2y ax bx c =++的开口方向向上且3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,再依次分析各选项即可.【详解】解:关于x 的不等式20ax bx c ++≥的解集为][(),34,-∞-⋃+∞,所以二次函数2y ax bx c =++的开口方向向上,即0a >,故A 正确;方程20ax bx c ++=的两根为3-、4,由韦达定理得3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩.对于B ,0120bx c ax a +>⇔-->,由于0a >,所以12x <-,所以不等式0bx c +>的解集为{}12x x <-,故B 不正确;对于C ,由B 的分析过程可知12b ac a=-⎧⎨=-⎩所以220120cx bx a ax ax a -+<⇔-++<2112104x x x ⇔-->⇔<-或13x >,所以不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭,故C 正确;对于D ,12120a b c a a a a ++=--=-<,故D 不正确.故选:AC .12.[]x 表示不超过x 的最大整数,则满足不等式[][]25140x x --≤的x 的值可以为()A . 2.5-B .3C .7.5D .8【正确答案】BC【分析】由一元二次不等式得[]27x -≤≤【详解】解:因为[][][]()[]()2514720x x x x --=-+≤,所以[]27x -≤≤,所以28x -≤<.所以x 的值可以为[)2,8-内的任何实数.故选:BC三、填空题13.不等式210-+≥x kx 的解集为R ,则实数k 的取值集合为__.【正确答案】[]22-,【分析】根据二次不等式的解法即得.【详解】因为不等式210-+≥x kx 的解集为R ,所以240k ∆=-≤,所以22k -≤≤,即实数k 的取值集合为[]22-,.故答案为.[]22-,14.已知102x <<,函数(12)y x x =-的最大值是__.【正确答案】18##0.125【分析】由基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,得()221212(12)24x x x x +-⎡⎤-≤=⎢⎥⎣⎦,由此即可求出函数(12)y x x =-的最大值.【详解】 102x <<,∴()()()2212111122122228x x x x x x +-⎡⎤-=⋅-≤⋅=⎢⎥⎣⎦,当且仅当212x x =-时,即14x =时等号成立,因此,函数(12)y x x =-的最大值为18.故答案为:18.15.若实数x ,y 满足1201x y x y <+<⎧⎨<-<⎩,则3x y +的取值范围为__.【正确答案】(2,5)【分析】将3x y +表示成关于()x y +和()x y -的表达式进行求解即可.【详解】由不等式的性质求解即可.解:32()()+=++-x y x y x y ,因为实数x ,y 满足1201x y x y <+<⎧⎨<-<⎩,所以()()225x y x y <++-<,即3x y +的取值范围为(2,5).故(2,5).四、双空题16.《几何原本》中的几何代数法(用几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一方法,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.设0a >,0b >,称2aba b+为a ,b 的调和平均数.如图,C 为线段AB 上的点,且AC a =,CB b =,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线,交半圆于D ,连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数2a b+,线段CD 的长度是a ,b__的长度是a ,b 的调和平均数2aba b+,该图形可以完美证明三者的大小关系为__.【正确答案】DE22ab a ba b +≤≤+【分析】根据圆的性质、勾股定理、三角形三边大小关系以及基本不等式的性质判断即可.【详解】由题意得:2a bOD +=,CD =,由于CD OC ⊥,CE OD ⊥,所以ΔΔOCD CED ∽,则OD CDCD ED=a bED +=,解得2abED a b=+,利用直角三角形的边的关系,所以OD CD DE >>.当O 和C 重合时,OD CD DE ==,所以22ab a ba b +≤≤+.故DE;22ab a ba b +≤≤+五、解答题17.已知集合{}2,1,0,1,2A =--,{}0,1B =,{}1,2C =.(1)求B C ⋃;(2)求()A B C ð.【正确答案】(1){0,1,2}(2){2,1,0,2}--【分析】(1)利用并集的概念即可求解;(2)利用交集及补集的运算即可求解.【详解】(1){}0,1B = ,{}1,2C =,{0,1,2}B C ∴= (2)∵{}0,1B =,{}1,2C =,∴{1}B C = ,又{}2,1,0,1,2A =--故(){2,1,0,2}A B C =-- ð.18.已知集合U 为全体实数集,{1M x x =≤-或6}x ≥,{}131N x a x a =+≤≤-.(1)若3a =,求()U M N ðI ;(2)若M N N ⋂=,求实数a 的取值范围.【正确答案】(1){}46x x ≤<(2)1a <或5a ≥【分析】(1)利用集合的交、补运算即可求解.(2)讨论N =∅或N ≠∅,根据集合的包含关系列不等式即可求解.【详解】(1)解:由题知{1M x x =≤-或6}x ≥,{}131N x a x a =+≤≤-,所以{}16U M x x =-<<ð,当3a =时,{}48N x x =≤≤,所以(){}46U M N x x ⋂=≤<ð;(2)由题知M N N ⋂=,即N M ⊂,①当N =∅时,即131a a +>-,解得:1a <;②当N ≠∅,即1a ≥时,因为N M ⊂,所以311a -≤-或16a +≥,解得:0a ≤(舍)或5a ≥,综上:1a <或5a ≥.19.全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国城市整体文明水平的最高荣誉称号.连云港市黄海路社区响应号召,在全面开展“创文”的基础上,对一块空闲地进行改造,计划建一面积为24000m 矩形市民休闲广场.全国文明城市是中国所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具有价值的城市品牌.为此社区党委开会讨论确定方针:既要占地最少,又要美观实用.初步决定在休闲广场的东西边缘都留有宽为2m 的草坪,南北边缘都留有5m 的空地栽植花木.(1)设占用空地的面积为S (单位:2m ),矩形休闲广场东西距离为x (单位:m ,0x >),试用x 表示为S 的函数;(2)当x 为多少时,用占用空地的面积最少?并求最小值.【正确答案】(1)()()40004100S x x x ⎛⎫=++> ⎪⎝⎭(2)休闲广场东西距离为40m 时,用地最小值为24840m 【分析】(1)根据面积公示列关系式即可.(2)代入第一问求出的解析式结合基本不等式求最值即可即可.【详解】(1)因为广场面积须为24000m ,所以矩形广场的南北距离为4000m x,所以()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)由(1)知16000404010404040408004840S x x =++≥+=+=,当且仅当x =40时,等号成立.答:当休闲广场东西距离为40m 时,用地最小值为24840m .20.集合A ={}|()(3)0,0x x a x a a --<>,B =2|01x x x -⎧⎫<⎨⎬-⎩⎭.(1)若1a =,求()R A C B I ;(2)已知命题:p x A ∈,命题:q x B ∈,若命题p 的充分不必要条件是命题q ,求实数a 的取值范围.【正确答案】(1)[)()2,3R A C B =I (2)213a ≤≤【分析】(1)a =1时,A =(1,3),B =(1,2),可得∁R B =(﹣∞,1]∪[2,+∞).即可得出A ∩(∁R B ).(2)由a >0,可得A =(a ,3a ),B =(1,2).根据q 是p 的充分不必要条件,即可得出B ⊊A .【详解】解:(1)a =1时,A =(1,3),B =(1,2),(][)=,12,R C B -∞+∞U ∴[)()2,3R A C B =I ;(2)∵a >0,∴A =(a ,3a ),B =(1,2).∵q 是p 的充分不必要条件,∴B ⊊A .由B ⊆A 得132a a ≤⎧⎨≥⎩,解得213a ≤≤,又a =1及23a =符合题意.∴213a ≤≤.本题考查了集合的交并补运算、不等式的解法、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.21.已知a ,b ,c 为正数,且a +b +c =1,证明:(1-a )(1-b )(1-c )≥8abc .【正确答案】证明见解析.【分析】根据已知对不等式左边的式子进行变形,结合基本不等式进行证明即可.【详解】证明:(1-a )(1-b )(1-c )=(b +c )(a +c )(a +b ),(b +c )(a +c )(a +b8abc .当且仅当b =c =a =13时,等号成立.本题考查了基本不等式的应用,考查了推理论证能力.22.已知关于x 的不等式()2110ax a x a R ++<∈-,.(1)若不等式的解集为112x x ⎧⎫<<⎨⎬⎩⎭,求a ;(2)当a R ∈时,解此不等式.【正确答案】(1)2(2)0a =时,(1,)x ∈+∞,01a <<时,1(1,x a∈,1a =时,不等式的解集为空集,1a >时,1(,1)x a∈,a<0时,1(,(1,)x a ∈-∞+∞ .【分析】(1)根据不等式的解集和韦达定理,可列出关于a 的方程组,解得a ;(2)不等式化为(1)(1)0ax x --<,讨论a 的取值,从而求得不等式的解集。

高一上学期第一次月考数学试卷A3打印版

高一上学期第一次月考数学试卷A3打印版

河南宏力学校高一上学期第一次月考数 学 试 题考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟. 2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分)1. 设集合{}10,8,6,4,2,0=A ,{}8,4=B ,则C A B =【 】 (A ){}8,4 (B ){}6,2,0 (C ){}10,6,2,0 (D ){}10,8,6,4,2,02. 已知集合{}{}3,1,13,2,12-=--=N m m M ,若{}3=N M ,则m 的值为【 】(A )1,4- (B )1- (C )1 , 4- (D )4 3. 全集=U R ,{}03<<-=x x N ,{}1-<=x x M ,则图中阴影部分表示的集合是【 】(A ){}13-<<-x x (B ){}03<<-x x (C ){}01<≤-x x (D ){}3<x x4. 设函数()⎪⎩⎪⎨⎧<-≥=0,0,x x x x x f ,若()()21=-+f a f ,则=a 【 】(A )3- (B )3± (C )1- (D )1± 5. 下列各组函数是同一函数的是【 】①()32x x f -=与()x x x g 2-=; ②()x x f =与()2x x g =;③()0x x f =与()01xx g =; ④()122--=x x x f 与()122--=t t t g .(A )①② (B )③④ (C )①③ (D )①④ 6. 已知函数()x f 的定义域为()1,23+-a a ,且()1+x f 为奇函数,则a 的值可以是【 】 (A )2 (B )32(C )4 (D )6 7. 已知定义在R 上的增函数()x f ,满足()()0=-+x f x f ,∈321,,x x x R ,且021>+x x ,032>+x x ,013>+x x ,则()()()321x f x f x f ++的值【 】(A )一定大于0 (B )一定小于0 (C )等于0 (D )正负都有可能 8. 设0>a ,则函数()a x x y -=的图象的大致形状是【 】(A ) (B ) (C ) (D )9. 已知函数()x f y =在()2,0上是增函数,函数()2+=x f y 是偶函数,则下列结论中正确的是【 】(A )()⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<27251f f f (B )()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛27125f f f (C )()12527f f f <⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛ (D )()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛25127f f f 10. 已知函数()⎪⎩⎪⎨⎧>≤---=1,1,52x xa x ax x x f 是R 上的增函数,则实数a 的取值范围是【 】(A )3-≤0<a (B )3-≤a ≤2- (C )a ≤2- (D )0<a11. 定义一种运算⎩⎨⎧>≤=⊗ba b ba ab a ,,,令()()t x x x x f -⊗-+=223(t 为常数),且[]3,3-∈x ,则使函数()x f 的最大值为3的t 的集合是【 】 (A ){}3,3- (B ){}5,1- (C ){}1,3- (D ){}5,3- 12. 已知函数()35335+---=x x x x f ,若()()62>-+a f a f ,则a 的取值范围是【 】(A )()1,∞- (B )()3,∞- (C )()+∞,1 (D )()+∞,3第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分) 13. 函数()211-++=x x x f 的定义域是__________. 14. 已知集合(){}(){}4,,2,=-==+=y x y x N y x y x M ,那么=N M __________.15. 已知定义在R 上的函数()322--=x x x f ,设()()()⎩⎨⎧>≤=0,0,x x f x x f x g ,若函数()t x g y -=与x 轴有且只有三个交点,则实数t 的取值范围是____________. 16. 设关于x 的不等式012<--ax ax 的解集为S ,且S S ∉∈3,2,则a 的取值范围是__________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知{}{}121,42-≤≤+-=≤≤=m x m x B x x A . (1)若2=m ,求 A B A ,C R B ; (2)若∅=B A ,求m 的取值范围.18.(本题满分12分) 已知函数()x mx x f +=,且()21=f . (1)判断函数()x f 的奇偶性;(2)判断函数()x f 在()+∞,1上的单调性,并用定义证明你的结论.19.(本题满分12分)已知函数()ax x x f +-=22(∈x R )有最小值. (1)求实数a 的取值范围;(2)设()x g 为定义在R 上的奇函数,且当0<x 时,()()x f x g =,求()x g 的解析式.20.(本题满分12分)已知二次函数()12++=bx ax x f (0≠a )和()bx a bx x g 212+-=. (1)若()x f 为偶函数,试判断()x g 的奇偶性;(2)若方程()x x g =有两个不相等的实数根,当0>a 时,判断()x f 在()1,1-上的单调性;(3)当a b 2=时,问是否存在x 的值,使满足1-≤a ≤1且0≠a 的任意实数a ,不等式()4<x f 恒成立?并说明理由.21.(本题满分12分)某工厂某种航空产品的年固定成本为250万元,每生产x 件,需另投入成本为()x C ,当年产量不足80件时,()x x x C 10312+=(万元);当年产量不小于80件时,()14501000051-+=xx x C (万元).每件商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()x L (万元)关于年产量x (件)的函数解析式; (2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?22.(本题满分12分)已知函数()cx bax x f ++=2(∈a N *,∈b R ,c <0≤1)是定义在[]1,1-上的奇函数,()x f 的最大值为21.(1)求函数()x f 的解析式;(2)若关于x 方程()0log 2=-m x f 在⎥⎦⎤⎢⎣⎡1,21上有解,求实数m 的取值范围.。

2023-2024学年四川省绵阳市高一上册第一次月考数学试题(含解析)

2023-2024学年四川省绵阳市高一上册第一次月考数学试题(含解析)

2023-2024学年四川省绵阳市高一上册第一次月考数学试题一、单选题1.集合{1,2,3}的非空真子集共有()A .5个B .6个C .7个D .8个【正确答案】B【分析】按照子集元素个数1个,2个的顺序列举计数.【详解】解:集合{1,2,3}的非空真子集有:{1},{2},{3},{1,2},{1,3},{2,3}共6个.故选:B.2.命题“x ∀∈R ,210x x ++≤”的否定为()A .x ∃∈R ,210x x ++>B .x ∀∈R ,210x x ++≥C .x R ∃∉,210x x ++>D .x R ∀∉,210x x ++≤【正确答案】A由含有一个量词的命题的否定的定义进行求解即可.【详解】命题“x ∀∈R ,210x x ++≤”的否定为“x ∃∈R ,210x x ++>”故选:A3.已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N = ,则a 的值是()A .-2B .-1C .0D .1【正确答案】B【分析】根据集合N 和并集,分别讨论a 的值,再验证即可.【详解】因为{}1,2,3M N = ,若110a a -=⇒=,经验证不满足题意;若121a a -=⇒=-,经验证满足题意.所以1a =-.故选:B.4.有下列说法:(1)与表示同一个集合;(2)由组成的集合可表示为{1,2,3}或{}3,2,1;(3)方程2(1)(2)0x x --=的所有解的集合可表示为{}1,1,2;(4)集合{}|45x x <<是有限集.其中正确的说法是A .只有(1)和(4)B .只有(2)和(3)C .只有(2)D .以上四种说法都不对【正确答案】C【详解】试题分析:(1)不正确:0是数字不是集合,但{}00∈;(2)正确:集合元素满足无序性,即{}{}1,2,33,2,1=;(3)不正确:集合元素具有互异性,方程的解集应为{}1,2;(4)不正确:满足不等式45x <<的x 有无数个,所以集合{}|45x x <<是无限集.故C 正确.1元素与集合的关系;2集合元素的特性.5.能正确表示集合{|02}M x R x =∈≤≤和集合2{|0}N x R x x =∈+=的关系的韦恩图的是()A .B .C .D .【正确答案】A【分析】求出集合N 的元素,即可得到两集合的关系,再用韦恩图表示出来.【详解】解: 集合{}2{|0}0,1N x R x x =∈+==-,集合{|02}M x R x =∈≤≤,{}0M N ∴= 且互不包含,故选:A .本题主要考查了韦恩图表达集合的关系,是基础题.6.设,a b ∈R ,则“2()0a b a -<”是“a b <”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【详解】由2()0a b a -<一定可得出a b <;但反过来,由a b <不一定得出2()0a b a -<,如0a =,故选A.【考点定位】本小题主要考查充分必要条件、不等式的性质等基础知识,熟练掌握这两部分的基础知识是解答好本类题目的关键.7.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是()A .A ≤B B .A ≥BC .A <B 或A >BD .A >B【正确答案】B 作差法比较两式大小.【详解】()2234A B a ab ab b -=+-- 22a ab b =-+223204b a b ⎛⎫=-+ ⎪⎝⎭≥,A B ∴≥.故选:B本题考查代数式的大小比较,属于基础题.8.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为()A .{x |0<x <2}B .{x |-2<x <1}C .{x |x <-2或x >1}D .{x |-1<x <2}【正确答案】B【分析】根据定义可得(x +2)(x -1)<0,结合一元二次不等式的解法即可选出正确答案.【详解】根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是{x |-2<x <1}.故选:B.二、多选题9.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利用奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.已知0b a <<,则下列选项正确的是()A .22a b >B .a b ab +<C .a b<D .2ab b >【正确答案】BC【分析】根据不等式的性质即可逐一求解.【详解】对于A,由0b a <<得:22a b <,故错误;对于B ,因为0b a <<,所以00a b ab +<>,,故正确;对于C;由0b a <<得:a b <,故正确;对于D,由于()20ab b b a b -=-<,故2ab b <,故错误;故选:BC10.设{}1,2A =,{}1B x ax ==.若A B A ⋃=,则实数a 的值可以为()A .1B .2C .0D .12【正确答案】ACD【分析】由A B A ⋃=得B A ⊆,分类讨论集合B 的元素情况,即可求得答案.【详解】由A B A ⋃=得:B A ⊆,当0a =时,B =∅,符合题意;当B ≠∅时,B A ⊆,若{1}B =,则1a =;若{2}B =,则12a =;由于B 中至多有一个元素,故B A ≠,所以实数a 的值可以为10,1,2,故选:ACD11.如图,二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),下列说法正确的是()A .c <0B .b 2﹣4ac <0C .x =3时函数y =ax 2+bx +c 取最小值D .图像的对称轴是直线x =3【正确答案】CD【分析】由20ax bx c ++=的两根分别为1,5,结合韦达定理以及二次函数的性质判断即可.【详解】因为二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),所以20ax bx c ++=的两根分别为1,5.由图可知,0a >,由韦达定理可知150ca=⨯>,即0c >,故A 错误;由图可知,该二次函数与x 轴有两个交点,即240b ac ∆=->,故B 错误;由韦达定理可知,6b a -=,即该二次函数的对称轴为32b x a=-=,即在x =3时函数y =ax 2+bx +c 取最小值,故CD 正确;故选:CD12.已知∃x ∈R ,不等式2410x x a ---<不成立,则下列关于a 的取值不正确的是()A .{}5a a ≤-B .{}2a a ≤-C .{}3a a ≤-D .{}1a a ≤-【正确答案】BCD【分析】转化为2R,410x x a ∀∈---≥成立,利用判别式法求解.【详解】解:因为∃x ∈R ,不等式2410x x a ---<不成立,所以2R,410x x a ∀∈---≥成立,则()()24410a ∆=----≤,解得5a ≤-.故选:BCD三、填空题13.高一某班共有55人,其中有14人参加了球类比赛,16人参加了田径比赛,4人既参加了球类比赛,又参加了田径比赛.则该班这两项比赛都没有参加的人数是______.【正确答案】29【分析】利用ven 图求解.【详解】由题意画出ven 图,如图所示:由ven 图知:参加比赛的人数为26人,所以该班这两项比赛都没有参加的人数是29人,故2914.设集合6ZN 2A x x ⎧⎫=∈∈⎨⎬+⎩⎭,则用列举法表示集合A 为______.【正确答案】{1,0,1,4}-【分析】根据自然数集N 与整数集Z 的概念分析集合A 中的元素即可.【详解】要使6N 2x ∈+,则2x +可取1,2,3,6,又Z x ∈,则x 可取1,0,1,4-,故答案为.{}1,0,1,4-15.若不等式222(1)0x a x a +++≥恒成立,则a 的取值范围是______.【正确答案】12a a ⎧⎫≤-⎨⎬⎩⎭【分析】根据一元二次不等式的解法求解即可.【详解】因为不等式222(1)0x a x a +++≥恒成立,所以()224(1)44210a a a ∆=+-=+≤,即12a ≤-.故12a a ⎧⎫≤-⎨⎬⎩⎭16.已知不等式﹣2x 2+bx +c >0的解集{x |﹣1<x <3},若对任意﹣1≤x ≤0,不等式2x 2+bx +c +t ≤4恒成立.则t 的取值范围是______.【正确答案】{}2t t ≤-【分析】根据不等式﹣2x 2+bx +c >0的解集{x |﹣1<x <3},求得b ,c ,再将对任意﹣1≤x ≤0,不等式2x 2+bx +c +t ≤4恒成立,转化为对任意﹣1≤x ≤0,不等式2242t x x ≤---恒成立求解.【详解】解:因为不等式﹣2x 2+bx +c >0的解集{x |﹣1<x <3},所以()132132b c ⎧-+=⎪⎪⎨⎪-⨯=-⎪⎩,解得46b c =⎧⎨=⎩,因为对任意﹣1≤x ≤0,不等式2x 2+bx +c +t ≤4恒成立,所以为对任意﹣1≤x ≤0,不等式2242t x x ≤---恒成立,令2242y x x =---,()2212x =-+≥-,所以2t ≤-,故{}2t t ≤-四、解答题17.解下列不等式:(1)(2)(3)1x x x x +>-+;(2)21()10x a x a -++≤(01a <<).【正确答案】(1)12x x ⎧<-⎨⎩或}1x >(2)1x a x a ⎧⎫≤≤⎨⎬⎩⎭【分析】(1)整理得2210x x -->,再解不等式即可;(2)根据11a>直接求解即可.【详解】(1)解:由(2)(3)1x x x x +>-+有2210x x -->,方程2210x x --=的两根分别为121,12x x =-=,故原不等式的解集为12x x ⎧<-⎨⎩或}1x >(2)解:由21(10x a x a -++=有121,x a x a==,因为01a <<,所以11a>.故原不等式的解集为1x a x a ⎧⎫≤≤⎨⎬⎩⎭18.已知集合{13}A xx =≤≤∣,集合{21}B x m x m =<<-∣.(1)当1m =-时,求A B ⋃;()R A B ⋂ð;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数m 的取值范围.【正确答案】(1){23}A B xx ⋃=-<≤∣,(){21}R B x A x ⋂=-<<∣ð(2)(,2)-∞-【分析】(1)根据交并补的定义直接计算即可;(2)由题可得AB ,根据包含关系列出不等式即可求出.【详解】(1)当1m =-时,{13}A x x =≤≤∣,{22}B x x =-<<∣.则{23}A B xx ⋃=-<≤∣,{1R A x x =<ð或3x >,(){21}R A B x x ∴⋂=-<<∣ð;(2)若“x B ∈”是“x A ∈”的必要不充分条件,则AB ,∵{13}A xx =≤≤∣,集合{21}B x m x m =<<-∣,∴2113m m <⎧⎨->⎩,解得2m <-,∴实数m 的取值范围是(,2)-∞-.19.设集合2{|320}A x x x =++=,()2{|10}B x x m x m =+++=.(1)若B 中有且只有一个元素,求实数m 的值;(2)若B A ⊆求实数m 的值.【正确答案】(1)1(2)m =1或m =2【分析】(1)解法一:利用十字相乘法解方程,由题意,可得答案;解法二:根据二次方程根的判别式,结合题意,建立方程,可得答案;(2)求得两个方程的根,利用集合之间的关系,根据分类讨论的思想,可得答案.【详解】(1)解法一:因为()210x m x m +++=,整理可得()()10x x m ++=,解得=1x -或x m =-,又B 中只有一个元素,故1m =.解法二:B 中有且只有一个元素,所以方程()210x m x m +++=有唯一实根,从而22(1)4(1)0m m m ∆=+-=-=,所以m =1.(2)由2320x x ++=,解得=1x -或2x =-,由()210x m x m +++=,整理可得()()10x x m ++=,解得=1x -或x m =-,B ⊆A ,当m =1时,B ={﹣1},满足B ⊆A ,当m =2时,B ={﹣1,﹣2}同样满足B ⊆A ,故m =1或m =2.20.已知集合{}{}222|340,|450A x x x B x x mx m =--<=+-<.(1)若集合{}51B x x =-<<,求此时实数m 的值;(2)若A B A = ,求实数m 的取值范围.【正确答案】(1)1(2)(][),14,-∞-⋃+∞【分析】(1)由题知22450x mx m +-=的两个根为5-和1,进而根据韦达定理求解即可;(2)由题知A B ⊆,{}14A x x =-<<,进而分0m >和0m <两种情况求解集合B ,并根据集合关系求解范围.【详解】(1)解:根据题意,集合{}{}22|45051B x x mx m x x =+-<=-<<,所以,方程22450x mx m +-=的两个根为5-和1,所以,有()()2451551m m ⎧-=-+⎪⎨-=-⨯⎪⎩,解得1m =;所以,1m =;(2)解:若A B A = ,则A B ⊆,{}{}2|34014A x x x x x =--<=-<<,{}()(){}22|45050B x x mx m x x m x m =+-<=+-<因为A B ⊆,则B ≠∅,所以5m m -≠,即0m ≠,当0m >时,()(){}{}505B x x m x m x m x m =+-<=-<<,此时有514m m -≤-⎧⎨≥⎩,解得4m ≥;当0m <时,()(){}{}505B x x m x m x m x m =+-<=<<-,此时有154m m ≤-⎧⎨-≥⎩,解得1m ≤-.综上,1m ≤-或4m ≥.所以,故m 的取值范围为(][),14,-∞-⋃+∞.21.已知0,0x y >>,且141x y+=.(1)求x y +的最小值;(2)若26xy m m >+恒成立,求实数m 的取值范围.【正确答案】(1)9(2)()8,2-【分析】(1)根据系数“1”的妙用,结合基本不等式即可得到结果;(2)根据题意结合基本不等式可得16xy ≥,然后求解关于m 的不等式,即可得到结果.【详解】(1)因为0,0x y >>,所以()144559x y x y x y x y y x ⎛⎫+=++=++≥+ ⎪⎝⎭当且仅当4x yy x=,即3,6x y ==时取等号,所以x y +的最小值为9(2)因为0,0x y >>,所以141x y =+≥,所以16xy ≥,当且仅当2,8x y ==时等号成立,因为26xy m m >+恒成立,所以2166m m >+,解得82m -<<所以实数m 的取值范围为()8,2-22.志愿者团队要设计一个如图所示的矩形队徽ABCD ,已知点E 在边CD 上,AE =CE ,AB >AD ,且矩形的周长为8cm.(1)设AB =x cm ,试用x 表示出图中DE 的长度,并求出x 的取值范围;(2)计划在△ADE 区域涂上蓝色代表星空,如果要使△ADE 的面积最大,那么应怎样设计队徽的长和宽.【正确答案】(1)84(24)DE x x=-<<(2)队徽的长和宽分别为4-【分析】(1)在直角三角形ADE 中,由勾股定理得出DE 的长度;(2)由三角形面积公式结合基本不等式求解.【详解】(1)由题意可得4AD x =-,且40x x >->,可得24x <<,由CE AE x DE ==-,在直角三角形ADE 中,可得222AE AD DE =+,即222()(4)x DE x DE -=-+,化简可得84(24)DE x x=-<<;(2)118(4)422ADE S AD DE x x ⎛⎫=⋅=-- ⎪⎝⎭△8262612xx ⎛⎛⎫=--≤-=- ⎪ ⎝⎭⎝,当且仅当x =-,可得△ADE 的面积取得最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省启东中学2018-2019学年度第一学期第一次月考 高一数学试题 命题人:杨英杰 2018.10.8
一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在相应位置上.
1.若集合{}{}|13,|24A x x B x x =-<<=<<,则集合_____________A B =.
2.已知{1,3,}A m =-,集合{3,4}B =,若B A ⊆,则实数=m .
3.
函数0
y =定义域 .(区间表示) 4.若2)1(x x f =-,则)1(f =____________. 5.若集合}{3,2,1=A ,{}4,3,1=B ,则B A 的真子集个数为 .
6.函数1()(1)
f x x x =-的单调增区间为 . 7.给定映射:(,)(2,2),f x y x y x y →+- 则映射f 下的对应元素为(3,1),则它原来的元素为 .
8.若函数1)1(2
1)(2+-=x x f 的定义域和值域都是[]b ,1,则b 的值为___________. 9.若集合{}
0442=++=x kx x A 中只有一个元素,则实数k 的值为 . 10.函数x x f 211)(--=的最大值是________.
11.若函数341
2++=ax ax y 的定义域为R ,则实数a 的取值范围 .
12.函数)(x f 是定义在)1,1(-上的奇函数,且它为单调增函数,若0)1()1(2>-+-a f a f ,
则a 的取值范围是 .
13.函数)(x f 是偶函数,当[]2,0∈x 时,1)(-=x x f ,则不等式0)(>x f 在[]2,2-上的 解集为 . (用区间表示)
14.对于实数a 和b ,定义运算*:22()*()
a a
b a b a b b ab a b ⎧-≤⎪=⎨->⎪⎩ ,设()(21)*(1)f x x x =--, 若直线y m =与函数()y f x =恰有三个不同的交点,则m 的取值范围 .
二、解答题(本大题6小题,共90分。

解答时应写出文字说明,证明过程或演算步骤)
15.(本小题14分)
已知集合{}12==x x M ,{}
1==ax x N ,若M N ⊆,求实数a 的值. 16.(本小题14分)
已知函数()f x 的定义域为D ,若存在0x D ∈,使等式00(x )f x = 成立,则称0x x = 为函数()f x 的不动点,若1x =± 均为函数22()x a f x x b +=
+ 的不动点. (1)求,a b 的值. (2)求证:()f x 是奇函数.
17.(本小题15分)
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点。

研究表明:“活水围网” 养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度V (单位:千克/年)是养殖密度X (单位:尾/立方米)的函数。

当X 不超过4尾/立方米时,V 的值为2千克/年;当420x <≤时,V 是X 的一次函数,当X 达到20尾/立方米时,因缺氧等原因,V 的值为0千克/年.
(1)当020x <≤时,求函数V 关于X 的函数表达式;
(2)当养殖密度X 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值。

18.(本小题15分)
已知集合{}0822<--=x x x A ,{}0322>-+=x x x B ,{}
02322<+-=a ax x x C 试求实数a 的取值范围使)(B A C ⊆.
19. (本小题16分)
已知二次函数2
()44f x x x =--在闭区间[],2()t t t R +∈ 上的最大值记为()g t ,求()g t 的表达式,并求出()g t 的最小值.
20.(本小题16分)
已知()f x 是定义在[1,1]-上的奇函数,且(1)2f =,任取,[1,1]a b ∈-,+0a b ≠ , ()f(b)0f a a b
+>+都有 成立. (1)证明函数()f x 在[1,1]- 上是单调增函数. (2)解不等式)()(2x f x f <.
⑶若对任意[]1,1-∈x ,函数322)(2+-≤am m x f 对所有的⎥⎦
⎤⎢⎣⎡∈23,0a 恒成立,求m 的取值范围.。

相关文档
最新文档