【必考题】高一数学上期末一模试卷附答案

合集下载

高一上学期期末模拟数学检测试卷含答案

高一上学期期末模拟数学检测试卷含答案

高一上学期期末模拟数学检测试卷含答案一、选择题1.设集合{0,1,2,3}U =,{0,1,2}A =,则UA( ) A .{3}B .{0,3}C .{1,2,3}D .{0,1,2,3}2.函数()f x = ) A .[0,2)B .(2,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .[1,)+∞3.如果已知sin cos 0αα⋅<,sin tan 0αα⋅<,那么角2α的终边在( ) A .第一或第二象限 B .第一或第三象限 C .第二或第四象限D .第四或第三象限4.以角θ的顶点为坐标原点,始边为x 轴的非负半轴,建立平面直角坐标系,角θ终边过点()2,4P ,则tan 4πθ⎛⎫-= ⎪⎝⎭( )A .3-B .13-C .13D .35.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知A 为锐角ABC 的内角,满足sin 2cos tan 1A A A -+=,则A ∈( ) A .π0,6⎛⎫ ⎪⎝⎭B .ππ,64⎛⎫ ⎪⎝⎭C .ππ,43⎛⎫ ⎪⎝⎭D .ππ,32⎛⎫ ⎪⎝⎭6.华夏文明五千多年,孕育出璀璨的诗歌篇章,诗歌“黄沙百战穿金甲,不破楼兰终不还”一句引自王昌龄的《从军行七首(其四)》,楼兰,汉时西域国名.据《汉书》载:汉武帝时,曾使通大宛国,楼兰王阻路,攻截汉朝使臣.汉昭帝元凤四年(公元前77)霍光派傅介子去楼兰,用计斩杀楼兰王.唐时与吐蕃在此交战颇多,王昌龄诗中借用傅介子斩楼兰王典故,表明征战将士誓平边患的决心.那么,“不破楼兰终不还”中,“还”是“破楼兰”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若定义在R 的奇函数()f x 在(],0-∞单调递减,则不等式()()20f x f x +-≥的解集为( ) A .(],2-∞B .(],1-∞C .[)1,+∞D .[)2,+∞8.设函数()sin cos (0)f x a x b x ωωω=+>在区间,62ππ⎡⎤⎢⎥⎣⎦上单调,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当12x π=时,()f x 取到最大值2,若将函数()f x 的图像上各点的横坐标伸长为原来的2倍得到函数的图像()g x ,则不等式()1g x >的解集为( )A .2,2,62k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭B .2,2,32k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭C .2,2,63k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭D .2,2,33k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭二、填空题9.对于定义在R 上的函数()f x ,下列说法正确的是( ) A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称 10.使得“a b >”成立的充分不必要条件可以是( )A .1a b >-B .11a b< C D .10.30.3a b -<11.下列四个命题:其中不正确命题的是( )A .函数()f x 在(0,)+∞上单调递增,在(,0]-∞上单调递增,则()f x 在R 上是增函数B .若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >C .当a b c >>时,则有bc ac >成立D .1y x =+和y 不表示同一个函数12.德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为()1,0,x D x x ⎧=⎨⎩为有理数为无理数关于函数()D x 有以下四个命题,其中真命题有( )A .()D x 既不是奇函数也不是偶函数B .()(),r Q D x r D x ∀∈+=C .()(),D 1x R D x ∀∈=D .()()(),,x y R D x y D x D y ∃∈+=+三、多选题13.已知集合(){}lg 4A x y x =∈=-N ,则A 的子集个数为______. 14.设0x 为函数()24x f x x =+-的零点,且23135212222n nn T -=++++(k ,k +1),k ∈Z ,则k 的值为________.15.对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2e x f x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)16.筒车是我国古代发明的一种水利灌溉工具.因其经济又环保,至今还在农业生产中得到使用(如图).假设在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.现有一半径为2米的简车,在匀速转动过程中,筒车上一盛水简M 距离水面的高度H (单位:米)与转动时间t (单位:秒)满足函数关系式52sin ,0,6042H t ππϕϕ⎛⎫⎛⎫=++∈ ⎪ ⎪⎝⎭⎝⎭,且0t =时,盛水筒M 与水面距离为2.25米,当筒车转动100秒后,盛水筒M 与水面距离为_______米.四、解答题17.已知全集U =R ,集合{}1264xA x =≤≤,{}211B x m x m =-<<+.(1)当1m =-时,求()UA B ;(2)若B A ⊆,求实数m 的取值范围.18.已知函数()cos()(0,12,0)f x A x A ωϕωϕπ=+><<<<的图象经过点()0,1,且一个最高点的坐标为2,23⎛⎫- ⎪⎝⎭.(1)求函数()f x 的解析式:(2)设P ,Q 分别为函数()f x 的图象在y 轴右侧且距y 轴最近的最高点和最低点,O 为坐标原点,实数m OP OQ =⋅,若函数()9cos 24cos 3g x m x n x =+-在2,63ππ⎡⎤-⎢⎥⎣⎦上的最小值为8-,求实数n 的值.19.已知定义域为R 的函数()f x 是奇函数,当0x >时,()1213xx f x ⎛⎫=-- ⎪⎝⎭.(1)求()f x 的解析式;(2)若对任意的t R ∈,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.20.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为 90 米,最低点距离地面 10 米,摩天轮上均匀设置了 36 个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1) 经过t 分钟后游客甲距离地面的高度为H 米,已知H 关于t 的函数关系式满足H (t )=A sin(ωt +φ)+B 其中A >0,ω> 0),求摩天轮转动一周的解析式 H (t ); (2) 问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为 30 米?(3) 若游客乙在游客甲之后进入座舱,且中间相隔 5 个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为 h 米,求 h 的最大值.21.已知函数()()220g x ax ax b b =-+>,在[]1,2x ∈时最大值为1和最小值为0.设()()g x f x x=. (1)求实数a ,b 的值;(2)若不等式()2410x xg k -⋅+≥在[]1,1x ∈-上恒成立,求实数k 的取值范围;(3)若关于x 的方程()222log 310log mf x m x+--=有四个不同的实数解,求实数m 的取值范围.22.已知定义在区间()0,∞+上的函数()()4=50f x t x t x ⎛⎫+- ⎪⎝⎭>.(1)若函数()f x 分别在区间()0,2,()2,+∞上单调,试求t 的取值范围;(2)当=1t 时,在区间[]0,2上是否存在实数a 、b ,是的函数()f x 在区间[],a b 上单调,且()f x 的取值范围为[],ma mb ,若存在,求出m 的取值范围;若不存在,说明理由.【参考答案】一、选择题 1.A 【解析】 【分析】根据集合的补集运算,得到答案. 【详解】因为集合{0,1,2,3}U =,{0,1,2}A =, 所以3UA.故选:A 【点睛】本题考查集合的补集运算,属于简单题. 2.C 【分析】根据解析式建立不等式求解即可. 【详解】函数()f x = 则210x -≥, 解得12x ≥, 所以函数定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 3.B 【分析】sin cos 0αα⋅<,sin tan 0αα⋅<,则sin 0,cos 0,tan 0ααα><<,可得α在第二象限,进而得出结论. 【详解】∵sin cos 0,sin tan 0αααα⋅<⋅<, ∴sin 0,cos 0,tan 0ααα><<, ∴α在第二象限, ∴2k 2,2k k ππαππ+<<+∈Z .∴422k k παπππ+<<+,当2,k n n =∈Z 时,2α在第一象限,当21,k n n Z =-∈时,2α在第三象限 那么角2α的终边在第一或第三象限. 故选:B . 4.C 【分析】根据终边上的点求出tan θ,再应用两角差正切公式求值即可. 【详解】由题意知:tan 2θ=,而tan tan2114tan 412131tan tan 4πθπθπθ--⎛⎫-=== ⎪+⨯⎝⎭+. 故选:C 5.C 【分析】设设()sin 2cos tan 1f A A A A =-+-,则()f A 在0,2π⎛⎫⎪⎝⎭单调递增,再利用零点存在定理即可判断函数()f A 的零点所在的区间,也即是方程sin 2cos tan 1A A A -+=的根所在的区间. 【详解】因为A 为锐角ABC 的内角,满足sin 2cos tan 1A A A -+=, 设()sin 2cos tan 1f A A A A =-+-,则()f A 在0,2π⎛⎫⎪⎝⎭单调递增,()0sin02cos0tan0130f =-+-=-<,在0,2π⎛⎫⎪⎝⎭取4x π=,得sin 2cos tan 104444f ππππ⎛⎫=-+-=< ⎪⎝⎭,sin 2cos tan 103333f ππππ⎛⎫=-+-> ⎪⎝⎭,因为043f f ππ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭,所以()sin 2cos tan 1f A A A A =-+-的零点位于区间ππ,43⎛⎫ ⎪⎝⎭,即满足sin 2cos tan 1A A A -+=的角A ∈ππ,43⎛⎫⎪⎝⎭,故选:C 【点睛】关键点点睛:本题解题的关键点是令()sin 2cos tan 1f A A A A =-+-,根据零点存在定理判断函数的零点所在的区间. 6.A 【分析】根据语义分析“还”与“破楼兰”互相推出的情况,由此判断属于何种条件. 【详解】“还”能推出“破楼兰”,所以是充分条件, “破楼兰”不一定能推出“还”,所以是不必要条件, 所以“还”是“破楼兰”的充分不必要条件, 故选:A. 7.B 【分析】由奇函数性质结合已知单调性得出函数在R 上的单调性,再由奇函数把不等式化为(2)()f x f x -≥-,然后由单调性可解得不等式. 【详解】∵()f x 是奇函数,在(,0]-∞上递减,则()f x 在[0,)+∞上递减, ∴()f x 在R 上是减函数,又由()f x 是奇函数,则不等式()()20f x f x +-≥可化为(2)()f x f x -≥-, ∴2x x -≤-,1x ≤. 故选:B . 【点睛】方法点睛:本题考查函数的奇偶性与单调性.这类问题常常有两种类型: (1)()f x 为奇函数,确定函数在定义域内单调,不等式为12()()0f x f x +>转化为12()()f x f x >-,然后由单调性去掉函数符号“f ”,再求解;(2)()f x 是偶函数,()f x 在[0,)+∞上单调,不等式为12()()f x f x >,首先转化为12()()f x f x >,然后由单调性化简.8.A 【分析】首先设函数()()2sin f x x ωϕ=+,由条件确定周期和ω的范围,再利用对称性求出对称中心和对称轴,求ω,代入12x π=求ϕ,利用伸缩变换求()2sin 3g x x π⎛⎫=+ ⎪⎝⎭,最后解不等式.【详解】函数的最大值为2,∴()()2sin f x x ωϕ=+,()f x 在区间,62ππ⎡⎤⎢⎥⎣⎦上单调,所以2263T πππ≥-=,即23T π≥,223ππω∴≥,即03ω<≤, 223f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,712x π∴=是函数的对称轴, 26f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,,03π⎛⎫∴ ⎪⎝⎭是函数的对称中心,23T π≥712x π∴=和,03π⎛⎫⎪⎝⎭是函数相邻的对称轴和对称中心,2174123πππω⨯=-,得2ω=, 当12x π=时,()f x 取到最大值2,22122k ππϕπ∴⨯+=+,2,3k k Z πϕπ=+∈,当0k =时,3πϕ=,()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭,根据题意可知()2sin 3g x x π⎛⎫=+ ⎪⎝⎭,()112sin 1sin 332g x x x ππ⎛⎫⎛⎫∴>⇔+>⇔+> ⎪ ⎪⎝⎭⎝⎭,522636k x k πππππ∴+<+<+,解得:2262k x k ππππ-+<<+,k Z ∈. ()1g x ∴>的解集是2,2,62k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭.故选:A 【点睛】关键点点睛:本题的关键是对称性和周期性的灵活应用,关键由条件2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭确定相邻的对称轴和对称中心. 二、填空题9.ACD 【分析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称, 将()f x 的图象向右平移1个单位得()1f x -的图象, 故()1f x -的图象关于点(1,0)对称,正确; 对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数, 不能说明其图象关于直线1x =对称,错误.; 对C ,若函数()1f x +的图象关于直线1x =-对称, 则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-=,()f x 的图象关于(1,1)对称,正确. 故选:ACD. 10.CD 【分析】因为判断的是充分不必要条件,所以所选的条件可以推出a b >,且a b >无法推出所选的条件,由此逐项判断即可. 【详解】A .因为1a b >-不能推出a b >,但a b >可以推出1a b >-,所以1a b >-是a b >成立的必要不充分条件,故不满足;B .因为11a b <不能推出a b >(例如:1,1a b =-=),且a b >也不能推出11a b<(例如:1,1a b ==-),所以11a b<是a b >成立的既不充分也不必要条件,故不满足;C >0a b >≥能推出a b >,且a b >1,1a b ==-),a b >成立的充分不必要条件,故满足;D .因为函数0.3x y =在R 上单调递减,所以10.30.3a b -<可以推出1a b ->,即1a b >+, 所以10.30.3a b -<可以推出a b >,且a b >不一定能推出10.30.3a b -<(例如:1,1a b ==), 所以10.30.3a b -<是a b >成立的充分不必要条件,故满足, 故选:CD. 【点睛】结论点睛:充分、必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分也不必要条件,则p 对应集合与q 对应集合互不包含. 11.D 【分析】结合单调性的概念,二次函数的图象,不等式的性质和函数的定义判断各选项,错误选项可举反例说明. 【详解】A 不正确,如1,0(),0x f x x x x ⎧-<⎪=⎨⎪≥⎩满足题意,但在R 上不是增函数;B 不正确,若0a <且280b a -<,()f x 的图象与x 轴也没有交点;C 不正确,若5,2,0a b c ===满足a b c >>,但bc ac =;D正确,1y x +,值域为[0,)+∞,1y x =+值域是R ,不是同一函数. 故选:D . 12.BCD 【分析】根据自变量x 是有理数和无理数进行讨论,可判定A 、B 、C,举特例根据xx =判断D 即可得到答案. 【详解】对于A ,当x 为有理数时,则x -为有理数,则()()1D x D x -==. 当x 为无理数时,则x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,∴函数为偶函数,若自变量x 是有理数,则x -也是有理数,可得()()112D x D x +-=+=, 所以()D x 不是奇函数,所以A 不是真命题;对于B ,r Q ∀∈,当x 是有理数时, x r +是有理数,()()1D x r D x +==, 当x 是无理数时, x r +是无理数,()()0D x r D x +==,所以B 是真命题; 对于C ,若自变量x 是有理数,则[]()(1)1D D x D ==,若自变量x 是无理数,则[]()(0)1D D x D ==,所以C 是真命题;对于D ,当x =y =x y += 则()0,()()000D x y D x D y +=+=+=,满足()()()D x y D x D y +=+,所以D 是真命题. 故选:BCD.【点睛】本题考查了特殊函数的性质及求函数的值,关键点是理解函数的定义和性质去做判断,考查了逻辑推理,数学运算.三、多选题13.16【分析】求出集合A ,确定集合A 的元素个数,利用集合的子集个数可求得集合A 的子集个数.【详解】(){}{}{}lg 440,1,2,3A x y x x x =∈=-=∈<=N N ,则A 的子集个数为4216=. 故答案为:16.【点睛】本题考查集合子集个数的求解,同时也考查了对数函数定义域的求解,考查计算能力,属于基础题.14.1【解析】【分析】利用零点的存在性定理,验证使得()()10f k f k ⋅+<,即可求得k 的值.【详解】()()()03,11,22f f f =-=-=,故()()120f f ⋅<,根据零点的存在性定理可知()01,2x ∈,故1k =.【点睛】本小题主要考查零点的存在性定理.零点的存在性定理的含义是:若函数在区间(),a b 上满足()()0f a f b ⋅<,则函数在区间(),a b 上有零点.另外要注意的是,零点的存在性定理,是零点存在的充分条件,而不是必要条件,也就是说如果()()0f a f b ⋅>,在区间(),a b 上也可能存在零点.15.10,2⎛⎤ ⎥⎝⎦. 【分析】先求出()0f x =的根,利用等价转换的思想,得到()0g x =在1m n -<有解,并且使用分离参数方法,可得结果【详解】由()()13log 2e x f x x -=+-,令()0f x =所以1x =,又已知函数()()13log 2e x f x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”据题意可知:()0g x =在11x -<有解,则()0g x =在02x <<有解 即1224x xa +-=在02x <<有解, 令()1224x xh x +-=, 又令2x t =,()1,4t ∈,11,14t ⎛⎫∈ ⎪⎝⎭所以2222111222t y t t -⎛⎫==--+ ⎪⎝⎭ 当112t =时max 12y = 当11t=时0y = 所以10,2y ⎛⎤∈ ⎥⎝⎦所以()10,2h x ⎛⎤∈ ⎥⎝⎦,则10,2a ⎛⎤∈ ⎥⎝⎦故答案为:10,2⎛⎤ ⎥⎝⎦【点睛】本题考查对新定义的理解,以及分离参数方法的应用,属中档题.16.25【分析】根据0t =时,盛水筒到水面的距离,由函数关系式,求出ϕ,再将100t =代入函数关系式,即可得出结果.【详解】因为筒车上一盛水简M 距离水面的高度H (单位:米)与转动时间t (单位:秒)满足函数关系式52sin ,0,6042H t ππϕϕ⎛⎫⎛⎫=++∈ ⎪ ⎪⎝⎭⎝⎭,且0t =时,盛水筒M 与水面距离为2.25米, 所以52sin 2.254ϕ+=,则1sin 2ϕ=, 又0,2πϕ⎛⎫∈ ⎪⎝⎭,所以6π=ϕ,则52sin 6064H t ππ⎛⎫=++ ⎪⎝⎭, 因此当100t =时,1005552sin 2sin 0.2560646441H πππ⎛⎫=++=-+== ⎪⎝⎭,即当筒车转动100秒后,盛水筒M 与水面距离为0.25米.故答案为:0.25四、解答题17.(1){3x x ≤-或}6x >;(2)1,2⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)当1m =-时,求出集合B ,利用交集和补集的定义可求得集合()U A B ; (2)分B =∅与B ≠∅两种情况讨论,根据B A ⊆可得出关于实数m 的不等式(组),综合可得出实数m 的取值范围.【详解】(1)当1m =-时,{}{}21130B x m x m x x =-<<+=-<<,{}{}126406x A x x x =≤≤=≤≤,{}36A B x x ∴⋃=-<≤, 因此,(){3U A B x x ⋃=≤-或}6x >;(2)当B =∅时,211m m -≥+,即2m ≥,这时B A ⊆;当B ≠∅时,有21121016m m m m -<+⎧⎪-≥⎨⎪+≤⎩,解得122m ≤<. 综上,m 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】易错点点睛:在利用集合的包含关系求参数,要注意以下两点:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.18.(1)()2cos 23f x xππ⎛⎫=+ ⎪⎝⎭;(2) 【分析】(1)由最高点坐标求得A ,坐标(0,1)代入解析式可求得ϕ,由最高点坐标可求得ω,得解析式;(2)由三角函数性质求得,P Q 点坐标同,由数量积的坐标表示求得m ,()g x 化为关于cos x 的二次函数,换元后由二次函数性质求最小值,再根据最小值为8-求得n .【详解】解析(1)由函数图象最高点的纵坐标为2知2A =,将点()0,1代入函数的解析式中,得1cos 2ϕ=, 0ϕπ<<,故3πϕ=. 将点2,23⎛⎫- ⎪⎝⎭代人() f x 的解析式中,得2cos 133πω⎛⎫-+= ⎪⎝⎭ 所以2233k πωπ-+=,k ∈Z , 即32k πωπ=-+,k ∈Z ,又由 1 2 ω<<,从而 2πω=, 所以()2cos 23f x x ππ⎛⎫=+ ⎪⎝⎭. (2)23x k πππ+=,k ∈Z ,则取1k =得4,23Q ⎛⎫- ⎪⎝⎭;取2k =得10,23P ⎛⎫ ⎪⎝⎭.所以410422339m OP OQ =⋅=⨯-⨯=, 于是2()4cos 24cos 38cos 4cos 7g x x n x x n x =+-=+-. 当2,63x ππ⎡⎤∈-⎢⎥⎣⎦时,设 cos t x =,则1,12t ⎡⎤∈-⎢⎥⎣⎦, 于是2()()847g x h t t nt ==+-,1,12t ⎡⎤∈-⎢⎥⎣⎦. 当142n -≤-,即2n ≥时,()h t 单调递增,由182h ⎛⎫-=- ⎪⎝⎭,得32n =,矛盾; 当1124n -<-<,即42n -<<时,由 84n h ⎛⎫-=- ⎪⎝⎭,得 n = 当14n -≥,即 4n ≤-时,()h t 单调递减,由(1)8h =-,得94n =-,矛盾. 所以实数n的值为19.(1)()()()()121,030,0131,02xx x x x f x x x ⎧⎛⎫-->⎪ ⎪⎝⎭⎪⎪==⎨⎪⎛⎫⎪-++< ⎪⎪⎝⎭⎩(2)(﹣∞,﹣13). 【分析】(1)定义域为R 的奇函数f (x ),则f (0)=0,当x >0时,()1213xx f x ⎛⎫=-- ⎪⎝⎭,根据奇函数的性质即可求解x <0的解析式,可得f (x )的解析式;(2)从条件可知()f x 单调递减,由单调性和奇偶性脱去“f ”,转化为求解二次不等式恒成立的问题,从而求解实数k 的取值范围.【详解】解:(1)定义域为R 的奇函数f (x ),则f (0)=0,当x >0时,()1213xx f x ⎛⎫=-- ⎪⎝⎭,当x <0时,﹣x >0, 则()11213132x x x x f x --⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭,∵f (x )是奇函数, ∴()1312x x f x ⎛⎫-=-- ⎪⎝⎭,即()1312x x f x ⎛⎫=-++ ⎪⎝⎭. ∴f (x )的解析式为: ()()()()121,030,0131,02xx x x x f x x x ⎧⎛⎫-->⎪ ⎪⎝⎭⎪⎪==⎨⎪⎛⎫⎪-++< ⎪⎪⎝⎭⎩. (2)当x >0时,()1213xx f x ⎛⎫=-- ⎪⎝⎭单调递减,且()()100f x f <-<=,则()f x 在R 上单调递减,若不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,即f (t 2﹣2t )<﹣f (2t 2﹣k )∴t 2﹣2t >k ﹣2t 2,即3t 2﹣2t >k ,可得3(t ﹣13)2﹣13>k 对任意的t ∈R . ∴k <﹣13. 故得实数k 的取值范围是(﹣∞,﹣13). 【点睛】思路点睛:对于已知函数大小关系解不等式的问题,常应用函数的奇偶性和单调性去掉外层函数,构造内层函数的不等关系,解不等式即可.20.(1)()40cos50(030)15H t t t π=-+≤≤;(2)答案见解析;(3)h 的最大值为40米 【分析】(1)设()sin()H t A t B ωϕ=++,根据最高点和最低点可得A 与B ,由周期求ϕ值,即得函数解析式;(2)高度为30米,代入解析式求出t ;(3)分析出相邻两个座舱到达最低点的时间间隔为3036,甲,乙中间相隔5个座舱,则时间间隔5分钟,由此列出两人距离地面的高度差h 关于t 的函数关系式,利用三角函数的性质求出最大值.【详解】(1)由题意可设()sin()(0,0,0)H t A t B A B ωϕω=++>>≥,摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,9010A B A B +=⎧⎨-+=⎩,得40,50A B ==. 又函数周期为30,23015ππω==, ()40sin()5015H t t πϕ=++(030t ≤≤), 又0t =时,()10H t =,所以1040sin(0)5015πϕ=⨯++,即sin 1ϕ=-,ϕ可取2π-, 所以()40sin()5040cos 50(030)15215H t t t t πππ=-+=-+≤≤ (2) ()40cos 503015H t t π=-+=,1cos 152t π=解得5t =, 所以游客甲坐上摩天轮5分钟后,距离地面的高度恰好为30米;(3)由题意知相邻两个座舱到达最低点的时间间隔为3036,游客甲,乙中间相隔5个座舱, 则游客乙在游客甲之后5分钟进入座舱,若甲在摩天轮上坐了t (530t ≤≤)分钟,则游客乙在摩天轮上坐了5t -分钟,所以高度差为:40cos50[40cos (5)50]1515140[cos cos (5)]40[cos ]151********cos()153h t t t t t t t ππππππππ=-+---+=---=-=-+ 当153t πππ+=即10t =时,h 取得最大值40.【点睛】本题考查利用三角函数的性质求解析式,以及三角函数性质的实际应用,属于中档题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查数学知识,解决这类问题的关键是将实际问题转化为数学模型进行解答.21.(1)1a b ==;(2)12k ≤;(3)12m >-. 【分析】(1)就0a =、0a <、0a >分类讨论后可求,a b 的值.(2)令2x t =,则原不等式等价于222110t t kt -+-+≥在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,参变分离后可求k 的取值范围.(3)令2log 0s x =>,则原方程等价于()231210s m s m -+++=在()0,s ∈+∞有两个不同的实数解,利用根分布可求m 的取值范围.【详解】解:(1)∵函数()()220g x ax ax b b =-+>,在[]1,2x ∈时最大值为1和最小值为0.∴(i )当0a =时,()g x b =不符合题意;(ii )当0a >时,由题意得()g x 对称轴为1x =,()g x 在[]1,2x ∈单调增,∴()()1021g g ⎧=⎪⎨=⎪⎩,∴1a b ==; (ⅲ)当0a <时,由题意得()g x 对称轴为1x =,()g x 在[]1,2x ∈单调减,∴()()1120g g ⎧=⎪⎨=⎪⎩,∴1a =-,0b =,不符合题意, 综上:1a b ==;(2)当[]1,1x ∈-,令12,22x t ⎡⎤=∈⎢⎥⎣⎦, ∴()210g t k t -⋅+≥在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立, ∴222110t t kt -+-+≥在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立, 即211221k t t ⎛⎫⎛⎫≤-+ ⎪ ⎪⎝⎭⎝⎭在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立, 又当2t =时,211221t t ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭最小值为12,∴12k ≤; (3)令2log 0s x =>,∴当0s >时,方程2log s x =有两个根;当0s <时,方程2log s x =没有根.∵关于x 的方程()222log 310log m f x m x +--=有四个不同的实数解, ∴关于s 的方程()2310m f s m s+--=在()0,s ∈+∞有两个不同的实数解, ∴()231210s m s m -+++=在()0,s ∈+∞有两个不同的实数解,∴()()()2914210310210m m m m ⎧∆=+-⋅+>⎪+>⎨⎪+>⎩,∴12m >-. 综上:关于x 的方程()222log 310log m f x m x +--=有四个不同的实数解时,12m >-. 【点睛】方法点睛:对于指数不等式的恒成立问题或对数方程的有解问题,我们可以通过换元把它们转化为一元二次不等式的恒成立问题(可用参变分离来求参数的取值范围)或一元二次方程的解的问题(可用根分布来处理).22.(1)54t ≥,(2)见解析. 【分析】 (1)因为0x >,由对勾函数得,函数4y x x =+在(0,2)上单调递减,在(2,)+∞上单调递增,令4()()50g x t x x =+-,(0)t >结合题意可得所以()0min g x ,解得t 的取值范围.(2)当1t =时,4()|5|f x x x=+-,作出()f x 图象,分两种情况当(1,2)x ∈时,当(0,1)x ∈时,()f x 的值域,进而求得m 的取值范围.【详解】解:(1)(0,)x ∈+∞时,4424x x x x+≥⋅=,当2x =时取最小值4, 且在(0,2)上单调递减,在(2,)+∞上单调递增,要使函数4()()5f x t x x=+-分别在(0.2),(2,)+∞上单调, 则4()()50,g x t x x=+-≥ 即min ()450,g x t =-≥54t ∴≥; (2)当1t =时,4()|5|f x x x =+-,作出()f x 图象如下:令()0,f x =解得1x =或4x =①当(1,2)x ∈时,4()5(),f x x x=-+ 44()5(),()5()f a a f b b a b∴=-+=-+, 由()()f a f b m a b ==得,4455b a b ab a ab a b--=--即54()0ab a b -+=, 4,54a b a ∴=- 由(1,2)b ∈ 解得443a <<, 由(1,2),a ∈423a ∴<<, 由245()4541(2)3a f a a m a a a a a --===-+-<<, 可得19,216m <≤ ②当(4,)x ∈+∞时,4()5,f x x x =+- 44()5(),()5()f a a f b b a b∴=-+=-+, 由()()f a f b m a b ==得,4455,b a ab b ab a a b+-=+- 整理得:()54a b ab +=, 即1154a b +=, 4,4,a b ≥≥11111442a b ∴+≤+=与1154a b +=矛盾,即实数,a b 不存在; ③当(0,1)x ∈时,4()5f x x x=+-, 由(),()f a mb f b ma ==可得5a b +=,与,(0,1)a b ∈矛盾,即实数,a b 不存在;④当(2,4)x ∈时,4()5()f x x x=-+, 由(),()f a mb f b ma ==可得5a b +=,再由(),f a mb =得254a a m ab--= 把5b a =-代入得2415m a a =-- 24,a <<且b a >,可得522a <<, 19(,)335m ∴∈ 综上所述:存在实数,(1,2)a b ∈,使得函数()f x 在区间[,]a b 上单调,且()f x 的取值范围为[,]ma mb ,此时m 的范围为19,216⎛⎫ ⎪⎝⎭;或,(2,4)a b ∈, 使得函数()f x 在区间[,]a b 上单调,且()f x 的取值范围为[,]ma mb ,此时m 的范围为19,325⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查双勾函数的图象及性质,考查函数零点与方程根的关系,考查分类讨论思想,综合性较强.。

2020-2021高一数学上期末一模试题(含答案)(3)

2020-2021高一数学上期末一模试题(含答案)(3)

2020-2021高一数学上期末一模试题(含答案)(3)一、选择题1.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<2.函数()2sin f x x x =的图象大致为( )A .B .C .D .3.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]4.若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 5.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .66.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,67.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .8.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .59.曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 10.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .11.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______.14.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______.15.设定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是________.16.设,,x y z R +∈,满足236x y z==,则112x z y+-的最小值为__________. 17.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.18.已知正实数a 满足8(9)aaa a =,则log (3)a a 的值为_____________.19.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34xf f x ⎡⎤-=⎣⎦,则()4f =______. 三、解答题21.定义在()(),00,-∞⋃+∞上的函数()y f x =满足()()1f xy f x f y ⎛⎫=- ⎪⎝⎭,且函数()f x 在(),0-∞上是减函数.(1)求()1f -,并证明函数()y f x =是偶函数;(2)若()21f =,解不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭. 22.已知函数2()(8)f x ax b x a ab =+--- 的零点是-3和2 (1)求函数()f x 的解析式.(2)当函数()f x 的定义域是[]0,1时求函数()f x 的值域.23.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。

【好题】高一数学上期末第一次模拟试卷及答案

【好题】高一数学上期末第一次模拟试卷及答案

【好题】高一数学上期末第一次模拟试卷及答案一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.若函数()2log ,?0,?0xx x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1e B .eC .21eD .2e3.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]4.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1 B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦5.函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)6.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,27.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x + B .1sin x -C .1sin x --D .1sin x -+8.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>9.曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( )A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 10.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .11.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣ C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞12.已知()f x =22x x -+,若()3f a =,则()2f a 等于A .5B .7C .9D .11二、填空题13.若155325a b c ===,则111a b c+-=__________. 14.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.15.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.16.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.17.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.18.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 三、解答题21.已知()()()22log 2log 2f x x x =-++. (1)求函数()f x 的定义域; (2)求证:()f x 为偶函数;(3)指出方程()f x x =的实数根个数,并说明理由. 22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.已知全集U =R ,函数()lg(10)f x x =-的定义域为集合A ,集合{}|57B x x =≤<(1)求集合A ; (2)求()U C B A ⋂.24.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.25.设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.26.已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若A B =∅I ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可.【详解】 因为函数2log ,0(),0xx x f x e x >⎧=⎨≤⎩, 因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.3.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.4.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】由题意得:2010x x -≥⎧⎨+>⎩ 解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.6.C【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.7.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.8.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .9.A【解析】试题分析:241(22)y x x =-+-≤≤对应的图形为以()0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法10.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.12.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.二、填空题13.1【解析】故答案为解析:1 【解析】155325a b c ===因为,1553log 25,log 25,log 25a b c ∴===,252525111log 15log 5log 3a b c∴+-=+-25log 251==,故答案为1. 14.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.15.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】 【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可. 【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩, 解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭.【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.16.(-22)【解析】【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<解析:(-2,2)【解析】【详解】∵函数f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x <2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).17.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设x x t e e -=-,1x x x x t e ee e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x x x x a e e e e ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立, 0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立, 由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =, ∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.18.【解析】根据题意当时为奇函数则故答案为解析:15-根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则 故答案为15-.19.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没 解析:{|2m m >或2}3m <-【解析】【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值, 则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >. 当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题. 20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周【解析】【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-Q ,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称;又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点, 4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16.【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)()2,2-;(2)证明见解析;(3)两个,理由见解析.【解析】【分析】(1)根据对数函数的真数大于0,列出不等式组求出x 的取值范围即可;(2)根据奇偶性的定义即可证明函数()f x 是定义域上的偶函数.(3)将方程()f x x =变形为()22log 4x x -=,即242x x -=,设()242x g x x =--(22x -≤≤),再根据零点存在性定理即可判断.【详解】解:(1) ()()()22log 2log 2f x x x =-++Q2020x x ->⎧∴⎨+>⎩,解得22x -<<,即函数()f x 的定义域为()2,2-; (2)证明:∵对定义域()2,2-中的任意x ,都有()()()()22log 2log 2f x x x f x -=++-=∴函数()f x 为偶函数;(3)方程()f x x =有两个实数根,理由如下:易知方程()f x x =的根在()2,2-内,方程()f x x =可同解变形为()22log 4x x -=,即242x x -= 设()242x g x x =--(22x -≤≤).当[]2,0x ∈-时,()g x 为增函数,且()()20120g g -⋅=-<,则在()2,0-内,函数()g x 有唯一零点,方程()f x x =有唯一实根,又因为偶函数,在()0,2内,函数()g x 也有唯一零点,方程()f x x =有唯一实根, 所以原方程有两个实数根.【点睛】本题考查函数的定义域和奇偶性的应用问题,函数的零点,函数方程思想,属于基础题.22.(1)2a =(2)17,8⎛⎫-∞-⎪⎝⎭ 【解析】【分析】(1)依题意代数求值即可;(2)设()()121log 1022x g x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论.【详解】(1)()32f =-Q ,()12log 1032a ∴-=-, 即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭, 题设不等式可转化为()g x m >在[]3,4x ∈上恒成立, ()g x Q 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭, 178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭. 【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1) {}|310A x x =≤< (2) {}()|35710U C B A x x x ⋂=≤<≤<或【解析】试题分析:(1)根据真数大于零以及偶次根式被开方数非负列不等式,解得集合A (2)先根据数轴求U C B ,再根据数轴求交集 试题解析:(1)由题意可得:30100x x -≥⎧⎨->⎩,则{|310}A x x =≤< (2){|57}U C B x x x =<≥或(){|35710}U C B A x x x ⋂=≤<≤<或24.(1)()262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌;(2)2a ∈⎣ 【解析】【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式;(2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得.【详解】(1)由题意知,2A B A B ⎧+=⎪⎪⎨⎪-+=⎪⎩解得A =,2B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ. 所以()262f x x π⎛⎫=++ ⎪⎝⎭, 由222262k x k πππππ-≤+≤+, 解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌. (2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减, 要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣.【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础.25.(1)4,2a b ==(2)21log 2x +=(3)()[]0,240g x ∈ 【解析】【分析】(1)由()()211,2log 12f f ==解出即可(2)令()0f x =得421x x -=,即()22210xx --=,然后解出即可 (3)()42x x g x =-,令2x t =,转化为二次函数【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42x x f x =-,令()0f x =得421x x -=,即()22210x x --=,解得2x =,又120,22x x >∴=,解得21log 2x =; (3)由(1)知()42x x g x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为()g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,26.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U . 【解析】【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩……解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围.【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩……解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足A B =∅I .②当A ≠∅时,有121a a -<+,解得 2.a >-又A B =∅Q I ,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥. 综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U . 【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

【必考题】高一数学上期末一模试题附答案(1)

【必考题】高一数学上期末一模试题附答案(1)

【必考题】高一数学上期末一模试题附答案(1)一、选择题1.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 2.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦3.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]4.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B .22,2 C .14,2 D .14,4 5.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -6.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .37.函数ln x y x=的图象大致是( )A .B .C .D .8.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >9.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .510.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()UP Q ⋃=A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.15.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.16.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.17.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.18.已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.19.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.20.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.三、解答题21.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;22.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围.23.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭.(1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t .24.已知函数()f x =(1)判断函数()f x 在区间[0,)+∞上的单调性,并用定义证明;(2)函数2()()log 2g x f x x =+-在区间(1,2)内是否有零点?若有零点,用“二分法”求零点的近似值(精确到0.3);若没有零点,说明理由.1.118≈, 1.225≈ 1.323≈,2log 1.250.322≈,2log 1.50.585≈,2log 1.750.807≈)25.求下列各式的值. (1)121log 23324()(0)a a a a -÷>;(2)221g 21g4lg5lg 25+⋅+.26.已知()()122x x f x a a R +-=+∈.(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明); (2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.2.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.3.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.4.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.5.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.6.C解析:C 【解析】 【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】()f x 为定义在R 上的奇函数,∴()()f x f x -=-,又(1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴, ∴()f x 在R 上为周期函数,周期为4, ∴(2019)(50541)(1)(1)f f f f =⨯-=-=-函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f =∴(2019)(1)3f f =-=-,故答案选C . 【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.7.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.8.C解析:C 【解析】 【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C. 【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。

高一数学上学期期末模拟综合试题带答案

高一数学上学期期末模拟综合试题带答案

高一数学上学期期末模拟综合试题带答案一、选择题1.已知全集U =R ,{|lg 0}A x x =<,则UA( )A .{|1}x x ≥B .{|0x x ≤或1}x ≥C .{|0 x x <或1}x >D .{|0}x x ≤2.函数1()1f x x =-的定义域是( ) A .R B .[1,)-+∞C .[1,1)(1,)-⋃+∞D .(,1)(1,)-∞⋃+∞3.若角θ满足条件sin cos 1θθ+<-,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知角α的终边过点(,1)(0)M x x -<,且cos x α=,则x =( )A .B .C .D .5.在下列区间中,函数()ln 3f x x x =+-的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,46.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至2000,则C 大约增加了( )(lg 20.3010)≈ A .10%B .30%C .60%D .90%7.已知定义在[]22-,上的奇函数()f x 满足:对任意的[]12,2,2x x ∈-都有()()1212f x f x x x -<-成立,则不等式()()1140f x f x ++->的解集为( ) A .13,44⎛⎫- ⎪⎝⎭B .12,43⎛⎫- ⎪⎝⎭C .1,14⎛⎫- ⎪⎝⎭D .23,34⎛⎤ ⎥⎝⎦8.已知函数231,2()1024,2x x f x x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数2()2(())()F x f x mf x =-,且函数()F x 有6个零点,则非零实数m 的取值范围是 A .()()2,00,16⋃- B .()216, C .[)2,16D .()()2,00,-+∞二、填空题9.函数()f x 是定义在R 上的奇函数,当0x >时,()1f x xx=+,则下列结论正确的是( )A .当0x <时,()1x f x x=-+ B .关于x 的不等式()()210f x f x +-<的解集为1,3⎛⎫-∞ ⎪⎝⎭C .关于x 的方程()13f x x =有三个实数解D .12,x x ∀∈R ,()()212f x f x -< 10.下列结论正确的是( )A .在ABC 中,AB >是sin sin A B >充要条件B .在ABC 中,2cos sin sin B A C =,则ABC 为等腰三角形 C .在ABC 中,cos cos a A c C =,则ABC 为等腰三角形D .在ABC 中,2b ac =,且2sin sin sin B A C =+,则ABC 为正三角形 11.下列命题正确的有( )A .若()(),y f x y g x == 均为R 上的增函数,则()()y f x g x =+ 也是R 上的增函数B .若a b > ,则22ac bc >C .命题“0x ∃>,使得2+ax 30ax -≥ ”的否定是“0x ∀>,使得2+ax 30ax -<”D .已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,则 (0,)x ∈+∞时,函数解析式为2()2f x x x =-12.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x ≤⎧=⎨>⎩,下列四个结论正确的是( )A .()f x 是以π为周期的函数B .当且仅当()x k k ππ=+∈Z 时,()f x 取得最小值-1C .()f x 图象的对称轴为直线()4x k k ππ=+∈ZD .当且仅当22()2k x k k πππ<<+∈Z 时,0()f x <≤三、多选题13.已知集合{}2,3A =,{}1B x ax ==,若A B B =,则实数a 的所有可能的取值组成的集合为_________. 14.函数()()af x x a R x=+∈在[)1,2上存在零点,则实数a 的取值范围是______. 15.已知函数f (x )=2x ,1()()()g x f x f x =-,若1()(2)()(2)h x f x tg x f x =++(t 为实数)在(0,+∞)上有两个不同的零点x 1、x 2,则x 1+x 2的取值范围为_______16.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增.若对任意x ∈R ,不等式()()(21),f a x b f x x a b +-≥--∈R 恒成立,则222a b +的最小值是___________.四、解答题17.已知全集U =R ,集合{}2560A xx x =-+≤∣,集合{}2220B x x x =-->∣. (1)求A R,A B ;(2)若集合{30}C xx a =+>∣,满足A C C =,求实数a 的取值范围.18.设函数()sin 224f x x x m π⎛⎫=-+ ⎪⎝⎭,x ∈R ,m R ∈(1)求函数()f x 的最小正周期及单调增区间; (2)当04x π≤≤时,()f x 的最小值为0,求实数m 的值. 19.已知函数3()1f x x =-. (1)画出函数的草图,并用定义证明函数的单调性; (2)若[]2,7x ∈,求函数的最大值和最小值.20.已知函数()log a f x x =(0a >,且1a ≠),且()31f =. (1)求a 的值,并写出函数()f x 的定义域;(2)设函数()()()11g x f x f x =+--,试判断()g x 的奇偶性,并说明理由;(3)若不等式()()42x xf t f t ⋅≥-对任意[]1,2x ∈恒成立,求实数t 的取值范围.21.已知()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数. (1)求()f x 与()g x 的解析式;(2)判断函数()f x 在其定义域上的单调性; (3)解关于t 不等式()()12130f t f t t -++->. 22.函数2()1ax b f x x +=+是定义在(,)-∞+∞上的奇函数,且12()25f =. (1)求实数,a b 的值.(2)用定义证明在(1,1)-上是增函数;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由)【参考答案】一、选择题 1.B 【解析】 【分析】首先利用对数函数的性质求出集合A ,然后再利用集合的补集运算即可求解. 【详解】R U =.{|lg 0}{|01}A x x x x =<=<<, {|0UA x x ∴=≤或1}x ≥故选:B. 【点睛】本题考查了集合的补集运算以及对数函数的性质,属于基础题. 2.C 【分析】根据函数的特点,直接列式求函数的定义域. 【详解】函数的定义域需满足1010x x +≥⎧⎨-≠⎩,解得:1x ≥-且1x ≠,所以函数的定义域是[)()1,11,-+∞.故选:C 3.C 【分析】推导出sin 0θ<,cos 0θ<,由此能求出θ的终边在第几象限. 【详解】解:角θ满足条件sin cos 1θθ+<-,sin 0θ∴<,cos 0θ<,θ∴的终边在第三象限.故选:C . 4.C 【分析】先求出点(,1)(0)M x x -<到坐标原点的距离r ,再利用三角函数的定义cos x r α==即可求解. 【详解】设r OM ==由三角函数的定义可得:cos xrα=, 整理可得:213x +=, 因为0x <,所以x = 故选:C 5.C 【分析】先判断()ln 3f x x x =+-的单调性,利用零点存在定理判断根所在的区间. 【详解】()ln 3f x x x =+-在0+∞(,)是增函数, 而()()()1ln113=-2<0,2ln 223=ln 21<0,3ln333=ln3>0,f f f =+-=+--=+-(2)(3)0f f ∴⋅<根据零点存在定理,可得函数()ln 3f x x x =+-的零点所在的区间为()2,3. 故选:C 【点睛】判断函数零点所在的大致区间的方法如下:若函数()y f x =在闭区间[a,b ]上的图像是连续曲线,并且在区间端点的函数值符号不同,即()()0f a f b ⋅≤,则在区间[a,b ]内,函数()y f x =至少有一个零点,即相应的方程()0f x =在区间[a,b ]内至少有一个实数解。

高中必修一数学上期末一模试卷带答案

高中必修一数学上期末一模试卷带答案

高中必修一数学上期末一模试卷带答案一、选择题1. 已知奇函数 yf (x) 的图像对于点 ( ,0) 对称,当 x [0,) 时, f ( x) 1 cos x ,22则当 x(5,3 ] 时, f (x) 的分析式为()2. f ( x) 1 cos x.f ( x) 1.f (x) 1 sin x.1 Asin x BC f (x)cosx D2. 已知 a 42123 ,b 33 , c 253,则A . ba c B . abc C . bcaD . ca b3. 在实数的原有运算法例中,增补定义新运算“”以下:当 a b 时, a ba ;当a b 时, a bb 2 ,已知函数 f x1 x x2 2x x2,2,则知足f m 1f 3m 的实数的取值范围是()A . 1,B . 1,2C . 1,2D .1,2222 33log 1 (x 1), x N *4. 若函数 f (x)2,则 f ( f (0))( )3x , x N *A . 0B . -11D . 1C .35. 已知定义域 R 的奇函数 f (x) 的图像对于直线x 1 对称,且当 0 x1 时,f ( x) x 3 ,则 f21 ()2A . 27B .112788C .D .886. 把函数 f xlog 2 x 1 的图象向右平移一个单位,所得图象与函数g x 的图象关 于直线 yx 对称;已知偶函数 h x 知足 h x1hx 1 ,当 x0,1 时,h xg x 1;若函数 yk f xh x 有五个零点,则正数 k 的取值范围是( ). 32,1. 32,1. log 6 2, 1 . log 6 2, 1 AlogBlog C2D27. [ x] 表示不超出实数 x 的最大整数, x 0 是方程 ln x 3x 10 0 的根,则 [ x 0 ] ()A . 1B . 2C . 3D . 48. 用二分法求方程的近似解,求得f ( x)x 3 2x 9 的部分函数值数据以下表所示:x12 1.5 1.625 1.75 1.875 1.8125 f ( x)-63-2.625-1.459-0.14 1.34180.5793则当精准度为0.1 时,方程x32x 90 的近似解可取为A.1.6B.1.7C.1.8D.1.99.已知函数y f ( x) 是偶函数, y f ( x2) 在[0,2]是单一减函数,则()A.f ( 1) f (2) f (0)B.f ( 1) f (0) f (2)C.f (0) f (1) f (2)D.f (2) f ( 1) f (0)10.点P从点O出发,按逆时针方向沿周长为l 的平面图形运动一周, O ,P两点连线的距离 y 与点P走过的行程x的函数关系以下图,则点P 所走的图形可能是A.B.C.D.x xa=m,若函数 f 11.已知函数 f ( x)=x( e +ae﹣)( x∈ R),若函数 f ( x)是偶函数,记(x)为奇函数,记a=n,则 m+2n 的值为()A.0B. 1C. 2D.﹣ 112.函数 y=1在[2 ,3]上的最小值为 () x 1A. 21 B.21D.-1C.2 3二、填空题213. 已知函数 fxx 2 , x 0 ,则对于 x 的方程 f 2 x afx 0 a0,3x 3 , x 0的全部实数根的和为 _______.14. 函数 y log 0.5 x 2 的单一递加区间是 ________15. 已知 f x为奇函数,且在0,上是减函数,若不等式f ax 1 f x 2 在x 1,2 上都建立,则实数 a 的取值范围是 ___________.16. 某食品的保鲜时间 y (单位:小时)与储藏温度x (单位: )知足函数关系(为自然对数的底数, k 、 b 为常数).若该食品在 0的保鲜时间设计 192 小时,在 22 的保鲜时间是 48 小时,则该食品在33 的保鲜时间是小时 .17. 已知 3m5n k ,且 1 1 2 ,则 k__________m n18. 若函数 f xa 2x 4a x2 ( a 0 , a 1 )在区间1,1 的最大值为 10,则a ______.19. 已知函数 f x是定义在 R 上的偶函数,且f x 在区间 [0,) 上是减函数,则f x f 2 的解集是 ________.20. 定义在 R 上的奇函数f x ,知足 x 0时, fxx 1x ,则当 x0 时,f x______.三、解答题21. 已知定义在 R 上的函数 fx 是奇函数,且当 x,0 时, f x 1x .1x1 求函数 f x 在 R 上的分析式;2 判断函数 f x 在 0,上的单一性,并用单一性的定义证明你的结论.22. 已知函数 f( x )= A sin ωx + φ + B( A0 ,0 ,),在同一个周期内,()2当 x时, f x 获得最大值32,当 x2 时, f x 获得最小值 2 .3622(1) 求函数f x 的分析式,并求f x 在[0 , ]上的单一递加区间.(2) 将函数 f x 的图象向左平移个单位长度,再向下平移 2个单位长度,获得函数122gx的图象,方程g xa 在0, 有2 个不一样的实数解,务实数 a 的取值范围 .223. 设函数 f x log 2 a x b x ,且 f 11, f 2 log 2 12.(1)求 a ,b 的值;(2)求函数f x的零点;(3)设 g x a x b x,求 g x在 0,4上的值域 .24.已知函数f ( x)log a (x 1)2( a0 ,且 a 1 ),过点(3,3).(1)务实数 a 的值;(2)解对于 x 的不等式f2x3f122x 1.25.义域为R的函数f x知足:对随意实数 x,y 均有f x y f x f y 2 ,且f 2 2,又当 x1时, f x0 .(1)求 f0 . f 1 的值,并证明:当x1时, f x0;(2f a2a2x22a1240 对随意x1,3)若不等式x 2恒建立,务实数 a 的取值范围.26.已知f ( x)2,g( x) f ( x)1. 12x(1)判断函数 g(x) 的奇偶性;1010(2)求 f ( i ) f (i ) 的值.i1i 1【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.C分析: C【分析】【剖析】当 x 5时, 3x0,, 联合奇偶性与对称性即可获得结果.,322【详解】因为奇函数 y f x 的图像对于点,0对称,所以f x f x0 ,2且 f x f x ,所以 f x f x,故 f x 是以为周期的函数 .当 x 5,3时, 3x0,,故 f3x 1 cos 3x1cosx 22因为 f x 是周期为的奇函数,所以 f 3x f x f x故 f x1 cosx ,即 f x1 cosx , x5,32应选 C 【点睛】此题考察求函数的表达式,考察函数的图象与性质,波及对称性与周期性,属于中档题.2.A分析: A【分析】【剖析】【详解】42222在 (0,) 上单一递加,所以 b<a<c.因为 a23 =4 3 , b 33 , c 53 ,且幂函数 y x 3 应选 A.点睛:此题主要考察幂函数的单一性及比较大小问题,解答比较大小问题,常有思路有两个:一是判断出各个数值所在区间(一般是看三个区间,0 , 0,1 , 1,);二是利用函数的单一性直接解答;数值比许多的比大小问题也能够两种方法综合应用;三是借助于中间变量比较大小 .3.C分析: C【分析】当 2 x 1 时, f x1 x2 2 x 4 ; 当 1 x 2 时, f xx 2 x 2 2 x 34 ;所以 fx x4, 2 x 1x 3,4,1 x 2易知, f xx 4 在 2,1 单一递加, f xx 3 4 在 1,2 单一递加,且2 x 1 时, f x max 3, 1 x 2 时, fxmin3 ,则 f x 在 2,2 上单一递加,2 m 1 2所以 fm1f 3m 得: 23m 2 ,解得1m2 ,应选 C .m1 3m23点睛:新定义的题重点是读懂题意,依据条件,获得f xx 4, 2 x 1 x 3 4,1 x,经过单一2性剖析,获得f x 在 2,2 上单一递加,解不等式 f m1 f 3m,要切合定义域2 m 1 2和单一性的两重要求,则2 3m 2 ,解得答案. m 1 3m4.B分析: B【分析】【剖析】依据分段函数的分析式代入自变量即可求出函数值 .【详解】因为 0 N ,所以 f (0) 30 =1, f ( f (0)) f (1) , 因为 1N ,所以 f (1)=1,故 f ( f (0))1,应选 B.【点睛】此题主要考察了分段函数,属于中档题.5.B分析: B【分析】【剖析】利用题意获得,f ( x)f (x) 和 x D4k,再利用换元法获得f xf x 4 ,2k 21骣骣1从而获得 f x13的周期,最后利用赋值法获得f 琪 = f 琪琪琪,桫桫8223f3 1f2,最后利用周期性求解即可 .28【详解】f ( x) 为定义域 R 的奇函数,获得 f ( x) f ( x) ①;又由 f (x) 的图像对于直线 x1 对称,获得 x D4k②;2k 21在②式中,用 x 1 代替 x 获得 f 2 x f x ,又由②得 f 2 x f x 2 ;再利用①式,f x 2f 1 x 3 f 1x 3f 4 xfx4f x f 2 xf x 4 ③对③式,用 x 4 代替 x 获得 f xfx 4 ,则 f ( x) 是周期为 4 的周期函数;当 0 x 1时, f (x)11x 3,得 f821 1 f 11 f3 1,f3 f3 1 ,Q ff 122822822因为 f (x) 是周期为3 f3 21 14 的周期函数,f12f2,228答案选 B【点睛】此题考察函数的奇偶性,单一性和周期性,以及考察函数的赋值求解问题,属于中档题6.C分析: C【分析】剖析:由题意分别确立函数f(x)的图象性质和函数h(x)图象的性质,而后数形联合获得对于k 的不等式组,求解不等式组即可求得最后结果.详解:曲线f x log 2 x 1 右移一个单位,得 y f x 1 log 2 x ,所以 g(x)=2 x , h(x-1)= h(-x-1)= h( x+1) ,则函数 h(x)的周期为 2.x [0,1] 时, h x 2x1,当 ∈y=kf(x)-h( x)有五个零点,等价于函数 y=kf(x)与函数 y=h(x)的图象有五个公共点 . 绘制函数图像以下图,由图像知kf ( 3) <1 且 kf (5) >1,即:k log 2 4 1log 6 2 k1 k log2 6 ,求解不等式组可得:.12即 k 的取值范围是log 6 2, 1.2此题选择 C 选项 .点睛:此题主要考察函数图象的平移变换,函数的周期性,函数的奇偶性,数形联合解题 等知识,意在考察学生的转变能力和计算求解能力.7.B分析: B【分析】 【剖析】先求出函数 f x lnx 3x 10 的零点的范围,从而判断x 0 的范围,即可求出 x 0 .【详解】由题意可知x0是f x lnx3x10 的零点,易知函数 f x是( 0,)上的单一递加函数,而 f2ln2610ln240 , f 3 ln39 10 ln3 1 0 ,即 f2n f30所以2x03,联合 x的性质,可知x0 2 .应选 B.【点睛】此题考察了函数的零点问题,属于基础题.8.C分析: C【分析】【剖析】利用零点存在定理和精准度可判断出方程的近似解.【详解】依据表中数据可知 f 1.750.14 0 , f 1.81250.5793 0 ,由精准度为0.1 可知1.75 1.8 , 1.8125 1.8 ,故方程的一个近似解为 1.8,选 C.【点睛】不行解方程的近似解应当经过零点存在定理来找寻,零点的找寻依照二分法(即每次取区间的中点,把零点地点精准到本来区间的一半内),最后依照精准度四舍五入,假如最后零点所在区间的端点的近似值同样,则近似值即为所求的近似解.9.C分析: C【分析】【剖析】先依据 y f x 2 在 0,2 是单一减函数,转变出y f x 的一个单一区间,再联合偶函数对于 y 轴对称得0,2 上的单一性,联合函数图像即可求得答案【详解】Q y f x 2 在 0,2 是单一减函数,令 t x 2 ,则 t2,0 ,即 f t 在2,0 上是减函数y f x 在 2,0 上是减函数Q 函数y f x 是偶函数,y f x 在 0,2 上是增函数Q f1 f 1 ,则 ff1f 2应选 C【点睛】此题是函数奇偶性和单一性的综合应用,先求出函数的单一区间,而后联合奇偶性进行判定大小,较为基础.10.C分析: C【分析】【剖析】仔细察看函数图像,依据运动特色,采纳清除法解决 .【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,能够清除选项A,D, 对选项 B 正方形的图像对于对角线对称,所以距离 y 与点 P 走过的行程 x 的函数图像应当对于 l对称,由图可知不知足题意故清除选项B ,2应选 C . 【点睛】此题考察函数图象的辨别和判断,考察对于运动问题的深刻理解,解题重点是仔细剖析函数图象的特色.考察学生剖析问题的能力.11.B分析: B【分析】试题剖析:利用函数f ( x ) =x ( e x +ae ﹣x )是偶函数,获得g (x ) =e x +ae ﹣x 为奇函数,而后利用 g (0) =0,能够解得 m .函数 f ( x ) =x ( e x +ae ﹣x)是奇函数,所以 g ( x ) =e x +ae﹣x为偶函数,可得 n ,即可得出结论.xxxxxx解:设 g ( x ) =e ﹣﹣g ( x ) =e ﹣为奇函+ae ,因为函数 f ( x ) =x ( e +ae )是偶函数,所以 +ae 数.又因为函数 f ( x )的定义域为 R ,所以 g ( 0) =0,即 g (0) =1+a=0,解得 a=﹣ 1,所以 m=﹣ 1.xx xx因为函数 f ( x ) =x ( e +ae ﹣)是奇函数,所以 g ( x ) =e +ae ﹣为偶函数所以( e ﹣x +ae x ) =e x +ae ﹣x 即( 1﹣ a )( e ﹣x ﹣e x )=0 对随意的x 都建立所以 a=1,所以 n=1,所以 m+2n=1应选 B .考点:函数奇偶性的性质.12.B 分析: B【分析】y=1在[2 , 3] 上单一递减,所以x=3 时取最小值为1,选 B.x12二、填空题13.【分析】【剖析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的全部根之和从而可求出原方程全部实根之和【详解】或方程的根可视为直线与函数图象分析: 3【分析】【剖析】由2f x af x可得出f x 0和 f x a a0,3,作出函数y f x的图0象,由图象可得出方程 f x0 的根,将方程 f x a a0,3 的根视为直线ya与函数 y f x 图象交点的横坐标,利用对称性可得出方程根之和,从而可求出原方程全部实根之和.【详解】f x a a0,3的全部Q f 2 x af x 0 0 a 3 , f x 0 或 f x a 0 a 3 .方程 f x a 0 a 3 的根可视为直线y a与函数y f x图象交点的横坐标,作出函数 y f x 和直线 y a 的图象以下列图:由图象可知,对于x 的方程 f x0 的实数根为2、3.因为函数 y x222 对称,函数 y x3 的图象对于直线 x 3的图象对于直线 x对称,对于 x 的方程 f x a 0 a 3 存在四个实数根x1、 x2、 x3、 x4以下图,且x1 x22 ,x3x43 ,x1 x2x3 x4462,22所以,所求方程的实数根的和为 2 3 2 3.故答案为: 3 .【点睛】此题考察方程的根之和,实质上就是求函数的零点之和,利用图象的对称性求解是解答的重点,考察数形联合思想的应用,属于中等题.14.【分析】【剖析】先求得函数的定义域而后利用同增异减来求得复合函数的单一区间【详解】依题意即解适当时为减函数为减函数依据复合函数单一性同增异减可知函数的单一递加区间是【点睛】本小题主要考察复合函数的单分析:1,0【分析】【剖析】先求得函数的定义域,而后利用“同增异减”来求得复合函数的单一区间.【详解】x20,即0x21,解得x1,0 U 0,1 .当 x1,0 时,x2为减函依题意2log0.5 x0数, log0.5x 为减函数,依据复合函数单一性“同增异减”可知,函数y log 0.5 x2的单一递加区间是1,0 .【点睛】本小题主要考察复合函数的单一区间的求法,考察函数定义域的求法,属于基础题. 15.【分析】【剖析】依据为奇函数且在上是减函数可知即令依据函数在上单一递加求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单一递加若使得不等式在上都建立则需故答案为:【点睛】此题分析: a 0【分析】【剖析】依据 f x 为奇函数,且在0,上是减函数,可知 ax 1x 2 ,即a 11,令xy 11111,2 上单一递加,求解 a 的取值范围,即可.,依据函数 y在 xx x【详解】Q f x为奇函数,且在0,上是减函数f x在 R 上是减函数.1∴ ax 1 x 2 ,即a1.x令 y 11,则y 11在x 1,2上单一递加. x x若使得不等式 f ax 1 f x 2 在 x 1,2 上都建立.则需 a11x110 .min1故答案为: a【点睛】此题考察函数的单一性与奇偶性的应用,属于中档题. 16.24【分析】由题意得:所以时考点:函数及其应用分析: 24【分析】由题意得: { eb192,e22k48 1 , e11k1,所以 x33 时,e22k b4819242 ye33k b(e11k)3e b119224 .8考点:函数及其应用.17.【分析】因为所以所以故填分析:15【分析】因为 3m 5n k ,所以 m log3 k , n log 511lg5lg3lg15k ,n lg k lg k2 ,所以m lg klg k 1lg15lg 15 , k15 ,故填15 218.2 或【分析】【剖析】将函数化为分和两种状况议论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为: 或 2【点睛】此题考察已知函数最值求参答题时需要联合指数函数与二次函数性质求解分析: 2或12【分析】【剖析】将函数化为 f ( x)a x26,分0 a 1和a1,1 上的21两种状况议论 f ( x) 在区间最大值 ,从而求a .【详解】f x a2 x4a x2a x22 6 ,Q 1 x 1,0 a 1时,a a x a 1,f ( x) 最大值为f (1) a 1210 ,解得a1262a 1时,a1 a x a,f x 最大值为 f (1) a 226 10 ,解得a 2,故答案为 :1或 2. 2【点睛】此题考察已知函数最值求参,答题时需要联合指数函数与二次函数性质求解.19.【分析】【剖析】由题意先确立函数在上是增函数再将不等式转变为即可求得的取值范围【详解】函数是定义在上的偶函数且在区间上是减函数函数在区间上是增函数或解集为故答案为:【点睛】此题考察偶函数与单一性联合分析:, 22,【分析】【剖析】由题意先确立函数 f x 在,0 上是增函数,再将不等式转变为 f 1 1 f 2 即可求得 x 的取值范围.【详解】Q 函数函数ffx 是定义在x 在区间R 上的偶函数,且,0 上是增函数f x在区间[0,) 上是减函数,Q f x f2f x f2x 2x 2 或x≤2解集为, 2U 2,故答案为:,2U2,【点睛】此题考察偶函数与单一性联合解抽象函数不等式问题,直观想象能力,属于中等题型. 20.【分析】【剖析】由奇函数的性质得设则由函数的奇偶性和分析式可得综合 2 种状况即可得答案【详解】解:依据题意为定义在 R 上的奇函数则设则则又由函数为奇函数则综合可得:当时;故答案为【点睛】此题考察函数的奇分析: x x 1【分析】【剖析】由奇函数的性质得 f 00,设 x0 ,则 x 0 ,由函数的奇偶性和分析式可得f xf x x x1,综合 2 种状况即可得答案.【详解】解:依据题意,fx为定义在R 上的奇函数,则f 00 ,设 x0 ,则x 0 ,则 fxx 1 x ,又由函数为奇函数,则fxfxx x1 ,综合可得:当x0 时, f xx x1 ;故答案为 x x 1【点睛】此题考察函数的奇偶性以及应用,注意f 0 0 ,属于基础题.三、解答题1 x1 , x.( )x( )函数 f x 在 0,上为增函数 , 详看法析f x0, x 021 121 x, x1x【分析】【剖析】1 依据题意,由奇函数的性质可得f 0 0 ,设 x 0 ,则 x 0 ,联合函数的奇偶性与奇偶性剖析可得f x 在 0,上的分析式,综合可得答案;2 依据题意,设0 x 1 x 2 ,由作差法剖析可得答案.【详解】解: 1 依据题意, f x 为定义在 R 上的函数 f x 是奇函数,则 f 0 0 ,设 x0 ,则 x0,则 fx1 x ,1x又由 f x为 R 上的奇函数,则 fxf x1 x ,1 x1 x, x 01 x则 fx0, x 0 ;1 x1 , xx2 函数 f x 在 0,上为增函数;证明:依据题意,设 0 x 1 x 2 ,则 fx 1f x 21 x 11 x2 1 x 21 x 12 x 1x 21 x 11 x 21 x 21 x 1,1 x 1 1 x 2又由 0x1x2,则 x1x20 ,且 1 x10 , 1 x20 ;则 f x1f x20 ,即函数 f x在 0,上为增函数.【点睛】此题考察函数的奇偶性与单一性的判断以及应用,波及掌握函数奇偶性、单一性的定义.轾π2,单一增区间为02;22. (1)f x 2 sin2x,犏,π62,犏6臌3(2) a 6 ,22【分析】【剖析】(1)由最大值和最小值求得A, B ,由最大值点和最小值点的横坐标求得周期,得,再由函数值(最大或最小值均可)求得,得分析式;(2)由图象变换得g( x) 的分析式,确立g(x) 在[0,] 上的单一性,而g( x) a 有两个2解,即 g (x) 的图象与直线y a 有两个不一样交点,由此可得.【详解】A32, B2(1) 由题意知2 ,A B2解得A 2 ,B 2 .2又T26,可得2. 232由 f 2 sin23 2 ,6322解得π. 6所以 f x 2 sin 2x62 ,2由 2k22x62k,2解得 k x k, k Z .36轾 π又 x 0,,所以 fx 的单一增区间为 0,2, 犏, π.6犏臌3(2) 函数 fx 的图象向左平移个单位长度,再向下平移2个单位长度,获得函数122g x 的图象,获得函数gx 的表达式为 g x2 sin 2x.3因为 x0,,所以 2x33,4,23g( x) 在 [0,] 是递加,在 [ , ] 上递减, 12 12 2要使得 gx a 在 0, 上有 2 个不一样的实数解,2即 y g x的图像与 ya 有两个不一样的交点,所以 a6,2.2【点睛】此题考察求三角函数分析式,考察图象变换,考察三角函数的性质.“五点法”是解题重点,正弦函数的性质是解题基础.14,b221 5( 3) g x0,24023. ( ) a( ) xlog 22【分析】【剖析】( 1 )由 f1 1, f2 log 2 12 解出即可( 2)令 f(x )= 0 得 4x 2 x1,即2 x 22 x1 0 ,而后解出即可( 3 ) g x 4x 2x ,令 2xt ,转变为二次函数【详解】( 1 )由已知得f 1log 2 a b1,即a b 2f 2log 2a 2b 2log 2 12 a 2 b 2,12解得 a 4,b 2 ;(2)由( 1)知 f xlog 2 4x 2x ,令 f (x )= 0 得 4x2x1,即2x 2 2x 1 0 ,解得 2x 1 5 ,2又 2x0, 2x15,解得 xlog 2 125 ;2(3)由( 1)知 g x 4x2x ,令 2xt,21, t则g tt 2 tt 11,16 ,24因为 g(t ) 在 t1,16 上单一递加所以 g x 0,240 ,24.( ) ( ) x|2<x log 2 51 2 2【分析】【剖析】(1)将点 (3,3) 代入函数计算获得答案 .(2)依据函数的单一性和定义域获得 12x 3 12 2x 1 ,解得答案 .【详解】(1) f 3log a 3 1 2 3, log a 2 1, a 2 ∴ f x log 2 x 1 2 .(2) Q f x log 2 x 12 的定义域为 x | x1 ,并在其定义域内单一递加,∴ f 2x 3 f 122x 1, 12x3 122x 1 ,不等式的解集为x 2<xlog 2 5 .【点睛】此题考察了函数分析式,利用函数单一性解不等式,意在考察学生对于函数知识的综合应用.25. (1) 答案看法析; (2) a 0 或 a 1.【分析】试题剖析:(1) 利用赋值法计算可得 f 02, f 1 4 ,设 x 12 x 1,,则利用 f2 2 拆项: f 2 f2 x x 即可证得:当 x 1时, f x0 ;(2) 联合 (1)的结论可证得f x 是增函数,据此脱去 f 符号,原问题转变为a 2 a 2 x 22a 1 x22在 1,3 上恒建立,分别参数有:a 2 a2x 2 x 3x 2 4x恒建立,联合基本不等式的结论可得实数 a 的取值范围是 a 0 或 a1 .试题分析:(1) 令 ,得, 令 , 得,令 ,得,设 ,则,因为,所以;(2) 设,,因为所以,所以为增函数,所以,即,上式等价于对随意恒建立,因为,所以上式等价于对随意恒建立,设,(时取等),所以,解得或.26.( 1)g( x)为奇函数;(2) 20【分析】【剖析】(1)先求得函数g x 的定义域,而后由g x g x 证得 g x 为奇函数.(2)依据g x为奇函数,求得g(i )g(i )0,从而获得 f (i ) f (i) 2 ,由此求得所求表达式的值 .【详解】(1)g( x)12x,定义域为x R ,当 x R 时,x R.12x1因为 g(1 2 x12x2x1g( x) ,所以 g ( x) 为奇函数. x)2 x12x 1112x(2)由( 1)得g(i ) g(i)0 ,于是 f ( i) f (i ) 2 .10101010所以 f (i ) f (i )[ f (i) f (i )]210 2 20i 1i1i1i 1【点睛】本小题主要考察函数奇偶性的判断,考察利用函数的奇偶性进行计算,属于基础题.。

【典型题】高一数学上期末一模试卷(带答案)

【典型题】高一数学上期末一模试卷(带答案)

【典型题】高一数学上期末一模试卷(带答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0 D .正负都有可能2.若函数2()2f x mx mx =-+的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞3.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<4.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>5.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦6.函数y =a |x |(a >1)的图像是( ) A .B .C .D .7.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭8.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>9.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<10.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭11.若函数y a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1 B .2C .3D .412.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-12二、填空题13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________ 14.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.15.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________. 17.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.18.函数{}()min 2f x x =-,其中{},min ,{,a a b a b b a b≤=>,若动直线y m =与函数()y f x =的图像有三个不同的交点,则实数m 的取值范围是______________.19.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()a f x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______.20.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.三、解答题21.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++剟剟. (Ⅰ)若1a =,求()R M N I ð;(Ⅱ)M N M ⋃=,求实数a 的取值范围.22.已知函数()22x x f x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82xtf x ≥+对x ∈R 恒成立,求t 的取值范围. 23.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 24.已知函数21()f x x x =-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围.25.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?26.已知2()12xf x =+,()()1g x f x =-. (1)判断函数()g x 的奇偶性;(2)求101011()()i i f i f i ==-+∑∑的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.A解析:A 【解析】 【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩V >,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ; ∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意;②m ≠0时,则280m m m ⎧⎨=-<⎩V >; 解得0<m <8;综上得,实数m 的取值范围是[0,8) 故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.3.B解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===, 且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A . 【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.4.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.10x 1.1 1.11=>=Q , 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增,所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.6.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .7.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】 由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.8.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.9.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.10.A解析:A 【解析】【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.11.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y[0,1]上单调递减,值域是[0,1], 所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.12.B解析:B 【解析】y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 二、填空题13.1【解析】【分析】根据二次函数的值域为结合二次函数的性质列出不等式组即可求解【详解】由题意函数的值域为所以满足解得即实数的值为1故答案为:1【点睛】本题主要考查了二次函数的图象与性质的应用其中解答中解析:1 【解析】 【分析】根据二次函数的值域为[0,)+∞,结合二次函数的性质,列出不等式组,即可求解. 【详解】由题意,函数()22f x mx x m =-+的值域为[0,)+∞,所以满足24400m m ⎧∆=-=⎨>⎩,解得1m =.即实数m 的值为1. 故答案为:1. 【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题.14.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,,当0a ≥时,可知()ag x x x=+的值域为(),⎡-∞-+∞⎣U ,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.15.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值 解析:(]0,1【解析】【分析】分别求出(),()f x g x 的值域,对a 分类讨论,即可求解.【详解】()()222,log log a R f x x a a +∈=+≥,()f x 的值域为2[log ,)a +∞,()()22log ([()])g x f f x f x a ==+⎡⎤⎣⎦,当22201,log 0,[()]0,()log a a f x g x a <≤<≥≥,函数()g x 值域为2[log ,)a +∞,此时(),()f x g x 的值域相同;当1a >时,2222log 0,[()](log )a f x a >≥,222()log [(log )]g x a a ≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同,故a 的取值范围为(]0,1.故答案为:(]0,1.【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题. 17.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设x x t e e -=-,1x x x x t e ee e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x x x x a e e e e ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立, 0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立, 由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =, ∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.18.【解析】【分析】【详解】试题分析:由可知是求两个函数中较小的一个分别画出两个函数的图象保留较小的部分即由可得x2﹣8x+4≤0解可得当时此时f (x )=|x ﹣2|当或时此时f (x )=2∵f(4﹣2)=解析:02m <<【解析】【分析】【详解】试题分析:由{},min ,{,a a b a b b a b ≤=>可知{}()min 2f x x =-是求两个函数中较小的一个,分别画出两个函数的图象,保留较小的部分,即由2x ≥-可得x 2﹣8x +4≤0,解可得44x -≤≤+当44x -≤+2x ≥-,此时f (x )=|x ﹣2|当4x +>或04x ≤-<2x -<,此时f (x )=∵f (4﹣2其图象如图所示,02m <<时,y =m 与y =f (x )的图象有3个交点故答案为02m <<考点:本小题主要考查新定义下函数的图象和性质的应用,考查学生分析问题、解决问题的能力和数形结合思想的应用.点评:本小题通过分别画出两个函数的图象,保留较小的部分,可以很容易的得到函数的图象,从而数形结合可以轻松解题.19.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值.【详解】 因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()a f x x =函数,且在(0,)+∞上递减, a ∴是奇数,且0a <,1a ∴=-.故答案为:1-.【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <-【解析】【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值, 则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >. 当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题. 三、解答题21.(Ⅰ)(){|22R M C N x x =-≤<I 或35}x <≤(Ⅱ)2a ≤【解析】【分析】(Ⅰ)1a =时,化简集合B ,根据集合交集补集运算即可(Ⅱ)由M N M ⋃=可知N M ⊆,分类讨论N =∅,N ≠∅即可求解.【详解】(Ⅰ)当1a =时,{}|23N x x =≤≤ ,{|2R C N x x =<或}3x > .故 (){|22R M C N x x =-≤<I 或35}x <≤.(Ⅱ),M N M ⋃=QN M ∴⊆当N =∅时,121a a +>+,即0a <;当N ≠∅时,即0a ≥.N M ⊆Q ,12215a a +≥-⎧∴⎨+≤⎩解得02a ≤≤.综上:2a ≤.【点睛】本题主要考查了集合的交集,补集运算,子集的概念,分类讨论,属于中档题. 22.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=n ,则log (32?)0x a ->n ,等价于:当1a >时,321x ->n ,解得()2,log 3x ∈-∞当01a <<时,321x -<n ,解得()2log 3,x ∈+∞.(3)()82x t f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥n 恒成立; 令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故:2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.23.(1)证明见解析(2)44a -≤≤【解析】【分析】(1)先由函数()f x 为奇函数,可得1m =,再利用定义法证明函数的单调性即可; (2)结合函数的性质可将问题转化为2sin sin 30x a x ++≥在R 上恒成立,再利用二次不等式恒成立问题求解即可.【详解】 解:(1)∵函数31()31x x f x m -=⋅+是定义域为R 的奇函数, ()()f x f x ∴-=-31313131x x x x m m ----∴=-⋅+⋅+3131331x x x x m m --∴=+⋅+,()(1)310x a ∴--=,等式()(1)310x m --=对于任意的x ∈R 均恒成立,得1m =, 则31()31x x f x -=+, 即2()131x f x =-+, 设12,x x 为任意两个实数,且12x x <,()()()()()121212122332231313131x x x x x x f x f x -⎛⎫-=---= ⎪++++⎝⎭, 因为12x x <,则1233x x ≤,所以()()120f x f x -<,即()()12f x f x <,因此函数()f x 在R 上是增函数;(2)由不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立, 则()2cos sin 3(1)f x a x f --≤.由(1)知,函数()f x 在R 上是增函数, 则2cos sin 31x a x --≤,即2sin sin 30x a x ++≥在R 上恒成立.令sin x t =,[1,1]t ∈-,则222()33024a a g t t at t ⎛⎫=++=++-≥ ⎪⎝⎭在[1,1]-上恒成立.①当12a ->时,即2a <-,可知min ()(1)40g t g a ==+≥,即4a ≥-, 所以42a -≤<-; ②当112a -≤-≤时,即22a -≤≤,可知2min ()3024a a g t g ⎛⎫=-=-≥ ⎪⎝⎭.即a -≤≤22a -≤≤; ③当12a -<-时,即2a >,可知min ()(1)40g t g a =-=-≥,即4a ≤, 所以24a <≤,综上,当44a -≤≤时,不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立. 【点睛】本题考查了利用函数奇偶性求函数解析式及定义法证明函数的单调性,重点考查了含参二次不等式恒成立问题,属中档题.24.(1)证明见解析(2)m 1≥【解析】【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案.【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x > ∴12()()f x f x >,∴()f x 在(0,)+∞单调递减;(2)()()2201f x x m f ++<=,故221x x m ++>, ()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用.25.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元.【解析】【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式.(2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值.【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩, ∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元.【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.26.(1)()g x 为奇函数;(2)20【解析】【分析】(1)先求得函数()g x 的定义域,然后由()()g x g x -=-证得()g x 为奇函数.(2)根据()g x 为奇函数,求得()()0g i g i -+=,从而得到()()2f i f i -+=,由此求得所求表达式的值.【详解】(1)12()12xxg x -=+,定义域为x ∈R ,当x ∈R 时,x R -∈. 因为11112212()()112212x x x x x x g x g x --+----====-++,所以()g x 为奇函数. (2)由(1)得()()0g i g i -+=,于是()()2f i f i -+=. 所以101010101111[()()()10()]2220i i i i f i f f i i i f ====-+====⨯+=-∑∑∑∑【点睛】本小题主要考查函数奇偶性的判断,考查利用函数的奇偶性进行计算,属于基础题.。

(必考题)数学高一上期末经典测试题(含答案解析)(1)

(必考题)数学高一上期末经典测试题(含答案解析)(1)

一、选择题1.(0分)[ID :12119]已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则A .-2B .2C .-98D .98 2.(0分)[ID :12118]已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<3.(0分)[ID :12094]设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>4.(0分)[ID :12085]已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >>B .y x z >>C .y z x >>D .x z y >>5.(0分)[ID :12106]若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)6.(0分)[ID :12105]已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>7.(0分)[ID :12080]函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞8.(0分)[ID :12078]把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦ 9.(0分)[ID :12060]已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 BC .14,2 D .14,410.(0分)[ID :12059]函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -11.(0分)[ID :12058]已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .612.(0分)[ID :12032]函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)13.(0分)[ID :12072]设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,614.(0分)[ID :12042]若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-15.(0分)[ID :12040]下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题16.(0分)[ID :12206]已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________.17.(0分)[ID :12200]已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.18.(0分)[ID :12189]函数()()25sin f x xg x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.19.(0分)[ID :12178]函数()()4log 521x f x x =-+-的定义域为________. 20.(0分)[ID :12170]函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.21.(0分)[ID :12165]已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 22.(0分)[ID :12157]已知35m n k ==,且112m n+=,则k =__________ 23.(0分)[ID :12149]若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log x a f x a t =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.24.(0分)[ID :12143]若函数()121xf x a =++是奇函数,则实数a 的值是_________. 25.(0分)[ID :12162]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :12327]某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:2019年9月份第x (130x ≤≤,x +∈N )天的单件销售价格(单位:元20,115()50,1530x x f x x x +≤<⎧=⎨-≤≤⎩,第x 天的销售量(单位:件)()(g x m x m =-为常数),且第20天该商品的销售收入为600元(销售收入=销售价格⨯销售量). (1)求m 的值;(2)该月第几天的销售收入最高?最高为多少?27.(0分)[ID :12310]已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或.(1)求,A B A B ;(2)若()R C C A ⊆,求实数a 的取值范围. 28.(0分)[ID :12275]设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.29.(0分)[ID :12233]已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.30.(0分)[ID :12230]设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C 3.A 4.A 5.D 6.C 7.C 8.C9.A10.D11.C12.A13.D14.C15.D二、填空题16.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇17.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的18.6【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为19.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次20.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC或CD中选取一个再在AB或O B中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC与线段OB是关于原点对称的线段CD与线段BA也是21.【解析】【分析】由题意可得f(x)g(x)的图象均过(﹣11)分别讨论a>0a<0时f (x)>g(x)的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题22.【解析】因为所以所以故填23.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【24.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2. 故选A2.C解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<,c a b ∴<<. 故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.3.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.4.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】 解:0.1x 1.11.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.D解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.6.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.7.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞.内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.8.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.10.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.11.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.12.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.13.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.14.C解析:C 【解析】 【分析】 【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立,则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立,即a ⩾−x −1x 对于一切x ∈(0,12)成立, 设y =−x −1x ,则函数在区间(0,12〕上是增函数 ∴−x −1x <−12−2=52-,∴a ⩾52-. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.15.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题16.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤, 由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .17.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),2,a ⎡-∞-+∞⎣,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.18.6【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为解析:6 【解析】 【分析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n .【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++, 由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦, ()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++, 即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+, 由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+, 即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.19.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可.【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.20.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式. 【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩, 故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.21.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦. 故答案为:310,23⎛⎤⎥⎝⎦.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.22.【解析】因为所以所以故填【解析】因为35mnk ==,所以3log m k =,5log n k =,11lg5lg3lg152lg lg lg m n k k k+=+==,所以1lg lg152k ==k =23.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.24.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键解析:12-【解析】 【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121x f x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212xf x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-.【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题 26.(1)40m =;(2)当第10天时,该商品销售收入最高为900元. 【解析】 【分析】(1)利用分段函数,直接求解(20)(20)600f g =.推出m 的值.(2)利用分段函数分别求解函数的最大值推出结果即可. 【详解】(1)销售价格20,115,()50,1530,x x f x x x +<⎧=⎨-⎩第x 天的销售量(单位:件)()(g x m x m =-为常数), 当20x时,由(20)(20)(5020)(20)600f g m =--=,解得40m =.(2)当115x <时,(20)(40)y x x =+- 2220800(10)900x x x =-++=--+,故当10x =时,900max y =,当1530x 时,22(50)(40)902000(45)25y x x x x x =--=-+=--, 故当15x =时,875max y =,因为875900<,故当第10天时,该商品销售收入最高为900元. 【点睛】本题考查利用函数的方法解决实际问题,分段函数的应用,考查转化思想以及计算能力,是中档题.27.(1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)[]1,2a ∈ 【解析】【分析】(1)首先求得[]()1,3,,3A B ==-∞,由此求得,A B A B ⋂⋃的值.(2)(),1R C C a a =+,由于()[],11,3a a +⊆,故113a a ≥⎧⎨+≤⎩,解得[]1,2a ∈.【详解】解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)∵{}|1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.28.(1)4,2a b ==(2)21log 2x +=(3)()[]0,240g x ∈ 【解析】 【分析】(1)由()()211,2log 12f f ==解出即可 (2)令0f x得421x x -=,即()22210x x --=,然后解出即可(3)()42xxg x =-,令2x t =,转化为二次函数【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42xxf x =-,令0fx得421x x -=,即()22210x x --=,解得122x =,又120,22x x >∴=,解得21log 2x =; (3)由(1)知()42xxg x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,29.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞-【解析】【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x -<,求函数212()x g x x -=的最小值得到答案.【详解】 (1)因为()f x 在定义域R 上是奇函数.所以(0)0f =, 即102b a -+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221x x x f x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, 因为函数2xy =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <,所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-, 即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x -<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-,所以1k <-,即k 的取值范围为(,1)-∞-.【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.30.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】高一数学上期末一模试卷附答案一、选择题1.设23a log =,b =23c e=,则a b c ,,的大小关系是( ) A .a b c << B .b a c << C .b c a << D . a c b <<2.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<3.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-14.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20225.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B .2C .14,2 D .14,4 6.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .67.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .148.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >9.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C.(D.)210.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .111.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( )A .13B .14C .3D .412.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-12二、填空题13.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______. 14.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.15.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个16.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______17.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.18.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.19.0.11.1a =,122log 2b =,ln 2c =,则a ,b ,c 从小到大的关系是________. 20.若函数在区间单调递增,则实数的取值范围为__________.三、解答题21.已知函数1()21xf x a =-+,()x R ∈. (1)用定义证明:不论a 为何实数()f x 在(,)-∞+∞上为增函数;(2)若()f x 为奇函数,求a 的值;(3)在(2)的条件下,求()f x 在区间[1,5]上的最小值. 22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.已知全集U =R ,函数()3lg(10)f x x x =--的定义域为集合A ,集合{}|57B x x =≤<(1)求集合A ; (2)求()U C B A ⋂. 24.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82x tf x ≥+对x ∈R 恒成立,求t 的取值范围. 25.已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.26.已知全集U=R,集合{}240,A x x x =-≤{}22(22)20B x x m x m m =-+++≤. (Ⅰ)若3m =,求U C B 和AB ;(Ⅱ)若B A ⊆,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】 因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.2.D【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.3.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.4.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.()()10f x f x ++-=,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.5.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.6.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.7.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.8.C解析:C 【解析】 【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C. 【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.9.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解10.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 11.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.12.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 二、填空题13.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:0,1【解析】 【分析】 令0f x,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案. 【详解】由题意,令()10f x mx x =--=,则1mx x =-, 则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图,y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点. 故答案为:0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.14.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于解析:-3 【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.15.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的解析:3 【解析】 【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数. 【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内, ()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3.故答案为:3.【点睛】本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.16.【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基 解析:1-【解析】【分析】由()35f -=,求得1532723a b -⋅-+=,进而求解()3f 的值,得到答案.【详解】由题意,函数()1352=++f x ax bx (a ,b 为常数),且()35f -=,所以()15332725f a b -=-⋅-+=,所以153273a b -⋅-=,又由()1533272321f a b -=⋅++=-+=-.故答案为:1-.【点睛】本题主要考查了函数值的求解,其中解答中根据函数的解析式,准确运算是解答的关键,着重考查了计算能力,属于基础题. 17.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题解析:()6lg(6)f x x x =---+【解析】【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可.【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-.设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+.故答案为:()6lg(6)f x x x =---+【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题. 18.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】 ()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x ≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min 111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤本题考查函数的单调性与奇偶性的应用,属于中档题.19.【解析】【分析】根据指数函数和对数函数的图象与性质分别求得实数的取值范围即可求解得到答案【详解】由题意根据指数函数的性质可得由对数函数的运算公式及性质可得且所以abc 从小到大的关系是故答案为:【点睛 解析:b c a <<【解析】【分析】根据指数函数和对数函数的图象与性质,分别求得实数,,a b c 的取值范围,即可求解,得到答案.【详解】由题意,根据指数函数的性质,可得0.101.111.1a >==, 由对数函数的运算公式及性质,可得121122211log log ()222b ===, 1ln 2ln 2c e =>=,且ln 2ln 1c e =<=, 所以a ,b ,c 从小到大的关系是b c a <<.故答案为:b c a <<.【点睛】 本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答中熟记指数函数与对数函数的图象与性质,求得实数,,a b c 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.20.(-∞1∪4+∞)【解析】由题意得a+1≤2或a≥4解得实数a 的取值范围为(-∞1∪4+∞)点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间ab 上单调则该函数在此区间的任意解析:【解析】由题意得 或 ,解得实数的取值范围为点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量的取值范围.三、解答题21.(1)见解析;(2)12a =;(3) 16. 【解析】【分析】(1)()f x 的定义域为R, 任取12x x <, 则121211()()2121x x f x f x a a -=--+++=121222(12)(12)x x x x -++. 12x x <,∴1212220,(12)(12)0x x x x -++.∴12())0(f x f x -<,即12()()f x f x <.所以不论a 为何实数()f x 总为增函数.(2)()f x 在x ∈R 上为奇函数,∴(0)0f =,即01021a -=+. 解得12a =. (3)由(2)知,11()221x f x =-+, 由(1) 知,()f x 为增函数,∴()f x 在区间[1,5)上的最小值为(1)f .∵111(1)236f =-=, ∴()f x 在区间[1,5)上的最小值为16. 22.(1)2a =(2)17,8⎛⎫-∞-⎪⎝⎭ 【解析】【分析】(1)依题意代数求值即可;(2)设()()121log 1022x g x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论.【详解】(1)()32f =-,()12log 1032a ∴-=-, 即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭, 178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭. 【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1) {}|310A x x =≤< (2) {}()|35710U C B A x x x ⋂=≤<≤<或【解析】试题分析:(1)根据真数大于零以及偶次根式被开方数非负列不等式,解得集合A (2)先根据数轴求U C B ,再根据数轴求交集 试题解析:(1)由题意可得:30100x x -≥⎧⎨->⎩,则{|310}A x x =≤< (2){|57}U C B x x x =<≥或(){|35710}U C B A x x x ⋂=≤<≤<或24.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=,则log (32?)0x a ->,等价于:当1a >时,321x ->,解得()2,log 3x ∈-∞当01a <<时,321x -<,解得()2log 3,x ∈+∞.(3)()82xt f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥恒成立;令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.25.(1)()3,1.-(2)1-±3 【解析】【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值.【详解】(1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.- (2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x,得223=1x x --+,即222=0x x +-,解得1x =-±∵1(-3,1)-,∴函数()f x 的零点是1-(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦, ∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦, ∴()min log 44a f x ==-,∴1442a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.26.(Ⅰ){05},{35}U A B x x C B x x x ⋃=≤≤=或(Ⅱ)02m ≤≤【解析】【分析】(Ⅰ)由3m =时,求得集合{04},{35}A x x B x x =≤≤=≤≤,再根据集合的并集、补集的运算,即可求解; (Ⅱ)由题意,求得{04},{2}A x x B x m x m =≤≤=≤≤+,根据B A ⊆,列出不等式组,即可求解。

相关文档
最新文档