Lesson07

合集下载

Lesson 7 how many教学设计与反思

Lesson 7 how many教学设计与反思

Lesson 7 how many?教学设计与反思一、教学设计说明本课选自河北教育出版社出版的《小学英语》(三年级起始版新)第一册第7课。

1、基本理念小学英语教学是英语学习的启蒙教育或入门教育,是为学生今后的学习奠定基础的教育。

《英语课程标准》中明确指出,基础教育阶段英语课程的任务之一是:激发和培养学生学英语的兴趣,使学生树立自信心,养成良好的学习习惯和形成有效的学习方法,发展自主学习的能力和合作精神,使学生掌握一定的语言综合运用能力,倡导体验、实践、参与、合作与交流的学习方式和任务型的教学途径,培养学生跨文化交际意识。

2、学情分析本节课是一节一年级英语课。

这些孩子刚入学不久,对学校学习的过程还不熟悉,同时,部分孩子是在入学伊始才开始接触英语,大部分孩子一点基础都没有,但是学生有着强烈的好奇心,渴望通过学习获得更多的知识。

3、整体设计思路根据学生的年龄特点和实际情况,遵循“突出学生主体,组中个体差异”的理念,在教学形式和方法上多采用了交际法,全身反映法,通过多种游戏化的教学形式激发学生学习兴趣,始终以学生为中心,让学生在听听说说、唱唱玩玩、认认读读中打下良好基础,培养学生的合作精神与创新精神。

4、教学目标知识目标:使学生能在实际生活中听懂并运用“How many ?”这句话。

能力目标:让学生以小组合作等方式学习新知识,通过真实任务巩固学习成果;并且能认真观察、积极主动的思考问题,提高综合运用语言能力、观察力和逻辑思维能力。

情感目标:培养学生探究知识的精神,激发学习英语兴趣。

5、教学准备录音机,多媒体课件,游戏用的图片,评价用的粘贴等。

6、教学过程Step 1:Class Opening and Review1、 GreetingT: Hello, boys and girls!S: Hello, Miss Ling!T: How are you today?S1: I’m happy! S2:I am fine.…T: How old are you ?S1:I am six years old. S2: I am seven years old. …T: Are you a student?S: Yes,I am a student.(设计意图:教师用自然亲切的语言与学生进行交流,从而缩短了师生之间的距离,培养了学生之间的感情,为以下的教学打下了良好的基础)2、 Warm-upT: Let’s sing a song, “Numbers”, ok?S: Ok!(设计意图:组织学生唱英文歌曲,营造学习英语氛围,使学生尽快进入学习英语状态)3、 ReviewT: Let’s play a game to review words. “Who is fast”.(设计意图:通过游戏的形式复习所学数字和单词,不但能激发学生兴趣,集中注意力,同时穿针引线,衔接新旧知识语言点。

KTV内部培训资料完整版

KTV内部培训资料完整版

KTV内部培训资料完整版目录:一、教育训练:Lesson 01 .熟悉量贩、熟悉百度Lesson 02 . 培训规章Lesson 03 . 培训考勤制度Lesson 04 . 培训请假制度Lesson 05. 基本队列教练课程Lesson 06 . 体能训练课程Lesson 07 . 服务观念课程Lesson 08 . 服姿教练课程Lesson 09 . 外场的职责与重要性Lesson 10 . 服务理念Lesson 11 . 各区域管理规章二、消费服务流程教育Lesson 01 . 服务作业总流程图Lesson 02 . 迎宾带客、解说消费流程Lesson 03 . 点餐服务流程及点餐技巧Lesson 04 . 送餐服务流程Lesson 05 . 巡回服务流程Lesson 06 . 服务铃响应服务Lesson 07 . 买单服务流程Lesson 08 . 包厢出清服务流程Lesson 09 . 有用应对说辞ALesson 10 . 有用应对说辞B三、专业教育:Lesson 01 . 包厢简易故障排除Lesson 02 . 营运状况处理Lesson 03 . 管理作业流程(干部)Lesson 04 . 对讲机使用流程四、心态教育Lesson 01 . 如何成为服务高手Lesson 02 . 顾客永远是对的Lesson 03 . 如何当一个好干部一:教育训练:Lesson 01 .熟悉量贩、熟悉百度KTV的源头来自于日本。

卡拉在日语里是空洞、虚无的意思,OK指无人伴奏的乐队。

卡拉OK的最初形态只是供专业乐手在没有条件带伴奏乐队的巡回演出中使用的伴奏磁带。

卡拉OK兴起的年代是在20世纪60年代末。

20世纪90年代,是卡拉OK最风行的时候,但这也通过一连串的演变。

在初期由开放式转而成为包厢式的这一段时间内,由于属高价格、高享受,因此除了商业聚会、洽商之外,通常人在经济条件许可下,都选择购置一台卡拉OK。

新版新概念英语第三册目录-新版.pdf

新版新概念英语第三册目录-新版.pdf

新概念英语第三册目录UNIT 101 Lesson 1 A puma at large逃遁的美洲狮02 Lesson 2 Thirteen equals one十三等于一03 Lesson 3 An unknown goddess无名女神04 Lesson 4 The double life of Alfred Bloggs阿尔弗雷德·布洛格斯的双重生活05 Lesson 5 The facts确切数字06 Lesson 6 Smash-and-grab砸橱窗抢劫07 Lesson 7 Multilated ladies残钞鉴别组08 Lesson 8 A famous monastery著名的修道院09 Lesson 9 Flying cats飞猫泰坦尼克”号的沉没10 Lesson 10 The loss of the Titanic“11 Lesson 11 Not guilty无罪12 Lesson 12 Life on a desert island荒岛生活是我,别害怕”13 Lesson 13 It'S only me“14 Lesson 14 A noble gangster贵族歹徒15 Lesson 15 Fifty pence worth of trouble五十便士的麻烦16 Lesson 16 Mary had a little lamb玛丽有一头小羔羊17 Lesson 17 The longest suspension bridge in the world世界上最长的吊桥18 Lesson 18 Electric currents in modern art现代艺术中的电流19 Lesson 19 A very dear cat一只贵重的宝贝猫20 Lesson 20 Pioneer pilots飞行员的先驱UNIT 221 Lesson 21 Daniel Mendoza丹尼尔·门多萨22 Lesson 22 By heart熟记台词23 Lesson 23 One man's meat is another man's poison各有所爱家丑”24 Lesson 24 A skeleton in the cupboard“卡迪萨克”号帆船25 Lesson 25 The Curry Sark“26 Lesson 26 Wanted:a large biscuit tin征购大饼干筒27 Lesson 27 Nothing to sell and nothing to buy不卖也不买28 Lesson 28 Five pounds too dear五镑也太贵29 Lesson 29 Funny or not?是否可笑?30 Lesson 30 The death of a ghost幽灵之死31 Lesson 31 A lovable eccentric可爱的怪人32 Lesson 32 A lost ship一艘沉船33 Lesson 33 A day to remember难忘的一天34 Lesson 34 A happy discovery幸运的发现35 Lesson 35 Justice was done伸张正义36 Lesson 36 A chance in a million百万分之一的机遇37 Lesson 37 The Westhaven Express开往威斯特海温的快车38 Lesson 38 The first calender最早的日历39 Lesson 39 Nothing to worry about不必担心40 Lesson 40 Who's who真假难辨UNIT 341 Lesson 41 Illusions of pastoral peace宁静田园生活的遐想42 Lesson 42 Modem cavemen现代洞穴人43 Lesson 43 Fully insured全保险44 Lesson 44 Speed and comfort又快捷又舒适45 Lesson 45 The power of the press新闻报道的威力46 Lesson 46 Do it yourself自己动手47 Lesson 47 Too high a price?代价太高?48 Lesson 48 The silent village沉默的村庄49 Lesson 49 The ideal servant理想的仆人50 Lesson 50 New Year resolutions新年的决心51 Lesson 51 Predicting the future预测未来52 Lesson 52 Mud is mud实事求是53 Lesson 53 In the public interest为了公众的利益54 Lesson 54 Instinct or cleverness?是本能还是机智?55 Lesson 55 From the earth:Greetings来自地球的问候56 Lesson 56 Our neighbour,the fiver河流,我们的邻居57 Lesson 57 Back in the old coun时重返故里58 Lesson 58 A spot of bother一点儿小麻烦59 Lesson 59 Collecting收藏60 Lesson 60 Too early and too late太早和太晚。

情景美国口语C1-Lesson07

情景美国口语C1-Lesson07

B:It can be beneficial in so many ways.For instance,you can get the latest news,music and movies from the Internet all free.
A:Sure,I seldom buy newspapers and go to the movie theatre these days.The Internet helps me save all those expense.
Dialogue 1
A:Hi,Peter!Long time no see.
B:Yeah,long time no concect.It has been like a whole month!
A:I have been busy doing all the homework and preparing for the presentation in biology class.
B:However,people who benefit more from it should be those clever businessmen.The Internet can be powerful commercial medium.With the Internet,products and servicer can reach more customers and the market can be expanded with little operation cost.
A:One can never be too careful.Anyway,the Internet itself is good.What makes it dangerous if those wicked people who make the wrong use of it.

(完整版)HSK-4-lesson07最好的医生是自己

(完整版)HSK-4-lesson07最好的医生是自己
STANDARD COURSE HSK 4 A
第七课 最好的医生 是自己
PartⅠ 课文 1
热身
A
给下边的词语选择对应的图片:
B
C
D
E
liú xiě 1. 流血
chōu yān 4. 抽 烟
ké sou 2. 咳嗽
zhí wù 5. 植物
F
jiǎn féi 3. 减肥
fán nǎo 6. 烦恼
词汇(一)
练习
将下列词语的汉字、拼音、英文解释正确连接:
大夫
zhíwù
n. doctor
植物
yánjiū
n. plant
研究 超过 散步
chāoguò sànbù dàifu
v. to study, to do research
chōuyān dòngzuò chūxiàn hòuhuǐ fǎnduì
n. action, movement
v. to smoke v. to appear, to emerge v. to regret v. to oppose, to object to
语言点
来不及
1.等你身体出现问题了,后悔就来不及了。
`
估计 v.to estimate, to reckon
1.我还不习惯北方的气候,估计是天气太干。
2.你有没有去问问小王?估计他应该有办法。 3.机场通知飞机晚点一个小时,估计他下午六点才能到 上海。
练习
1. 我现在就过去,____C___ 2. 现在已经五点了,估计去了也是迟到,____A____ 3. 你可以上网买书,____B____
课文
听录音,回答问题: 1. 小雨为什么喜欢抽烟?你同意小雨的想法吗?为什么? 2. 如果你有抽烟的朋友,你想对他/她说些什么?

Lesson 07 Bridge(土木工程专业英语)

Lesson 07 Bridge(土木工程专业英语)

在森林区,有粗壮的木材或圆木可利用,桥梁很可能由一 根或几根平行的圆木组成,可能为了更好的行走会在上面铺上 交叉的树枝或草席。
In tropical regions of India, Africa, and South America, fibrous vines were used to build suspension bridges.
constructed by primitive peoples in isolated regions.
人类修建的第一批桥梁可能类似于那些在隔离的地区原 始人还在修建的桥梁。
The tools and building skills of early man, like those of primitive peoples today, were so elementary that he was undoubtedly forced to use easily transportable materials that could be put in p1ace with a minimum of forming and shaping.
barge 游艇
isolated 孤立的t 倾斜 swift 迅速 subsoil 地基;地下
土木工程专业英语
Bridge
Bridge is a structure that spans obstacles, such as rivers and valleys, to
在印度、非洲和南美洲的热带地区,坚韧的藤条被用来修 建悬索桥。
The vines were tied to trees or rocks on each side of the stream or valley to be crossed. One or more vines were used to tread on. Other vines, strung several feet higher, were used for hand holds.

Lesson07 第17章 金属塑性变形的力学基础 2.4 材料本构关系-材料班

Lesson07 第17章  金属塑性变形的力学基础  2.4  材料本构关系-材料班
机械工程系 张海涛
2.4 材料本构关系
本构关系(Constitutive Relations):材料变形过程中应力与应变之间 的关系。
这种关系的数学表达式称为本构方程,也叫物理方程。 塑性应力应变关系和屈服准则都是求解塑性变形问题的基本方程。
2.4.1.材料真实应力-应变曲线 2.4.2.弹性与塑性变形时应力应变关系的特点 2.4.3.增量理论 2.4.4.全量理论 2.4.5.实验:绘制拉伸真实应力应变曲线
x
1 E
[
x
( y
z )];
y
1 E
[
y
( z
x )];
z
1 E
[ z
( x
y )];
yz
yz
2G
zx
zx
2G
xy
xy
2G
p358式17-1
~18~
《塑性成形原理》
机械工程系 张海涛
2.4 材料本构关系
2.4.2.弹性与塑性变形时应力应变关系的特点
通过变换,我们可以得到:
~20~
《塑性成形原理》
机械工程系 张海涛
2.4 材料本构关系
2.4.2.弹性与塑性变形时应力应变关系的特点
这些式子表明, 弹性应力应变关系有如下特点: 1、应力与应变成线性关系,应力主轴与应变主轴重合。 2)弹性变形是可逆的,应力应变关系是单值对应的。 3)弹性变形时,应力球张量使物体产生体积变化,泊松 比ν<0.5。
~14~
《塑性成形原理》
2.4 材料本构关系
2.4.1.材料真实应力-应变曲线 ● 材料模型示例
机械工程系 张海涛
低碳钢在不同温度下的静载压缩时的真实应力-应变曲线

小乌龟学美语LessonsevenFranklin’Masterpiece

小乌龟学美语LessonsevenFranklin’Masterpiece

Lesson seven Franklin’ MasterpieceFranklin could count by twos and tie his shoes. He did drawing for his friends …and painting for his Granny. And one day Franklin painted a picture for an art contest.富兰克林已经会数奇偶数了,他还学会了自己习鞋带。

他为朋友们画画,也为他奶奶画像。

一天,富兰克林画了一幅画,来参加绘画比赛。

Franklin: Look at my paintings, Mom! 富兰克林:妈妈!快看我画的画!Franklin’s mom: Hmmmmm. They’re very colourful, Franklin.富兰克林妈妈:嗯!画得真亮丽啊,富兰克林。

Franklin: They’re for the painting contest at the ice cream shop.富兰克林:我画这些画是要参加冰激凌店的绘画比赛的。

Franklin’s mom: All of them? 富兰克林妈妈:所有这些画?Franklin: yeah. The prize is a really neat skateboard! I want to win it … So I’m going to enter as many paintings as I can.富兰克林:是的。

奖品是一个很棒的滑板!我想赢得它……所以,我要画出很多作品来参赛,越多越好。

Franklin’s mom: They’re all wonderful, Franklin, but perhaps you should pick just one painting and make it the best it can be.富兰克林妈妈:这些画都很棒,富兰克林。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 / 26
3
Examples
• Let f (x) =
1−x . 2+x f ′ (x) = lim = lim = lim
h→0
f (x + h) − f (x) h 1−(x+h) −x −1 2+(x+h) 2+x h
h→0
−3h h→0 h(2 + (x + h))(2 + x) −3 = lim h→0 (2 + (x + h))(2 + x) −3 = . (2 + x)2

∆s 4.9(5 + h)2 − 4.9(5)2 49h + 4.9h2 = = ∆t (5 + h) − 5 h 2 49h + 4.9h = 49 m/s. ◦ Velocity at t = 5: lim h→0 h
3 / 26
Example
• The position of a particle is given by s(t) =
f ′ (a) := lim
f (a + h) − f (a) exists. h ◦ ◦
◦ f is differentiable on (a, b) if it is differentiable at every c ∈ (a, b).
What’s the relation between differentiability and continuity? What kinds of functions are differentiable? How to construct new differentiable functions? How the derivative affects the original function? 9 / 26
11 / 26
a−h a a+h
O
x
Example
• Let f (x) = |x|. Find f ′ if it exists.
y
h
a
O
h
x
◦ If a = 0, f ′ (0) = lim


|h| h→0 h |h| lim h→0− h lim+
|h| − 0 does not exist. h→0 h h = lim+ = lim+ 1 = 1, h→0 h h→0 −h = lim = lim (−1) = −1. h→0− h h→0−
x→ a
x→ a
f is continuous at a ⇐⇒ lim f (x) = f (a) x→ a f (x) − f (a) lim (f (x) − f (a)) = lim · lim (x − a) x→ a x→ a x→ a x−a = L · 0 = 0. lim f (x) = lim (f (x) − f (a)) + lim f (a) = 0 + f (a) = f (a).
−h (a+h)a h→0
= lim
h −1 = lim h→0 (a + h)a 1 = − 2. a
◦ f ′ is therefore a function defined on R\{0}.
5 / 26
Derivative as a Function
• The derivative of f at point x = a:
◦ Domain of f : R\{−2}; Domain of f ′ : R\{−2}.
7 / 26
Examples
• Let f (x) =

x, (x ≥ 0).
Find f ′ .
f ′ (x) = lim
f (x + h) − f (x) h→0 h √ √ x+h− x = lim h→0 √ h √ √ √ ( x + h − x)( x + h + x) √ = lim √ h→0 h( x + h + x) h = lim √ √ h→0 h( x + h + x) 1 1 = lim √ (x > 0). √ = √ h→0 2 x x+h+ x
seconds.
2 / 26
• Example. A ball is dropped from a tower 450m above the ground. Find its velocity after 5
s(5) s(5 + h)
gt2 = 4.9t2 . ◦ s(t) = 1 2
◦ v (5) = s′ (5) = 49.
• Theorem.
If f is differentiable at a, then f is continuous at a.
• Proof. Suppose f ′ (a) = L. Then
f ′ (a) = L
how?
⇐⇒ lim
f (x) − f (a) =L x→ a x−a ⇓ how? lim [f (x) − f (a)] = 0
but f is NOT differentiable at x = 0.
◦ It seems that the condition of differentiability is “stronger” than the condition of continuity.
13 / 26
Differentiability Implies Continuity
The domain of f ′ may be smaller than the domain of f . 8 / 26
4
Differentiable Functions
• Definition. (We only consider the differentiability at a point or on open intervals) ◦ f is differentiable at a if
Example
• Let f (x) = |x|. Find f ′ if it exists.
y
O
◦ If a > 0,
|a + h| − |a| f ′ (a) = lim h→0 h (a + h) − a = lim h→0 h h = lim = lim 1 = 1. h→0 h h→0
10 / 26
1
Chapter 3: Derivatives
Velocity
• Let s = s(t) be the position function of a particle. ◦ instantaneous velocity at time t = a: s′ (a); ◦ speed at time t = a: |s′ (a)|.
f ′ (a) = lim
• The derivative of f as a function:
f (a + h) − f (a) . h→0 h
f ′ (x) = lim
◦ f ′ (x) = y ′ =
f (x + h) − f (x) . h→0 h
dy df d = = f (x) = Dx f (x) = · · · dx dx dx dy ∆y ◦ (Leibniz, 1646–1716, German) := lim ∆x→0 ∆x dx dy ◦ f ′ (a) = . dx x=a 1 1 • Example. If f (x) = , then f ′ (x) = − 2 . x x
MA1102R CALCULUS Lesson 7
Wang Fei
matwf@.sg
Department of Mathematics Office: S17-06-16 Tel: 6516-2937
Chapter 3:Derivatives 2 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Derivative as Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Differentiable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
相关文档
最新文档