2016-2017学年广东省广州市黄埔区八年级(上)期末数学试卷

合集下载

2016-2017学年初二上学期期末数学试卷(含答案)word版

2016-2017学年初二上学期期末数学试卷(含答案)word版

EDCBA2016-2017学年初二上学期期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A B C D 2. 下列计算正确的是( )A .32x x x =+B .632x x x =⋅C .623)(x x =D .339x x x =÷ 3.下列式子为最简二次根式的是( )A 、3B 、4C 、8D 、21 4.如果2-x 有意义,那么x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x <25.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm6.如图,所示的图形面积由以下哪个公式表示 2222222222.()().()=2.()2.()()A a b a a b b a bB a b a ab bC a b a ab bD a b a b a b -=-+---++=++-=-+7.若分式211x x --的值为0,则x 的值为( )A . 1.x =B . 1.x =-C . 1.x =±D . 1.x ≠ 8.若11,x x -=则221x x+的值是 ( ) A .3 B .2 C .1 D .49. 如图,△ABC中, AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,连接OC,OB,则图中全等的三角形有A.1对B.2对C.3对D.4对10.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.二、填空题(本题共14分,每空2分)11. 中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素, 这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学技术法表示为.12. 如图,AB=AC,点E,点D分别在AC,AB上,要使△ABE≌△ACD,应添加的条件是 .(添加一个条件即可)13.若22(3)16+-+是一个完全平方式,那么m应为 .x m x14.如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=150,BM=2,则 △AMB 的面积为 .15.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有 个. 16. 观察下列关于自然数的等式:514322=⨯- ① 924522=⨯- ② 1334722=⨯- ③根据上述规律解决下列问题:⑴完成第四个等式: ;⑵写出你猜想的第n 个等式(用含n 的式子表示) ;三、解答题(本题共56分)解答题应写出文字说明,验算步骤或证明过程。

20162017学第一学期期末测试卷

20162017学第一学期期末测试卷

2016—2017学年度第一学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每题3分,共24分)1.D ; 2.C ; 3.B ; 4.B ; 5.D ; 6.A ; 7.D ; 8.B .二、填空题(本大题共6小题,每题3分,共18分)9.x ≠2; 10.1; 11.10; 12.130°; 13.(﹣1,0);14.(0,2)或(0,﹣2)或(4,﹣2).三、解答题(本大题共4小题,每题6分,共24分)15.解:(1)原式=﹣4b ·a 4b 2÷(﹣2a )……………1分 =2a 4-1b 1+2……………2分 =2a 3b 3.……………3分 (2)原式=x [x (x -2y )+y 2]……………1分 =x (x 2-2xy +y 2)……………2分 =x (x -y )2.……………3分 16.解:(1)原式=2(1)(1)1a a a a -+-+……………1分 =221111a a a a -+=++.……………2分 当a =99时,原式=11991100=+.……………3分 (2)方程两边同乘(x +1)(x -1),得x (x +1)=3(x -1)+(x +1)(x -1).……………1分 解得x =2.……………2分 查验:当x =2时,(x +1)(x -1)≠0,∴x =2是原方程的解.……………3分 17.解:由题意,得60,80.x y xy --=⎧⎨+=⎩ ∴6,8.x y xy -=⎧⎨=-⎩……………2分 (1)原式=(x -y )2+2xy=62+2×(﹣8)=20.……………4分 (2)原式=x 2+y 2+2xy -2(x -y )=20+2×(﹣8)-2×6=﹣8.……………6分 18.(1)证:∵3×4=12,∴x a ·x b =x c .……………1分 即x a +b =x c . ∴a +b =c .……………3分 (2)解:由(1)知a +b =c ,∴a -c =﹣b .……………4分 ∴x a +3b -c =x 3b -b =x 2b =(x b )2=42=16.……………6分四、解答题(本大题共3小题,每题8分,共24分)19.解:(1)①a2+2ab+b2;②(a+b)2 ……………2分等式是a2+2ab+b2=(a+b)2 ……………4分(2)a2+3ab+2b2=(a+2b)(a+b) ……………6分对应的拼图是:……………8分20.解:(1)设每件乙种服装的进价为x元,每件甲种服装的进价为(x+20)元,那么依照题意,得2000800220x x=⨯+,解得x=80.……………2分经查验知,x=80是方程的解,且适合题意,∴x+20=100.……………3分∴每件甲种服装的进价为100元,每件乙种服装的进价为80元.……………4分(2)甲种服装的件数为2000÷100=20,乙种服装的件数为800÷80=10,……………5分设每件乙种服装的售价为y元,则依照题意,得20(130-100)+10(y-80)≥780,………6分解得y≥98.……………7分∴每件乙种服装的售价至少是98元.……………8分21.证:(1)在AB上截取AG=AF,连接DG.∵AD平分∠BAC,∴∠DAF=∠DAG.∵AD=AD,∴△ADF≌△ADG.……………1分∴∠AFD=∠AGD,FD=GD.……………2分∵FD=BD,∴GD=BD,∴∠DGB=∠B.…………3分∵∠DGB+∠AGD=180°.∴∠B+∠AFD=180°.……………4分(2)AE=AF+FD,其证明进程是:……………5分由(1)知∠B+∠AFD=180°.∵∠B+2∠DEA=180°.∴∠AFD=2∠DEA.……………6分在△DGE中,∠AGD=∠DEA+∠EDG,且∠AGD =∠AFD.∴∠DEA=∠EDG.……………7分∴DG=EG=FD.∴AE=AG+EG=AF+FD.……………8分五、探讨题(本大题共1小题,共10分)22.解:(1)①CF=BD,CF⊥BD.……………2分②当点D在线段BC的延长线上时,所画如图2所示.…………3分①中的结论仍然成立,其理由是:……………4分在△ABC中,AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.在△ADF中,AD=AF,∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF.∴△ACF≌△ABD.∴CF=BD.……………5分∴∠ACF=∠B=45°.∴∠FCB=∠ACF+∠ACB=45°+45°=90°.∴CF⊥BD.……………6分(2)CF⊥BC,其证明进程是:……………7分过A作AE⊥AC交BC于E,那么∠CAE=90°.∵∠ACB=45°,∴∠AEC=45°.∴△ACE是等腰直角三角形,∴AC=AE.……………8分在△ADF中,AD=AF,∠DAF=90°,∴∠F AD-∠CAD=∠CAE-∠CAD.即∠CAF=∠EAD.∴△ACF≌△AED.∴∠ACF=∠AED=45°.……………9分∴∠FCB=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BC.……………10分。

广州市八年级(上)期末数学试卷含答案

广州市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-2的绝对值是()A. 2B. -2C.D.2.在下列长度的各组线段中,能组成三角形的是()A. 1,2,4B. 1,4,9C. 3,4,5D. 4,5,93.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A. 0.277×107B. 0.277×108C. 2.77×107D. 2.77×1084.下列平面图形中,不是轴对称图形的是()A. B. C. D.5.,,,,a+中,分式的个数有()A. 2个B. 3个C. 4个D. 5个6.下列计算中正确的是()A. (ab3)2=ab6B. a4÷a=a4C. a2•a4=a8D. (-a2)3=-a67.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm,宽acm的形状,又精心在四周加上了宽2cm的木框,则这幅摄影作品占的面积是()cm2.A. a2-a+4B. a2-7a+16C. a2+a+4D. a2+7a+168.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是()A. 12cmB. 16cmC. 16cm或20cmD. 20cm9.下列条件中,不能判定两个直角三角形全等的是()A. 两个锐角对应相等B. 一条边和一个锐角对应相等C. 两条直角边对应相等D. 一条直角边和一条斜边对应相等10.如图,△EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A. 90°B. 75°C. 70°D. 60°二、填空题(本大题共6小题,共24.0分)11.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=______.12.如果一个正多边形的内角和是900°,则这个正多边形是正______ 边形.13.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是______.14.二元一次方程组的解为______.15.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为______.16.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:______(写出一个即可).三、计算题(本大题共2小题,共13.0分)17.解方程:.18.计算:四、解答题(本大题共7小题,共53.0分)19.计算:2-1-|-3|-(2-)0+20.先化简,再求值:[(x-y)2+(x-y)(x+y)]÷x,其中x=-1,y=.21.如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.22.已知:如图,点B、E、C、F在一条直线上,A、D两点在直线BF的同侧,BE=CF,∠A=∠D,AB∥DE.求证:AC=DF.23.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.问:甲、乙两队单独完成这项工程各需多少天?在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B、C、E在同一条直线上,连结DC.(1)请在图2中找出与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)若AE=1时,求AP的长;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生变化,请说明理由.答案和解析1.【答案】A【解析】解:-2的绝对值是2,即|-2|=2.故选:A.根据负数的绝对值等于它的相反数解答.本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【答案】C【解析】解:将27700000用科学记数法表示为2.77×107,故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.结合选项根据轴对称图形的概念求解即可.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】A【解析】解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.根据分式的定义进行解答即可.本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.6.【答案】D【解析】解:A、(ab3)2=a2b6,故此选项错误;B、a4÷a=a3,故此选项错误;C、a2•a4=a6,故此选项错误;D、(-a2)3=-a6,正确.故选:D.直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7.【答案】D【解析】解:根据题意可知,这幅摄影作品占的面积是a2+4(a+4)+4(a+4)-4×4=a2+7a+16.故选:D.此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.【答案】D【解析】解:当腰长为4cm时,4+4=8cm,不符合三角形三边关系,故舍去;当腰长为8cm时,符合三边关系,其周长为8+8+4=20cm.故该三角形的周长为20cm.故选:D.题中没有指明哪个是底哪个是腰,所以应该分两种情况进行分析.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.【答案】A【解析】解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定ASA,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选A.直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.【答案】D【解析】解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°-(∠CBD+∠BDC)=180°-60°=120°,∴∠ECD=∠CED=180°-∠BCD-∠BCA=180°-120°-15°=45°,∴∠CDE=180°-(∠ECD+∠CED)=180°-90°=90°,∴∠EDF=∠EFD=180°-∠CDE-∠BDC=180°-90°-30°=60°,∴∠DEF=180°-(∠EDF+∠EFD)=180°-120°=60°.故选:D.根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.此题主要考查了等腰三角形的性质及三角形内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.11.【答案】-2【解析】解:∵点A(2,a)与点B(b,4)关于x轴对称,∴b=2,a=-4,则a+b=-4+2=-2,故答案为:-2.直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.【答案】七【解析】解:设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数.此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.13.【答案】3【解析】解:如图,过D作DF⊥AB于F,则DF的长是点D到AB的距离,∵AD是角平分线,DE⊥AC,∴DF=DE,∵AC=4,S△ADC=6,∴×4×DE=6,∴DE=3,∴DF=3,即点D到AB的距离是3,故答案为:3.过D作DF⊥AB于F,则DF的长是点D到AB的距离,根据角平分线性质求出DF=DE,求出DE即可.本题主要考查平分线的性质,即角的平分线上的点到角的两边的距离相等.14.【答案】【解析】解:,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.【答案】40°【解析】解:∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°-80°-60°=40°.故答案为:40°.根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.【答案】101030或103010或301010【解析】解:4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),当x=10,y=10时,x=10;2x+y=30;2x-y=10,用上述方法产生的密码是:101030或103010或301010.故答案为:101030或103010或301010.把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.【答案】解:方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴.检验:当时,2(x-1)≠0.∴是原分式方程的解.【解析】本题主要考察分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.观察可得方程最简公分母为2(x-1).方程两边乘最简公分母,可以把分式方程转化为整式方程求解.18.【答案】解:原式=-•=-=.【解析】根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.19.【答案】解:原式=-3-1+3=-.【解析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:[(x-y)2+(x-y)(x+y)]÷x,=(x2-2xy+y2+x2-y2)÷x,=(2x2-2xy)÷x,=2x-2y,当x=-1,y=,原式=2×(-1)-2×=-3.【解析】利用完全平方公式和平方差公式计算,再利用多项式除单项式的法则计算化简,然后代入数据计算即可.本题主要考查完全平方公式,平方差公式,合并同类项法则的运用,熟练掌握运算法则是解题的关键.21.【答案】(1)解:如图,AD为所作;(2)证明:如图,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∵AD平分∠BAC,∴AD⊥BC,BD=CD,即AD垂直平分BC,∴EB=EC.【解析】(1)利用基本作图(作已知角的平分线)作∠BAC的平分线交BC于D,则AD为所求;(2)先证明△ABC为等腰三角形,再根据等腰三角形的性质,由AD平分∠BAC可判断AD垂直平分BC,然后根据线段垂直平分线的性质可得EB=EC.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.【答案】证明:∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF.【解析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键.23.【答案】解:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.24.【答案】解:(1)图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∵在△ABE与△ACD中,,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,可得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.【解析】(1)根据等腰直角三角形的性质,利用SAS判定△ABE≌△ACD;(2)根据全等三角形的对应角相等,可得∠ACD=∠ABE=45°,根据∠ACB=45°,可得到∠BCD=∠ACB+∠ACD=90°,进而得出DC⊥BE.此题主要考查了等腰三角形的性质及全等三角形的判定方法的理解及运用,解题时注意:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.25.【答案】解:(1)∵△ABC是等边三角形,∴∠A=60°,∵PE⊥AB,∴∠APE=30°,∵AE=1,∠APE=30°,PE⊥AB,∴AP=2AE=2;(2)解:过P作PF∥QC,则△AFP是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在△DBQ和△DFP中,,∴△DBQ≌△DFP,∴BD=DF,∵∠BQD=∠BDQ=∠FDP=∠FPD=30°,∴BD=DF=FA=AB=2,∴AP=2;(3)解:由(2)知BD=DF,∵△AFP是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=BF+FA=AB=3为定值,即DE的长不变.【解析】(1)根据等边三角形的性质得到∠A=60°,根据三角形内角和定理得到∠APE=30°,根据直角三角形的性质计算;(2)过P作PF∥QC,证明△DBQ≌△DFP,根据全等三角形的性质计算即可;(3)根据等边三角形的性质、直角三角形的性质解答.本题考查的是全等三角形的判定和性质、等边三角形的判定和性质以及平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

广东省广州市 八年级(上)期末数学试卷

广东省广州市 八年级(上)期末数学试卷

八年级(上)期末数学试卷 题号一二三四总分得分一、选择题(本大题共10小题,共20.0分)1.若代数式在实数范围内有意义,则实数a 的取值范围为( )1a−4A. B. C. D. a =4a >4a <4a ≠42.下列计算正确的是( )A. B. C. D. a 2+a 3=a 5(2a )2=4a a 2⋅a 3=a 5(a 2)3=a 53.计算(a -2)(a +3)的结果是( )A. B. C. D. a 2−6a 2+a−6a 2+6a 2−a +64.下面四个图形分别是绿色食品、节能、节水和低碳标志,在这四个标志中,是轴对称图形的是( )A. B. C. D.5.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3,则点D 到AB 的距离是( )A. 5B. 4C. 3D. 26.一个多边形的内角和是720°,这个多边形的边数是( )A. 6B. 7C. 8D. 97.若等腰三角形的两边长分别是3、5,则第三边长是( )A. 3或5B. 5C. 3D. 4或68.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A =60°,∠B =40°,则∠ECD 等于( )A. B. C. D. 40∘45∘50∘55∘9.如图,五边形ABCDE 中有一正三角形ACD ,若AB =DE ,BC =AE ,∠E =115°,则∠BAE 的度数为何?( )A. 115B. 120C. 125D. 13010.如图,在△ABC 中,AB =AC ,AD 、CE 是△ABC 的两条中线,点P 是AD 上一个动点,则BP +EP 的最小值等于线段( )的长度.A. BCB. CEC. ADD. AC二、填空题(本大题共6小题,共18.0分)11.计算:2x 3÷x =______.12.计算:=______.x 2x +1−1x +113.如图,△AEB ≌△DFC ,AE ⊥CB ,DF ⊥BC ,AE =DF ,∠C =28°,则∠A =______.14.等腰三角形的一个内角为100°,则顶角的度数是______.15.已知a m =3,a n =2,则a 2m -n 的值为______.16.如图,△ABC 中,AB =AC ,AD ⊥BC 于D 点,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE =3cm ,则BF =______cm .三、计算题(本大题共3小题,共24.0分)17.计算:(1)(a 2b )2⋅b 2a(2)(2x -1)2-x (2-x )18.分解因式:(1)mn 2-2mn +m(2)x 2-2x +(x -2)19.计算(1)x−2x +2⋅x 2+4x +4x 2−4(2)()1a−1+1a +1÷4+2aa 2−1四、解答题(本大题共4小题,共38.0分)20.如图,在△ABC 中,AD 是中线,CE ⊥AD 于点E ,BF ⊥AD ,交AD 的延长线于点F ,求证:BF =CE .21.如图,在正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(-4,6),(-1,4).(1)请在图中的网格平面内建立平面直角坐标系(直接在图中画出);(2)请画出△ABC关于x轴对称的△A1B1C1;(3)写出点A1、C1的坐标.22.列方程解应用题:某商店在2016年至2018年期间销售一种礼盒.2016年,该商店用2200元购进了这种礼盒并且全部售完:2018年,这种礼盒每盒的进价是2016年的一半,且该商店用2100元购进的礼盒数比2016年的礼盒数多100盒.那么,2016年这种礼盒每盒的进价是多少元?23.已知点D、E分别是∠B的两边BC、BA上的点,∠DEB=2∠B,F为BA上一点.(1)如图①,若DF平分∠BDE,求证:BD=DE+EF;(2)如图②,若DF为△DBE的外角平分线,BD、DE、EF三者有怎样的数量关系?请证明你的结论.答案和解析1.【答案】D【解析】解:依题意得:a-4≠0,解得a≠4.故选:D.分式有意义时,分母a-4≠0.本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.2.【答案】C【解析】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C.根据积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案.本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.3.【答案】B【解析】解:(a-2)(a+3)=a2+a-6,故选:B.根据多项式的乘法解答即可.此题考查多项式的乘法,关键是根据多项式乘法的法则解答.4.【答案】A【解析】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】C【解析】解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=3,即点D到直线AB的距离是3.故选:C.过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.6.【答案】A【解析】解:设这个多边形的边数为n,则(n-2)×180°=720°,解得n=6,故这个多边形为六边形.故选:A.设这个多边形的边数为n,根据多边形的内角和定理得到(n-2)×180°=720°,然后解方程即可.本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n-2)×180°解答.7.【答案】A【解析】解:由题意得,当腰为3时,则第三边也为腰,为3,此时3+3>5.故以3,3,5可构成三角形;当腰为5时,则第三边也为腰,此时3+5>5,故以3,5,5可构成三角形.故第三边长是3或5.故选:A.题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.【答案】C【解析】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.9.【答案】C【解析】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°-115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.10.【答案】B【解析】解:如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选:B.如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.本题考查轴对称-最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】2x2【解析】解:2x3÷x=2x2.故答案为:2x2.直接利用整式的除法运算法则求出即可.此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.【答案】x-1【解析】解:==x-1.故答案为:x-1.根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.本题比较容易,考查同分母分式的加减运算,一定注意最后结果能约分的一定要约分.13.【答案】62°【解析】解:∵DF⊥BC,∠C=28°,∴∠D=90°-28°=62°,∵△AEB≌△DFC,∴∠A=∠D=62°.故答案为:62°.根据直角三角形两锐角互余求出∠D,再根据全等三角形对应角相等可得∠A=∠D.本题考查了全等三角形对应角相等的性质,直角三角形两锐角互余,熟记性质并准确识图判断出对应角是解题的关键.14.【答案】100°【解析】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.15.【答案】4.5【解析】解:∵a m=3,∴a2m=32=9,∴a2m-n===4.5.故答案为:4.5.首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】6【解析】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.17.【答案】解:(1)(a2b)2⋅b2a=a4b2•b2a=a3b4;(2)(2x-1)2-x(2-x)=4x2-4x+1-2x+x2=5x2-6x+1.【解析】(1)依据分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.(2)依据整式的混合运算法则进行计算,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.本题主要考查了分式的乘法法则以及整式的混合运算,整式的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.18.【答案】解:(1)原式=m (n 2-2n +1)=m (n -1)2;(2)原式=x (x -2)+(x -2)=(x -2)(x +1).【解析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式即可得到结果.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【答案】解:(1)原式=•=1;x−2x +2(x +2)2(x +2)(x−2)(2)原式=[+]÷a +1(a+1)(a−1)a−1(a +1)(a−1)2(2+a)(a +1)(a−1)=•2a (a+1)(a−1)(a +1)(a−1)2(2+a)=.a a +2【解析】(1)先将分子和分母因式分解,再约分即可得;(2)先计算括号内的加法,同时将除式分母和分子因式分解,再将除法转化为乘法,继而约分即可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【答案】解:∵CE ⊥AD ,BF ⊥AD ,∴∠CED =∠BFD =90°,∵AD 是中线,∴BD =CD ,在△CED 和△BFD 中,,{∠CED =∠BFD ∠CDE =∠BDF CD =BD∴△CED ≌△BFD (AAS ),∴BF =CE .【解析】根据AAS 证明△CED ≌△BFD 即可解决问题.本题考查全等三角形的判定和性质,三角形的中线的定义等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21.【答案】解:(1)如图所示;(2)如图所示,△A 1B 1C 1即为所求.(3)点A 1的坐标为(-4,-6)、C 1的坐标为(-1,-4)..【解析】(1)根据A 、C 两点坐标根据平面直角坐标系即可;(2)画出A 、B 、C 关于x 轴对称的A 1、B 1、C 1即可;(3)根据所作图形求解可得.本题考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及其平面直角坐标系的概念.22.【答案】解:设2016年这种礼盒每盒的进价是x 元,则2018年这种礼盒每盒的进价是x 元,12根据题意得:-=100,210012x 2200x 解得:x =20,经检验,x =20是原方程的解,且符合题意.答:2016年这种礼盒每盒的进价是20元.【解析】设2016年这种礼盒每盒的进价是x 元,则2018年这种礼盒每盒的进价是x元,根据数量=总价÷单价结合2018年该商店用2100元购进的礼盒数比2016年的礼盒数多100盒,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【答案】解:(1)如图①,在BA上截取EG=DE,连接DG,则∠EDG=∠EGD,∵∠DEB=∠EDG+∠EGD=2∠EGD,∵∠DEB=2∠B,∴∠B=∠DGB,∴BD=DG,∵DF平分∠BDE,∴∠BDF=∠EDF,∵∠DFE=∠B+∠BDF,∠FDG=∠FDE+∠EDG,∴∠DFG=∠FDG,∴DG=GF,∴FG=BD,∵FG=EF+AE,∴BD=DE+EF;(2)如图②在BA上截取EG=DE,连接DG,则∠EDG=∠EGD,∵∠DEB=∠EDG+∠EGD=2∠EGD,∵∠DEB=2∠B,∴∠B=∠DGB,∴BD=DG,∵DF平分∠CDE,∴∠CDF=∠EDF,∵∠DFE=∠CDF-∠B,∠GDF=∠EDF-∠EDG,∴∠GDF=∠DFG,∴DG=FG,∴GF=BD,∵EF=EG+GF,∴EF=DE+BD.【解析】(1)如图①,在BA上截取EG=DE,连接DG,得到∠EDG=∠EGD,根据三角形外角的性质和角平分线的定义即可得到结论;(2)在BA上截取EG=DE,连接DG,则∠EDG=∠EGD,根据三角形外角的性质和角平分线的定义即可得到结论.本题考查了等腰三角形的性质,角平分线的定义,三角形的外角的性质,正确的作出辅助线是解题的关键.。

2016-2017学年第一学期人教版八年级上册期末数学试卷含答案

2016-2017学年第一学期人教版八年级上册期末数学试卷含答案

2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a22.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)23.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.计算:+=__________.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于__________.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是__________度.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为__________.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=__________.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是__________cm2.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式__________;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式__________.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△EFD.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标__________;(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵AC=DF,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据AAS,也可证明△ABC≌△DEF,故B正确;但添加AB=DE时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形全等的HL定理.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共7小题,每小题3分,满分21分)9.计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13或14.【考点】等腰三角形的性质;三角形三边关系.【分析】分4是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4是腰长,则三角形的三边分别为4、4、5,能组成三角形,周长=4+4+5=13,②若4是底边,则三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,综上所述,这个三角形周长为13或14.故答案为:13或14.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【考点】含30度角的直角三角形;角平分线的性质.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是18cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×6×6=18cm2.故答案是:18.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式(a+b)2=a2+2ab+b2;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.【考点】完全平方公式的几何背景.【分析】(1)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,2个矩形的边长相同,且长为a,宽为b,则2个矩形的面积为2ab,空白的是两个正方形,较大的正方形的边长为a,面积等于a2,小的正方形边长为b,面积等于b2,大正方形面积减去2个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.【解答】解:(1)∵阴影部分都是全等的矩形,且长为a,宽为b,∴2个矩形的面积为2ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴空白正方形的面积为a2和b2,∴(a+b)2=a2+2ab+b2.故答案为(a+b)2=a2+2ab+b2.(2)∵四周阴影部分都是全等的矩形,且长为a,宽为b,∴四个矩形的面积为4ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴中间小正方形的面积为(a+b)2﹣4ab,∵中间小正方形的面积也可表示为:(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.【考点】整式的混合运算—化简求值;零指数幂.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2+x2﹣2xy+y2+2xy=2x2,当x=(3﹣π)0=1时,原式=2.【点评】此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式(β﹣α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后求解即可.(2)同(1)即可得出结果.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是角平分线,∴∠BAE=∠BAC=×80°=40°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣40°=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣40°=10°;(2)∵∠B=α,∠C=β(α<β),∴∠BAC=180°﹣(α+β),∵AE是角平分线,∴∠BAE=∠BAC=90°﹣(α+β),∵AD是高,∴∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F 或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC≌△EFD,已知BC=DF,AB=EF,具备了两组边对应相等,故添加∠B=∠F或AB∥EF或AC=ED后可分别根据SAS、AAS、SSS来判定其全等;(2)因为AB=EF,∠B=∠F,BC=FD,可根据SAS判定△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=8,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),从9:20到下午1:40,共计4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.【解答】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴CD=BO=2,∴B点坐标(O,2);故答案为:(0,2);(2)如图3,作EG⊥y轴于G,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO和△EBG中,,∴△BAO≌△EBG(AAS),∴BG=AO,EG=OB,∵OB=BF,∴BF=EG,在△EGP和△FBP中,,∴△EGP≌△FBP(AAS),∴PB=PG,∴PB=BG=AO=3.【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。

2016-2017学年第一学期期末考试八年级数学试题(含答案)

2016-2017学年第一学期期末考试八年级数学试题(含答案)

2016—2017学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分. 1.下面有4个汽车标志图案,其中不是轴对称图形的是A. B. C. D.2.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为A.35° B.40° C.45°D.50°3.下列各图中,正确画出AC边上的高的是A. B. C. D.4.已知等腰三角形两边长为3和7,则周长为A.13 B.17 C.13或17 D.115.如图,△ABC 的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,如果边BC 长为8cm ,则△ADE 的周长为 A .16cm B .8cm C .4cm D .不能确定6.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则下列结论:①AC =AF ,②EF =BC ,③∠F AB =∠EAB ,④∠EAB =∠F AC ,其中正确结论的个数是 A .1个B .2个C .3个D .4个7.无论a 取何值时,下列分式一定有意义的是A .221aa +B .21aa +C .112+-a aD .112+-a a 8.下列变形正确的是A .11+=--y x y x B .y x y x 11+-=-- C .y x y x -=--11 D .xyy x --=--11 9.已知03=-+y x ,则x2·y2的值是A .6B .﹣6C .D .8 10.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的 动点,△PMN 周长的最小值是5cm ,则 ∠AOB 的度数是 A .30° B .35°C .40°D .45°第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分.11.已知点A (x ,﹣4)与点B (3,y )关于x 轴对称,那么x +y 的值为 .(第5题图)(第6题图)(第10题图)ABMPON12.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是 度. 13.如图,AB =AC =AD ,∠BAD =80°,则∠BCD = .14.如图,用圆规以直角顶点O 为圆心,以适当半径画一条弧交两直角边于A 、B 两点,再以A 为圆心,以OA 为半径画弧,与弧AB 交于点C ,则∠AOC 的度数是 .15.如图,在Rt △ABC 中,∠C =90°,直线BD 交AC 于D ,把直角三角形沿着直线BD翻折,使点C 落在斜边AB 上,如果△ABD 是等腰三角形,那么∠A = . 16.多项式62++mx x 因式分解得))(2(n x x +-,则m = . 17.已知6=+y x ,2-=xy ,则=+2211y x . 18.观察下列等式:1)1)(1(2-=+-x x x , 1)1)(1(32-=++-x x x x , 1)1)(1(423-=+++-x x x x x ,…据此规律,当0)1)(1(2345=+++++-x x x x x x 时,代数式12017-x的值为 .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程. 19.计算:()()22017311932-⎪⎭⎫⎝⎛------. 20.计算:()()()()22352123b a b a b a a a b b a -÷+-+-+.(第13题图)(第14题图)(第15题图)ABCO21.分解因式:()()ab b a b a +--4.22.先化简,再求值: 12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx ,其中2-=x . 23.解方程:42121-=+--x xx x . 24.已知△ABC 是等边三角形,点D 、E 分别在边BC 、CA 的延长线上,且DC =AE ,BE交DA 的延长线于点F ,求∠BFD 的度数.25. 过∠AOB 平分线上一点C 作CD ∥OB ,交OA 于点D ,E 是线段OC 的中点.(1)如图1,连接DE ,并延长DE 交OB 于点M ,若△OEM 的面积是6,则△ODC 的面积是 ;(2)如图2,过点E 的直线分别交射线OB 、线段CD 于点M 、N ,则线段OD 、DN 、OM 之间的数量关系是 ;(3)如图3,过点E 的直线分别交射线OB 、线段CD 的延长线于点M 、N ,探究线段OD 、DN 、OM 之间有怎样的数量关系?并证明你的结论.(第24题图)O (第25题图1)M(第25题图2)(第25题图3)2016—2017学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.7; 12.1800; 13.140°; 14.60°; 15.30°; 16.-5; 17.10; 18.0或-2. 三、解答题:(共46分) 19.解:()()22017311932-⎪⎭⎫⎝⎛------ =9131-+- ………………………………………… 4分= -10. ………………………………………… 5分 20.解:()()()()22352123b a b a b a a a b b a -÷+-+-+=24352224123b a b a ab a a b ÷+-+- ………………………………… 3分 =ab ab a a b 33222+-+- ………………………………… 4分 =.2b ………………………………… 5分 21.解:()()ab b a b a +--4=ab b ab ab a ++--2244 ………………………………… 2分 =2244b ab a +- ………………………………… 3分=.)22b a -( ………………………………… 5分 22.解:12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx=)12()1()1()2()1)(1(2-+•+--+-x x x x x x x x x ………………………………… 3分=)12()1()1(122-+•+-x x x x x x ………………………………… 4分=.12xx + ………………………………… 5分 当2-=x 时,原式=.41212122-=-+-=+)(x x ……………………………… 6分 23.解:原方程可化为 )2(2121-=+---x xx x , ……………………………… 1分 方程两边同乘以2(x -2),得x x x =-+--)2(2)12(,……………………………… 3分 去括号,得x x x =-+-4222,移项,得2422-=-+-x x x , 合并同类项,得 2=-x ,系数化为1,得2-=x . ………………………………… 5分 检验:当x =-2时,2(x -2)≠0,所以原方程的解是x =-2. ………………………………… 7分 24.解:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ACB =60°, ………………………………… 2分 ∴∠EAB =∠ACD =120°, ………………………………… 3分 在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=DC AE ACD EAB AC AB ∴△ABE ≌△ACD , ………………………………… 5分 ∴∠E =∠D , ………………………………… 6分 ∵∠EAF =∠CAD ,∠CAD+∠D =∠ACB =60°, ……………………… 7分 ∴∠EAF +∠E =60°,∴∠BFD=60°.………………………………… 8分25.解:(1)12;………………………………… 2分(2)OD=DN+OM;………………………………… 4分(3)线段OD、DN、OM之间的数量关系是OD= OM-DN. ……… 5分证明:∵E是OC的中点,∴OE=CE,………………………………… 6分∵CD∥OB,∴∠COM=∠DCO,………………………………… 7分又∠OEM=∠CEN,∴△OEM≌△CEN,∴OM=CN. ………………………………… 8分∵OC平分∠AOB,∴∠COM=∠COD,又∠COM=∠DCO,∴∠COD=∠DCO,………………………………… 9分∴OD=CD,∵CD=CN-DN,∴OD= OM-DN. ……………………………… 10分。

黄浦区2017学年第一学期初二数学期末卷答案

黄浦区2017学年第一学期初二数学期末卷答案

黄浦2017学年第一学期八年级数学期末考试试卷参考答案2018.1一、 选择题(本大题共6题,每题3分,满分18分)1.B; 2.D; 3.C; 4.B; 5.A; 6.C.二、填空题(本大题共12题,每题2分,满分24分)7.π-4; 8.0; 9.0或32; 10.()()21-2-1-+x x 11.3≠x ; 12.32+; 13.5<m 14.3m >15.线段AB 的垂直平分线 16.213 17.40 18.112 三、简答题(本大题共4题,19、20每题5分,21、22每题6分,满分22分) 19.解:计算:2719131362-+-+⋅.解:原式=+2-- ······················································ 1分+1分+1分 =2. ·································································································· 2分20.由原方程得:2(1)(1)120x x ----=------------------------------------ 1分 则 (14)(13)0x x ---+=,即(5)(2)0x x -+=------------- 2分 所以125,2x x ==----------------------------------------------------- 2分21.(1) 作图略------------------------------------------------------------------------------------ - 2分 结论------------------------------------------------------------------------------------------ 1分(2)8--------------------------------------------------------------------------------------- 3分22.解:(1)∵点P (m ,4)在反比例函数xy 12-=的图像上, ∴m = -3,即点P 的坐标为(-3,4).……………………………………………(1分)设正比例函数的解析式为y =kx ,(k ≠0)∵正比例函数的图像经过点P ,∴34-=k .……………………………………(1分) ∴所求的正比例函数的解析式为x y 34-=.……………………………………(1分) (2)∵点Q (6,n )在这个正比例函数的图像上,∴n = -8,即点Q 的坐标为(6,-8).……………………………………………(1分)∴PQ=15-----------------------------------------------------------------------------------------2分四、解答题(本大题共4题,23、24每题6分,25、26每题7分,满分26分)23.(1)小强去学校时下坡路长 2 千米; ------------------------------- 2分(2)小强下坡的速度为 0.5 千米/分钟; ------------------------------ 2分(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是 14 分钟。

广东省广州市八年级数学上学期期末考试试题(含解析)-新人教版

广东省广州市八年级数学上学期期末考试试题(含解析)-新人教版

1. 广州市2015-2016学年八年级数学上学期期末考试试题、选择题(共10小题,每小题3分,满分30分) 在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是 有意义,则x 的取值范围是2. 分式 B. C. A. B. x v 3 C.3. A. 下列计算正确的是() 2 3 6 2、 36 a a =a B.( a ) =aC. 4. A. 下列多项式能用完全平方公式进行因式分解的是(2 2a +1 B. a +2a — 1 C. A. B. F 列结论正确的是( /A=ZE / B=Z DFE C. 6. A. 多边形每个外角为 45° 8 B. ,则多边形的边数是( 7I C. 7. A. C. 下面因式分解错误的是(2 2x — y = (x+y )( x — y ) 2 2x — 2xy=2x (x — y ) B. D. x M 32 2 3a +a =a)a 2— 6a+9AC=ED D. D.D. D. D. x 2— 8x+16= (x — 4) 2 2 2 2x +y = (x+y ) X M — 3a 2+8a+64BF=DF AD=AB 那么添加下列一个条件后,则无法判定△ AED^A ACB 的是( )如图,已知 A. AE=AC B. DE=BCC.Z E=ZCD.Z ABC M ADE疋2藍9 •把分式方程:…―+2" :化为整式方程,得()A. x+2=2x (x+2)C. x+2 (x—2) =2x (x - 2)2B. x+2 (x —4) =2x ( x+2)D. x+2 (x2—4) =2x (x —2),则有(C. 1 v k v 2D. k > 2二、填空题(共6小题,每小题3分,共18分)11. _____________________________________ 计算:(二)-1+ (2—n )0= ________________________ .12. 如图,等边△ ABC周长是12, AD是/ BAC的平分线,则13.计算:14.如图,四边形ABCD中, AD// BC BC=5 / BAD的平分线AE交BC于点E, CE=2则线段AB的长为15.若a>0,且a x=2, a y=3,贝U a x+y的值等于 ______________16.已知实数a, b, c 满足a2+5b2+c2+4( ab—b+c) —2c+5=0,则2a —b+c 的值为_________三、解答题(共9小题,满分102 分)17.计算(1)( a+6)( a—2)—a (a+3)1 ~ X 1 " X(2)::..18.如图所示,在△ ABC 中,AB=AC / B=30°,(1)求:/ DAC的度数.(2)证明:△ ACD是等腰三角形.D 为BC上一点,且/ DAB=4519•先化简,再求值:(x+2) 2+ (3 -x )( x+3),其中 x=-.20. 如图,B 、F 、C E 在同一直线上, AC=DF / B=Z E ,Z A=Z D,求证: BE=FC21. 已知:如图,在△ ABC 中,/ B=30°,/ C=90(1 )作AB 的垂直平分线 DE 交AB 于点E ,交BC 于点D;(要求:尺规作图,保留作图痕22. 某厂准备加工700个零件,在加工完毕200个零件以后,采取了新技术,使每天的工作 效率是原来的2倍,结果共用9天完成任务,求该厂原来每天生产多少个零件?23. 如图,B C 两点关于y 轴对称,点A 的坐标是(0, b ),点C 的坐标为(-a , a - b ) (1) ________________________________ 直接写出点B 的坐标为 .(2) 用尺规作图,在 x 轴上作出点P ,使得AP+PB 的值最小;迹,不写作法和证明)(2)连接DA 若BD=6求CD 的长.(3)求/ OAP的度数.I比•A24. 如图,BCL CA BC=CA DCL CE DC=CE直线BD与AE交于点F,交AC于点G,连接CF.(1) 求证:△ ACE^A BCD(2) 求证:BF L AE(3) 请判断/ CFE与/CAB的大小关系并说明理由.25 .如图,长方形ABCD中, AB=X2+4x+3,设长方形面积为S.(1 )若S长方形ABCD=2X+6, x取正整数,且长方形ABCD的长、宽均为整数,求x的值;(2 )若S长方形ABCD=X2+8X+15 , x取正整数,且长方形ABCD的长、宽均为整数,求x的值;(3)若S长方形ABcD=2x3+ax2+bx+3,对于任意的正整数x, BC的长均为整数,求(a-b) 2015的值.A ___________________________ 32015-2016学年广东省广州市海珠区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:故选:D.2. 故选:C.3. 下列计算正确的是()A. a 2a=aB. 3=a 6,正确;C a 2+a 2=2a 2,故错误;D 、a 6+a 2=a 4,故错误; 故选:B.【点评】本题考查了同底数幕的乘法和除法、幕的乘方、合并同类项,解决本题的关键是熟记同底数幕的乘法和除法、幕的乘方、合并同类项.4.下列多项式能用完全平方公式进行因式分解的是( )2 2 2 2A. a +1B. a+2a - 1C. a - 6a+9D. a +8a+64【考点】因式分解-运用公式法.【分析】根据完全平方公式的特点: 两项平方项的符号相同, 另一项是两底数积的 2倍,对 各选项分析判断后利用排除法求解.【解答】 解:A 、a 2+1不符合完全平方公式法分解因式的式子特点,故错误; B a 2+2a - 1不符合完全平方公式法分解因式的式子特点,故错误;2 2C 、a - 6a+9= (a - 3),故正确;D a 2+8a+64= (a+4) 2+48,不符合完全平方公式法分解因式的式子特点,故错误.故选:C.【点评】本题考查了用公式法进行因式分解, 能用公式法进行因式分解的式子的特点需熟记.A.Z A=ZEB.Z B=ZC. AC=ED. BF=DFDFE【考点】全等三角形的性质.【分析】根据全等三角形的性质对各个选项进行判断即可.【解答】 解:•••△ AB3A EDF/•Z A=Z E , A 正确;/ B=Z FDE B 错误; AC=EF C 错误; BF=DC D 错误; 故选:A.【点评】本题考查的是全等三角形的性质, 掌握全等三角形的对应边相等、 对应角相等是解题的关键.6•多边形每个外角为 45°,则多边形的边数是( )A. 8B. 7C. 6D. 5【考点】多边形内角与外角.【分析】利用多边形外角和除以外角的度数即可. 【解答】 解:多边形的边数:360-45=8, 故选:A.【点评】此题主要考查了多边形的外角,关键是掌握正多边形每一个外角度数都相等.7.下面因式分解错误的是( )2 2 2 2C. 2x - 2xy=2x (x - y )D. x +y = (x+y )【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】分别利用完全平方公式以及平方差公式分解因式,进而判断得出答案.【解答】解:A 、x 2-y 2= ( x+y )( x -y ),正确,不合题意;2 2B x - 8x+16= ( x - 4),正确,不合题意;C 、2x - 2xy=2x (x - y ),正确,不合题意;D x 2+y 2= (x+y ) 2,此选项错误,符合题意. 故选:D.A. x 2- y 2= ( x+y )( x - y )B.x 2- 8x+16= (x - 4)【点评】此题主要考查了公式法以及提取公因式法分解因式,熟练应用乘法公式是解题关键.&如图,已知AD=AB那么添加下列一个条件后,则无法判定△ACB 的是( )A. AE=ACB. DE=BCC.Z E=ZCD.Z ABC M ADE 【考点】全等三角形的判定.【分析】分别利用全等三角形的判定方法判断得出即可.【解答】解:A、添加AE=AC利用SAS证明△ ADE^A ACB故此选项错误;B 添加DE=BC不能证明厶ADE^A ACB故此选项正确;C添加/ E=M C,利用AAS证明△ ADE^A ACB故此选项错误;D添加/ ABC M ADE利用ASA证明厶ADE^A ACB故此选项错误;故选B.【点评】本题考查三角形全等的判定方法,两角及其夹边分别对应相等的两个三角形全等.疋2黑9•把分式方程[+2= * :化为整式方程,得( )2A. x+2=2x ( x+2)B. x+2 ( x - 4) =2x (x+2)2C. x+2 (x- 2) =2x (x - 2)D. x+2 (x - 4) =2x (x-2)【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程两边乘以(x+2)( x - 2)去分母得到结果,即可做出判断.【解答】解:去分母得:x+2 (x2- 4) =2x (x+2).故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”, 把分式方程转化 为整式方程求解•解分式方程一定注意要验根. 【考点】平方差公式的几何背景;约分. 【分析】先分别表示出甲乙图中阴影部分的面积,再利用因式分解进行化简即可.【解答】 解:甲图中阴影部分的面积 =a 2- b 2,乙图中阴影部分的面积 =a (a - b ), _甲图中阴影部分面积- b 2 g+b b匚 i ———— , •/ a > b > 0,, ••• 1v k v 2.故选:C.【点评】 本题主要考查了平方差公式以及求图形的面积.二、填空题(共6小题,每小题3分,共18分)11.计算:()1+ (2 - n ) °= 4 .【考点】负整数指数幕;零指数幕.【分析】分别根据零指数幕,负整数指数幕的运算法则计算, 计算结果.【解答】 解:原式=3+1=4.甲图中阴影部分面积 匚乙图中阴影部分面积 (a > b > 0),则有( C. 1 v k v 2 D. k > 2 然后根据实数的运算法则求得 10•如图,设A B 1故答案为:4.【点评】本题主要考查了零指数幕, 任何非0数的0次幕等于1 .BD=CD 并且求得边BC 的长度,进而即可求得 BD 的长.【解答】 解:•••△ ABC 是等边三角形,AD 是/ BAC 的平分线,••• AB=BC=CA BD=CD•••等边△ ABC 周长是12,BC=4• BD=2故答案为2.【点评】本题考查了等边三角形的性质,等腰三角形三线合一的性质是解题的关键.1 1 113 计算:,+—7—=_ —【考点】分式的加减法.【分析】首先进行通分,然后再根据同分母的分式相加减,分母不变,把分子相加减进行计 算,最后化简即可. a 1 arFl 1 【解答】解:原式+.二=.「= 一.1故答案为:.【点评】此题主要考查了分式的加减法,关键是掌握异分母分式加减法计算法则. 负整数指数幕的运算.负整数指数为正整数指数的倒数; AD 是/ BAC 的平分线,则BD= 2【分析】根据等边三角形的性质求得 12, 【考点】等边三角形的性质.14.如图,四边形ABCD中, AD// BC BC=5 / BAD的平分线AE交BC于点E, CE=2则线段AB的长为3 .【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义求出/ DAE M BAE根据平行线的性质得出/ DAE d AEB推出/ BAE M AEB根据等腰三角形的判定得出AB=BE即可得出答案.【解答】解:•••/ BAD的平分线AE交BC于点E ,•••/ DAE M BAE•/ AD// BC•••/ DAE M AEB•••/ BAE M AEB• AB=BE•/ BC=5 CE=2• AB=BE=& 2=3 ,故答案为:3.【点评】本题考查了角平分线定义,平行线的性质,等腰三角形的性质和判定的应用,能求出AB=BE是解此题的关键.15 .若a > 0,且a x=2 , a y=3,贝U a x+y的值等于6 .【考点】同底数幕的乘法.【分析】根据同底数幕的乘法法则求解.【解答】解:a x+y=a x a y=2x 3=6.故答案为:6.【点评】本题考查了同底数幕的乘法,解答本题的关键是掌握同底数幕的乘法法则:同底数幕相乘,底数不变,指数相加.16. 已知实数a, b, c满足a2+5b2+c2+4 ( ab- b+c) - 2c+5=0,则2a - b+c 的值为 -11【考点】配方法的应用;非负数的性质:偶次方.【分析】通过对式子整理,利用非负数的性质得到a、b、c的值,代入解答即可.2 2 2【解答】解:因为a+5b+c+4 (ab - b+c) - 2c+5=0,可得:(a+2b) 2+ (b - 2) 2+ (c+1) 2=0,解得:b=2, c= - 1, a=- 4,把b=2, c=1, a= - 4 代入2a- b+c= - 8 - 2 - 1= - 11,故答案为:-11.【点评】此题考查因式分解的运用,非负数的性质,掌握完全平方公式是解决问题的关键.三、解答题(共9小题,满分102分)17. 计算(1)( a+6)( a - 2)- a (a+3)1 -M 1 _K(2【考点】整式的混合运算;分式的乘除法.【分析】(1 )利用多项式乘以多项式以及单项式乘以多项式运算法则去括号合并同类项即可;(2)首先分解因式,进而化简求出答案.【解答】解:(1)( a+6)( a-2)- a ( a+3)2 2=a +4a- 12 - a - 3a=a- 12;1 _M 1 -K(2) 十厂:,X (垃+1)K+1【点评】此题主要考查了整式的混合运算以及分式的乘除法,正确分解因式是解题关键.18. 如图所示,在△ ABC 中,AB=AC / B=30°, D 为BC上一点,且/ DAB=45(1)求:/ DAC的度数.(2)证明:△ ACD是等腰三角形.【考点】等腰三角形的判定与性质;三角形内角和定理.【分析】(1)根据等腰三角形性质求出/ C,根据三角形内角和定理求出/ BAC即可求出答案;(2)根据三角形内角和定理求出/ ADC推出/ DAC M ADC根据等腰三角形的判定定理得出即可. 【解答】(1)解:•••在△ ABC 中,AB=AC / B=30°,•••/ C=Z B=30°,•••/ BAC=180 -Z B-Z C=120 ,•••/ DAB=45 ,• Z DAC Z BAC-Z DAB=120 - 45° =75°;(2)证明:T Z DAC=75 , Z C=30 ,•Z ADC=180 -Z C-Z DAC=75 ,•Z DAC Z ADC• AC=CD•△ ACD是等腰三角形.【点评】本题考查了三角形内角和定理,等腰三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.2119. 先化简,再求值:(x+2) + (3- x)( x+3),其中x=-.【考点】整式的混合运算一化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4+9 - x2=4x+13,当x= -^时,原式=-2+13=11.【点评】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20. 如图,B、F、C E 在同一直线上,AC=DF / B=Z E,Z A=Z D,求证:BE=FCB EC F【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据ASA推出△ AB3A DEF再利用全等三角形的性质证明即可.【解答】证明:I / B=Z E,Z A=Z D,•••/ ACB/ DFE在厶ABC与厶DEF中,f ZA=ZDr AC二DF ,ZACB^ZDFE•△ABC^A DEF• BC=EF• BC— CE=EF- CE,• BE=FC全等三角形的对应边相等,对【点评】本题考查了全等三角形的性质和判定的应用,注意: 应角相等.21. 已知:如图,在△ ABC 中,/ B=30,/ C=90 .(1 )作AB的垂直平分线DE交AB于点E,交BC于点D;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)连接DA若BD=6求CD的长.【考点】作图一基本作图;线段垂直平分线的性质.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,两弧交于两点,过两点画直线, 交AB于点E,交BC于点D;(2)根据线段垂直平分线的性质可得AD=BD=6再根据等边对等角可得/ DAB M B=30°,然后再计算出/ CAB的度数,进而可得/ CAD的度数,再根据直角三角形30°角所对的直角边等于斜边的一半可得CD= AD=3【解答】解:(1)如图所示:(2 )T ED是AB的垂直平分线,••• AD=BD=6•••/ B=30°,•••/ DAB M B=30°,•••/ B=30°,Z C=9C° ,•••/ CAB=6C ,•••/ CAD=6C - 30° =30°,1• CD= AD=3,【点评】此题主要考查了线段垂直平分线的作法和性质,以及直角三角形的性质,关键是正确掌握垂直平分线的作法,线段垂直平分线上任意一点,到线段两端点的距离相等.22. 某厂准备加工700个零件,在加工完毕200个零件以后,采取了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,求该厂原来每天生产多少个零件?【考点】分式方程的应用.【分析】设该厂原来每天加工x个零件,采取了新技术后每天加工2x个零件,根据加工200 个零件用时+加工700 - 200=500个零件用时=9列出方程解答即可.【解答】解:设该厂原来每天加工x个零件,采取了新技术后每天加工2x个零件,根据题意得:20C 700 - 200+ =9K 2x解得:x=50,经检验得x=50是原方程的解,答:该厂原来每天加工50个零件.【点评】此题考查分式方程的实际应用,掌握工作总量、工作时间、工作效率三者之间的关系是解决问题的关键.23. 如图,B C两点关于y轴对称,点A的坐标是(0, b),点C的坐标为(-a, a- b).(1)直接写出点B的坐标为 (a, a- b) .(2)用尺规作图,在x轴上作出点P,使得AP+PB勺值最小;(3)求/ OAP的度数.【分析】(1 )根据关于y轴对称的点的特点即可得到结论;(2)如图所示,作点A关于x轴的对称点A',连接A'B交x轴于P,点P即为所求;(3)过B作BDL y 轴于D, D(0, a—b),贝U BD=a OD=a-"由(2)知A与A'关于x 轴对称,于是得到A O=AO=,推出A D=BD 在Rt△ A DB 中,/ A DB=90 , A P=AP 于是得到/ BA' D=Z B=45,即可得到结论.【解答】解:(1) B (a, a—b);故答案为:(a, a —b).(2)如图所示,点P即为所求;(3)过B作BDL y 轴于D, D(0, a—b),则BD=a OD=—b,由(2)知A与A关于x轴对称,••• A O=AO=b••• A D=BD在Rt△ A DB 中,/ A DB=90 , A P=AP•••/ BA D=Z B=45 ,TA与A'关于x轴对称,•••/ OAP M DA P=45【点评】本题考查了轴对称-最短距离问题,作图-轴对称变换,熟知两点之间线段最短是解答此题的关键.24. 如图,BCL CA BC=CA DCL CE DC=CE直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ ACE^A BCD(2)求证:BF L AE(3)请判断/ CFE与/CAB的大小关系并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直的定义得到/ ACB M DCE=90,由角的和差得到/ BCD M ACE即可得到结论;(2)根据全等三角形的性质得到/ CBD M CAE根据对顶角的性质得到/ BGC M AGE由三角形的内角和即可得到结论;(3)过C作CH L AE于H , CI L BF于I ,根据全等三角形的性质得到AE=BD S AACE=S A BCD根据三角形的面积公式得到CH=CI,于是得到CF平分/ BFH,推出△ ABC是等腰直角三角形,即可得到结论.【解答】证明:(1)v BC L CA DC L CE•••/ ACB M DCE=90 ,•••/ BCD M ACE在厶BCD与厶ACE中,f BC=CA“ ZACD^ZACE,CD=CE•••△ BCD^A ACE(2 )•••△BCD^A ACE •••/ CBD M CAE•••/ BGC H AGE•••/ AFB=/ ACB=90 ,• BF丄AE(3)Z CFE H CAB过C作CH丄AE于H, Cl丄BF于I ,•/△BCD^A ACE• AE=BD S^ACE=S^BCD• CH=C|• CF 平分/ BFH•/ BF丄AE•••/ BFH=90,/ CFE=45 ,•/ BCL CA BC=CA•△ ABC是等腰直角三角形,•••/ CAB=45 ,•••/ CFE=/ CAB【点评】本题考查了全等三角形的判定和性质,角平分线的定义, 角三角形的性质,正确的作出辅助线是解题的关键.25 .如图,长方形 ABCD 中, AB=f+4x+3,设长方形面积为 S.(1 )若S 长方形ABCD =2X +6, x 取正整数,且长方形 ABCD 勺长、宽均为整数,求 x 的值;(2 )若S 长方形ABCD =X 2+8X +15 , x 取正整数,且长方形 ABCD 勺长、宽均为整数,求 x 的值;(3) 若S 长方形ABCD =2x 3+ax 2+bx+3,对于任意的正整数 x , BC 的长均为整数,求(a -b ) 2015的【考点】因式分解的应用;分式的混合运算.【分析】(1)首先求出长方形的边长 BC 为.一,然后根据长宽均为整数, 即可求出x 的值;(2)首先求出长方形的边长 BC 为1+「一,然后根据长宽均为整数,即可求出 (3)首先根据题意得到 BC= {「=mx+n 进而得到(mx+n) (x 2+4x+3) =mf+(4m+n)x 2+ (3m+4n ) x+3,再根据对应关系求出 a 和b 的值,最后求出(a - b ) 2015的值.角平分线的性质,等腰直x 的值;【解答】解:(1 ):AB=X2+4X+3, S 长方形ABC=2X+6 ,一2黑+6 2 (时3) 2x2+4x+3 (忑+3)(忑+1) 咄1,•/ BC的长为整数,/• x+1=1 或2,••• x=0 或1,•••x为正整数,2 2(2) • AB=x+4x+3, S 长方形ABC=X+8X+15 , 辺+8蛊+15 (x+3)&+5) _x+5 _£•BC=;——=门I . =「=1+、—'•/ BC的长为整数,• x+1=1 或 2 或4,• x=0 或 1 或3,•x为正整数,• x=1 或3;2 3 2(3) • AB=x+4x+3, S长方形ABC=2X +ax +bx+3,_ _ 2x3+aK2+b/+3• BC= —=mx+n即2x3+ax2+bx+3= ( mx+n)( x2+4x+3),2 3 2•.•( mx+n)( x +4x+3) =mx+ (4m+r) x + (3m+4n) x+3,iri=2a=4in+n b=3nH-4n 3=3n iri=2a=9LkE• mx+ r=2x+1对于任意正整数x,其值均为整数,2015 ‘• ( a—b) = - 1.解答本题本题的关键【点评】本题主要考查了因式分解的应用以及分式的混合运算的知识,是掌握多项式除以多项式的方法,此题有一定的难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年广东省广州市黄埔区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在直角坐标系中,点A(﹣3,5)与点B关于x轴对称,则()A.B(3,5)B.B(﹣3,﹣5)C.B(5,3)D.B(5,﹣3)2.(2分)在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°3.(2分)如图,已知△ABC≌△DEF,点B与点E是对应点,点A与点D是对应点,下列说法不一定成立的是()A.AB=DE B.AC=DF C.BE=EC D.BE=CF4.(2分)如图,点E在线段AB上,若AC=AD,CE=DE,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对5.(2分)若等腰三角形的两边长分别是3,5,则第三边长是()A.3 B.5 C.3或5 D.4或66.(2分)如图,线段AB与CD相交于点P,AC∥BD,∠A=39°,∠D=50°,则()A.∠APD=39°B.∠APD=50°C.∠APD=89°D.∠APD=76°7.(2分)计算(﹣a)2a3的结果有()A.a6B.﹣a6 C.﹣a5 D.a58.(2分)与分式相等的是()A. B.C. D.9.(2分)下列式子可利用平方差公式计算的是()A.(a﹣3b)(﹣a+3b)B.(﹣4b﹣3a)(﹣3a+4b) C.(a+b)(﹣a﹣b)D.(a﹣2b)(a+3b)10.(2分)到三角形三边距离相等的点是()A.三角形的两条平分线的交点B.三角形的两条高的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:ab+bc=.12.(3分)若分式有意义,则x的取值范围为.13.(3分)若(m﹣3)m=1成立,则m的值为.14.(3分)如图,在△ABC中,DB=DC,比较△ABD的面积与△ADC的面积的大小,则S△ABD S△ADC(填写“<”,“=”,“>”)15.(3分)下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是(填序号)16.(3分)在△ABC中,∠B=90°,AD平分∠BAC交BC于D,DE是AC的垂直平分线,若BD=1,那么BC=.三、解答题(本大题共8题,共62分)17.(6分)尺规作图(不写作法,保留作图痕迹)如图,已知△ABC,求作△ABC的高AD.18.(6分)如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.19.(8分)计算:(1)a(a+b)﹣b(a﹣b)(2)(x﹣2y)(2y+x)+(2y+x)2﹣2x(x+2y)20.(8分)计算:(1)÷;(2)﹣.21.(8分)如图,在△ABC中,AB=AC,AE=AF,BF与CE相交于D.(1)求证:△AEC≌△AFB;(2)求证:ED=FD.22.(8分)甲做360个零件与乙做480个零件所用的时间相等,已知甲比乙每天少做2个零件,求甲、乙每天各做多少个零件?23.(8分)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.24.(10分)两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2﹣2a=m,b2﹣2b=m,求a+b和m的值.2016-2017学年广东省广州市黄埔区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在直角坐标系中,点A(﹣3,5)与点B关于x轴对称,则()A.B(3,5)B.B(﹣3,﹣5)C.B(5,3)D.B(5,﹣3)【解答】解:∵点A(﹣3,5)与点B关于x轴对称,∴点B的坐标为(﹣3,﹣5).故选B.2.(2分)在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°【解答】解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.3.(2分)如图,已知△ABC≌△DEF,点B与点E是对应点,点A与点D是对应点,下列说法不一定成立的是()A.AB=DE B.AC=DF C.BE=EC D.BE=CF【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BE=CF,故选C4.(2分)如图,点E在线段AB上,若AC=AD,CE=DE,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:图中的全等三角形共有3对.∵AC=AD,CE=DE,AE公共,∴△ACE≌△ADE.(SSS)进而得出△CEB≌△DEB,△ABC≌△ABD;故选C5.(2分)若等腰三角形的两边长分别是3,5,则第三边长是()A.3 B.5 C.3或5 D.4或6【解答】解:由题意得,当腰为3时,则第三边也为腰,为3,此时3+3>5.故以3,3,5可构成三角形;当腰为5时,则第三边也为腰,此时3+5>5,故以3,5,5可构成三角形.故第三边长是3或5.故选:C.6.(2分)如图,线段AB与CD相交于点P,AC∥BD,∠A=39°,∠D=50°,则()A.∠APD=39°B.∠APD=50°C.∠APD=89°D.∠APD=76°【解答】解:∵AC∥BD,∠A=39°,∴∠B=∠A=39°,∵∠APD是△BDP的外角,∴∠APD=∠B+∠D=39°+50°=89°,故选:C.7.(2分)计算(﹣a)2a3的结果有()A.a6B.﹣a6 C.﹣a5 D.a5【解答】解:原式=a2•a3=a5,故选:D.8.(2分)与分式相等的是()A. B.C. D.【解答】解:∵==,故选A.9.(2分)下列式子可利用平方差公式计算的是()A.(a﹣3b)(﹣a+3b)B.(﹣4b﹣3a)(﹣3a+4b) C.(a+b)(﹣a﹣b)D.(a﹣2b)(a+3b)【解答】解:能用平方差公式计算的为(﹣4b﹣3a)(﹣3a+4b),故选B10.(2分)到三角形三边距离相等的点是()A.三角形的两条平分线的交点B.三角形的两条高的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点【解答】解:∵点到两边距离相等,∴这个点在两边夹角的平分线上,同理可知,这个点在任意两边夹角的平分线上,∴这个点是三角形的两条平分线的交点,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:ab+bc=b(a+c).【解答】解:ab+bc=b(a+c).故答案为:b(a+c).12.(3分)若分式有意义,则x的取值范围为x≠2.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.13.(3分)若(m﹣3)m=1成立,则m的值为2,4,0.【解答】解:当m=2时,(m﹣3)m=(﹣1)2=1;当m=4时,(m﹣3)m=13=1;当m=0时,(m﹣3)m=(﹣3)0=1,故答案为:2,4,0.14.(3分)如图,在△ABC中,DB=DC,比较△ABD的面积与△ADC的面积的大小,则S△ABD =S△ADC(填写“<”,“=”,“>”)【解答】解:∵DB=DC,A到DB、DC的距离相等,∴S△ABD=S△ADC.故答案为:=.15.(3分)下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是①③(填序号)【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.正确的有①③,故答案为:①③.16.(3分)在△ABC中,∠B=90°,AD平分∠BAC交BC于D,DE是AC的垂直平分线,若BD=1,那么BC=3.【解答】解:∵∠B=90°,DE是AC的垂直平分线,若BD=1,∴DC=AD,BD=DE,CE=AE,∵AD平分∠BAC交BC于D,∴AB=AE,∴AC=2AB,∴∠C=30°∴∠CAB=60°,∴∠BAD=30°,∴AD=2BD=2,∴CD=2,∴BC=3.\故答案为:3.三、解答题(本大题共8题,共62分)17.(6分)尺规作图(不写作法,保留作图痕迹)如图,已知△ABC,求作△ABC的高AD.【解答】解:如图,AD即为所求..18.(6分)如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.【解答】解:∵∠A=47°,∠ADB=116°,∴∠ABD=180°﹣47°﹣116°=17°,∵BD为△ABC的角平分线,∴∠ABC=2∠ABD=34°,∴∠C=180°﹣47°﹣34°=99°.19.(8分)计算:(1)a(a+b)﹣b(a﹣b)(2)(x﹣2y)(2y+x)+(2y+x)2﹣2x(x+2y)【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)原式=(x2﹣4y2)+(x2+4xy+4y2)﹣(2x2+4xy)=020.(8分)计算:(1)÷;(2)﹣.【解答】解:(1)原式=×=;(2)原式=﹣=﹣==﹣.21.(8分)如图,在△ABC中,AB=AC,AE=AF,BF与CE相交于D.(1)求证:△AEC≌△AFB;【解答】证明:(1)在△AEC与△AFB中,,∴△AEC≌△AFB;(2)∵△AEC≌△AFB,∴∠FCD=∠EBD,∵AB=AC,AE=AF,∴BE=CF,在△EDB与△FDC中,,∴△EBD≌△FDC,∴ED=FD.22.(8分)甲做360个零件与乙做480个零件所用的时间相等,已知甲比乙每天少做2个零件,求甲、乙每天各做多少个零件?【解答】解:设乙每天做x个零件,则甲每天做(x﹣2)个零件,由题意得=,解得:x=8,经检验:x=8是原方程的根,x﹣2=8﹣2=6.答:甲每天做6个零件零件,乙每天做8个零件.23.(8分)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.【解答】证明:(1)∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA∴AE=ED;(2)∠B=∠CAF,证明:∵AE=ED,EF⊥AD,∴EF是AD的垂直平分线,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,∴∠B=∠CAF.24.(10分)两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2﹣2a=m,b2﹣2b=m,求a+b和m的值.【解答】解:(1)∵a2+b2=5,ab=2,∴(a+b)2=a2+2ab+b2=5+2×2=9,∴a+b=±3;(2)∵a2﹣2a=m,b2﹣2b=m,∴a2﹣2a=b2﹣2b,a2﹣2a+b2﹣2b=2m,∴a2﹣b2﹣2(a﹣b)=0,∴(a﹣b)(a+b﹣2)=0,∵a≠b,∴a+b﹣2=0,∴a+b=2,∵a2﹣2a+b2﹣2b=2m,∴a2+b2﹣2(a+b)=2m,∵a2+b2=5,∴5﹣2×2=2m,解得:m=,即a+b=2,m=.。

相关文档
最新文档