广东省2018-2019年高考 数学文
2018-2019学年高考真题——文数(全国卷Ⅲ)+Word版含解析

绝密★启用前2018-2019学年普通高等学校招生全国统一考试最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。
文科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有项是符合题目要求的•1. 已知集合上-一“y,护「丄「,则.A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,上•,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。
2. J - ':A. 、B.C. 、D. 、【答案】D【解析】分析:由复数的乘法运算展开即可。
:■!卜i / - i = 7 - i •八「二「 ...........................故选D.点睛:本题主要考查复数的四则运算,属于基础题。
3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中 木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 则咬合时带卯眼的木构件的俯视图可以是ABA. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。
2 2 7详解: 故答案为B.点睛:本题主要考查二倍角公式,属于基础题。
5.若某群体中的成员只用现金支付的概率为 0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A. 0.3 B. 0.4 C. 0.6 D. 0.778 A. B.C. D.99【答案】 B【解析】分析:由公式■..■- J .. - _ 1.1 可得。
2019广东高考文科数学试卷及问题详解解析汇报【word版】

2019年普通高等学校招生全国统一考试(广东卷)数学 (文科) 一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+答案:A111:()2,(),()22(),222(), A.x x xx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
2019广东高考文科数学试卷及答案解析【word版】

2019年普通高等学校招生全国统一考试(广东卷)数学 (文科) 一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+答案:A111:()2,(),()22(),222(), A.x x xx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为 2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 000:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
2019年高考文科数学试卷(广东卷)

2019年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为() A.50 B.40 C.25 D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个 ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53xy e =-+在点()0,2-处的切线方程为________. 12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。
广东省2019年高考文科数学试题及答案

广东省2019年高考文科数学试题及答案(满分150分,考试时间120分钟)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12. 若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长 度为26 cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A +C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年广东省高考数学试卷(文科)(附详细答案)

则下列结论一定正确的是(
)
第 1 页(共 19 页)
A.l1⊥l4 B.l1∥l4
C.l1 与 l4 既不垂直也不平行
D. l1 与 l4 的位置关系不确定
10.(5 分)对任意复数 ω1,ω2,定义 ω1* ω2=ω1 2,其中 2 是 ω2 的共轭复数,
对任意复数 z1,z2, z3 有如下命题:
【解答】 解:在正方体中,若 AB 所在的直线为 l 2,CD 所在的直线为 l3,AE 所在
的直线为 l1,
若 GD 所在的直线为 l4,此时 l1∥l4,
第 8 页(共 19 页)
若 BD 所在的直线为 l4,此时 l1⊥l4, 故 l1 与 l4 的位置关系不确定, 故选: D.
【点评】 本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.
log2a1+log2a2+log2a3+log2a4+log2a5=
.
(二)(14-15 题,考生只能从中选做一题) 【坐标系与参数方程选做题】 14.(5 分)在极坐标系中,曲线 C1 与 C2 的方程分别为 2ρco2sθ =sin 与θ ρ cos θ,=1
以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,
10.(5 分)对任意复数 ω1,ω2,定义 ω1* ω2=ω1 2,其中 2 是 ω2 的共轭复数,
对任意复数 z1,z2, z3 有如下命题:
①( z1+z2) *z3=(z1*z 3)+(z2*z3) ② z1* ( z2+z3)=(z1*z 2)+(z1*z3)
③( z1*z2) *z3=z1* (z2*z3); ④ z1*z2=z2*z1
2018年广东省高考数学试卷(文科)(全国新课标ⅰ含答案)

2018年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0 B.C.1 D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题:本题共4小题,每小题5分,共20分。
年高考文科数学试卷广东卷

2019年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M I ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ρρ,则=-a b ρρ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为() A.50 B.40 C.25 D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个 ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53xy e =-+在点()0,2-处的切线方程为________. 12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a Λ 20(本小题满分14分) 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中毕业班第二次质量检查试卷文 科 数 学本试卷分第I 卷和第II 卷两部分.第I 卷1至3页,第II 卷4至6页,满分150分. 考生注意:1.答题前,考生务必将自己的准考证、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并交回.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1A =--,{}2|20B x x x =+-<,则A B =IA .{}0B .{}0,1C .{}1,0-D .{}2,1,0,1-- 2.复数2i1i-=+ A .1i -- B .1+i - C .1+i D .1i -3.右图是具有相关关系的两个变量的一组数 据的散点图和回归直线,若去掉一个点使 得余下的5个点所对应的数据的相关系数最 大,则应当去掉的点是A .DB .EC .FD .A4.下列曲线中,既关于原点对称,又与直线1y x =+相切的曲线是 A .3y x = B .254y x =+C .ln 2y x =+D .14y x =-5.若x ,y 满足约束条件10,20,2,x y x y x +-≥⎧⎪-≥⎨⎪≤⎩则4z x y =-的最小值是A .43 B .73C .7D .9 6.已知等差数列{}n a 满足3514a a +=,2633a a =,则17a a =A .33B .16C .13D .12 7.如右图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为A .25B .24C .23D .22 8.将周期为π的函数ππ())cos()(0)66f x x x ωωω=+++> 的图象向右平移π3个单位后,所得的函数解析式为A .π2sin(2)3y x =-B .2cos(2)3y x π=-C .2sin 2y x =D .2π2cos(2)3y x =-9.过抛物线24y x =的焦点F 作一倾斜角为3π的直线交抛物线于A ,B 两点(A 点在x 轴上方),则AF BF=A .2B .52C .3D .4 10.已知ln(2),1,()1,1,x x f x x x x +≥-⎧⎪=⎨-<-⎪⎩若函数2(2)(2)y f x f x k =--+只有一个零点,则实数k 的值为 A .4 B .3 C .2 D .111.将一个内角为3π且边长为的菱形沿着较短的对角线折成一个二面角为2π的空间四边形,则此空间四边形的外接球的半径为AB .2C .3 D12.记n S 为数列{}n a 的前n 项和,满足132a =,1233()n n a S n *++=∈N ,若2n n S MS +≤对任意的n *∈N 恒成立,则实数M 的最小值为 A. B .176 C .4112D .4文 科 数 学第II 卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知两个单位向量a ,b,且|2|-=a b a ,b 的夹角为_______. 14.已知点P 是以1F ,2F 为焦点的双曲线22:1C x y -=上的一点,且12=3PF PF ,则12PF F ∆的周长为______.15.我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不 定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母 雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的 数量分别为x ,y ,z ,则鸡翁、鸡母、鸡雏的数量即 为方程组53100,3100z x y x y z ⎧++=⎪⎨⎪++=⎩的解.其解题过程可用框图 表示如右图所示,则框图中正整数m 的值为 ______. 16.已知定义在R 上的函数()f x 满足()0f x '>且(()e )1x f f x -=,若()f x ax a ≥+恒成立,则实数a 的取值范围为______.三、解答题:本大题共6小题,满分70分.解答须写出文字说明证明过程和演算步骤. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且(sin cos )b a C C =+.(1)求角A 的大小;(2)若a b ==AC 边上高BD 的长. 18.(12分)为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:0.12元/分.已知陈先生的家离上班公司12公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为t (分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示:将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为[)20,60分.(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于30分钟的概率; (2)若公司每月发放800元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按22天计算),并说明理由.(同一时 段,用该区间的中点值作代表)19.(12分)如图,在四棱锥P ABCD -中,//AD BC ,22AB AD BC ===,PB PD =,PA =.(1)求证:PA BD ⊥;(2)若PA AB ⊥,BD =,E 为PA 的中点.(i )过点C 作一直线l 与BE 平行,在图中画出直线l 并说明理由;(ii )求平面BEC 将三棱锥P ACD -分成的两部分体积的比. 20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,四个顶点所围成的四边形的面积为(1)求椭圆C 的方程;(2)已知点12A (,),斜率为2的直线l 交椭圆C 于B ,D 两点,求ABD ∆ 面积的最大值,并求此时直线l 的方程.21.(12分)已知函数32()34()f x x ax a =-+∈R .D(1)讨论()f x 的单调性;(2)若函数()f x 有三个零点,证明:当0x >时,2()6()e a f x a a ≥-.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时请写清题号. 22.(10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2(4cos )4r ρρθ-=-,曲线2C 的参数方程为4cos ,sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数).(1)求曲线1C 的直角坐标方程和曲线2C 的极坐标方程;(2)当r 变化时设1,C 2C 的交点M 的轨迹为3C ,若过原点O ,倾斜角为3π的直线l 与曲线3C 交于点,A B ,求OA OB -的值.23.(10分)选修4—5:不等式选讲已知实数x , y 满足1x y +=.(1)解关于x 的不等式225x x y -++≤; (2)若,0x y >,证明:2211(1)(1)9xy--≥数学(文科)试题参考答案及评分标准评分说明:1、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解法不同,可根据试题的主要考查内容比照评分标准指定相应的评分细则.2、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.4、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分.1.C2. A3. B4. D5.B6.C7. B8. A9. C 10. B 11. D 12.C二、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.13.2π314. 15.4 16.01a ≤≤ 三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17.本小题主要考查正弦定理、余弦定理及两角和与差的三角函数公式等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想等.满分12分. 解:(1)由正弦定理有:sin sin (sin cos )B A C C =+sin sin()sin cos cos sin =+=+B A C A C A C ···································· 2分 cos sin sin sin A C A C ∴= ································································ 3分 0sin 0c C π<<∴≠ ··································································· 4分 cos sin A A ∴=············································································· 5分 tan 1A ∴= 0A π<<4A π∴=····················································································· 6分(2)13,4a b A π===由余弦定理有:2222cos a b c bc A =+- ·································································· 8分 2450c c ∴--= ··········································································· 9分 5c ∴=或1c =-(舍去) ······························································· 10分sin BD c A ∴=5== ························································· 12分 18.本小题主要考查了概率、频率、平均数等概率、统计基础知识,考查数据处理能力、抽象概括能力、运算求解能力以及应用意识,考查或然与必然的思想、化归与转化思想等.满分12分. 解:(1)设“陈先生一次租用新能源租赁汽车的时间不低于30分钟”的事件为A则所求的概率为1219()1()15025P A P A =-=-=······································ 2分 所以陈先生一次租用新能源租赁汽车的时间不低于30分钟的概率为1925. ···· 4分(2)每次开车所用的平均时间为122882253545553550505050⨯+⨯+⨯+⨯= ············· 6分每次租用新能源租赁汽车的平均费用为1120.1235=16.2⨯+⨯······················· 8分 每个月的费用为16.2222=712.8⨯⨯,712.8<800 ······································· 10分 因此公车补贴够上下班租用新能源分时租赁汽车. ····································· 12分 19.本小题主要考查空间中直线与直线、直线与平面的位置关系、平面与平面位置关系,几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分12分.证明:(1)取BD 中点O ,连接AO ,PO ····················································· 1分AB AD =,O 为BD 中点AO BD ∴⊥又PB PD =,O 为BD 中点 PO BD ∴⊥又AO PO O =BD ∴⊥面PAO ······································· 3分 又PA ⊂面PAOPA BD ∴⊥ ············································· 4分(2)(i)取PD 中点F ,连接CF ,EF ,则//CF BE ,CF 即为所作直线l ················· 5分 理由如下:在PAD ∆中E 、F 分别为PA 、PD 中点//EF ∴AD ,且112EF AD ==又//AD BC ,112BC AD ==//EF BC ∴且=EF BC∴四边形BCFE 为平行四边形. ···························································· 6分//CF BE ∴ ························································································ 7分 (ii)PA AB ⊥,PA BD ⊥,AB BD B =PA ∴⊥面ABD ················································································· 8分 又在ABD ∆中,2AB AD ==,BD =,222AB AD BD +=AB AD ∴⊥又PA AB ⊥,PA AD A =AB ∴⊥面PAD ················································································· 9分方法一:112232P ACD V -=⨯⨯⨯11(12)232C AEFD V -=⨯⨯+=······················································ 10分P ECF V -∴= ···································································· 11分13P ECF C AEFD V V --∴= ··········································································· 12分 方法二:在PAD ∆中,EF 为中位线14PEF PAD S S ∆∆∴=……………………………………………………………………………..10分 113143PEF C PEF C PAD PAD S ABV V S AB ∆--∆⨯⨯∴==⨯⨯…………………………………………………………..11分 1=3P ECF C AEFD V V --∴....................................................................................................................12分 方法三:12EF AD =113143PEC F PEC D PAC PAC S EFV V S AD ∆--∆⨯⨯∴==⨯⨯………………………………………………………..11分 1=3P ECF C AEFD V V --∴………………………………………………………………………….12分 20.本题主要考查椭圆的标准方程及其简单的几何性质,直线与圆锥曲线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、特殊与一般思想、函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力,满分12分.解:(1)22221+=x y ab ,1422∴=⨯==S ab ab ,∴=ab ① ················· 1分 又2e=②,联立①②得1a b ==. ································· 3分 ∴椭圆方程为2212x y +=. ······················································ 4分(2)由(1)得椭圆方程为2212x y +=,依题意,设直线l 的方程为2y x t =+,1122(,),(,)B x y C x y ,点12A (,)到直线l :2y x t =+的距离为d , 联立22212y x t x y =+⎧⎪⎨+=⎪⎩,,可得2298(22)0x tx t ++-=, 显然12212890,229t x x t x x ⎧+=-⎪⎪∆>⎨-⎪=⎪⎩ ······························································· 6分BD ∴===···7分d ∴== ··········································································· 8分1122ABD S BD d ∆∴=⨯=·············································· 9分290->t 22(9)2-+∴t t d t ············ 10分 ∴当且仅当292t=时,即t =,max ()ABD S ∆∴, (11)分此时直线l 的方程为420xy ++=或420x y +-. ······················· 12分 21.本小题主要考查导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分12分. 解:(1)2()36=3(2f x x ax x x a '=--) ……………………………………………………1分令()0f x '=,则=0x 或=2x a ,当0a =时,'()0f x ≥,()f x 在R 上是增函数;…………………………………….. 2分 当0a >时,令'()0f x >,得0x <,2x a >,所以()f x 在(,0)-∞,(2,)a +∞上是增函数;令'()0f x <,得02x a <<,所以()f x 在(0,2)a 上是减函数…………………...……3分 当0a <时,令'()0f x >,得2x a <,0x >,所以()f x 在(,2)a -∞,(0,)+∞上是增函数;令'()0f x <,得20a x <<,所以()f x 在(2,0)a 上是减函数…………………..…… 4分 综上所述:当0a =时,()f x 在R 上是增函数;当0a >时,()f x 在(,0)-∞,(2,)a +∞上是增函数,在(0,2)a 上是减函数. 当0a <时,()f x 在(,2)a -∞,(0,)+∞上是增函数,在(2,0)a 上是减函数.…………………………………….………5分(2)由(Ⅰ)可知:当0a =时,()f x 在R 上是增函数,∴函数()f x 不可能有三个零点; 当0a <时,()f x 在(,2)a -∞,(0,)+∞上是增函数,在(2,0)a 上是减函数. ∴()f x 的极小值为(0)=40f >,∴函数()f x 不可能有三个零点 当0a >时,3min ()(2)44f x f a a ==-,要满足()f x 有三个零点,则需3440a -<,即1a >………………………..………6分 当0x >时,要证明:2()6()a f x a a e >-等价于要证明2min ()6()af x a a e >-即要证: 32446()a a a a e ->-………………………………………………………7分由于1a >,故等价于证明:2312a a a ae ++<,证明如下:法1:构造函数2()3222((1,))a g a ae a a a =---∈+∞………….…………………8分()(33)24a g a a e a '=+--……………………………………………………9分令()(33)24a h a a e a =+--()(63)40a h a a e '=+->,∴函数()h a 在(1,)+∞单调递增min ()(1)660h a h e ∴==->,∴函数()g a 在(1,)+∞单调递增………….…10分 min ()(1)360g a g e ∴==->,………………………………………………11分2312a a a ae ∴++≤∴2()6()a f x a a e >-.……………………………………………………12分法2:构造函数()1((1,))a g a e a a =--∈+∞…………………………………………8分∵()10a g a e '=->,∴函数()g a 在(1,)+∞单调递增………………………9分∴1a e a >+…………………………………………………………………10分 ∴2233(1)(1)(1)22a ae a a a a a a -++>+-++……………………………11分 231(1)(1)(2)022a ae a a a a -++>-+> ∴2()6()a f x a a e >-.……………………………………………………12分22.选修44-;坐标系与参数方程本小题考查直线和圆的极坐标方程、参数方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等. 满分10分. 解法一:(1)由1C :2(4cos )4r ρρθ-=-,得224cos 4r ρρθ-+=,即222440x y x r +-+-=, ………………………………………………………2分 曲线2C 化为一般方程为:222(4)3x y r -+=,即2228163x y x r +-+=,………4分 化为极坐标方程为:228cos 1630r ρρθ-+-=.……………………….………5分 (2)由22244x y x r +-+=及2228163x y x r +-+=,消去2r ,得曲线3C 的直角坐标方程为2222x y x +-=. …………………………………7分 设直线l的参数方程为1,2x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),……………………………….…8分与2222x y x +-=联立得2213244t t t +-=,即220t t --=,………………………………………….…………………….9分 故121t t +=,1220t t =-<,∴121OA OB t t -=+=.………………………….………………………..…10分解法二:(1)同解法一;(2)由224cos 4r ρρθ-+=及228cos 1630r ρρθ-+-=,消去2r ,得曲线3C 的极坐标方程为22cos 20()ρρθρ--=∈R . ………..….……………7分 将θπ=3代入曲线3C 的极坐标方程,可得220ρρ--=,…………………………8分 故121ρρ+=,1220ρρ=-<,……………………………..………………………9分 故121OA OB ρρ-=+=.…………………………………..……………………10分23.选修45-:不等式选讲本小题考查绝对值不等式的解法与性质等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等. 满分10分.解法一:(1)1,x y +=|2||1|5x x ∴-++≤,…………………………………………………………..1分当2x ≥时,原不等式化为215x -≤,解得3x ≤,∴23x ≤≤;……………………………………………………………………2分当12x -≤<时,原不等式化为215x x -++≤,∴12x -≤<;…………………………………………………………..………3分当1x <-时,原不等式化为215x -+≤,解得2x ≥-,∴21x -≤<-;…………………………………………………………………4分综上,不等式的解集为{}23x x -≤≤..…………………………...…………5分(2)1,x y +=且0,0x y >>,2222222211()()(1)(1)x y x x y y x y x y +-+-∴--=⋅………………………………7分 222222xy y xy x x y ++=⋅ 222222()()y y x x x x y y=++ 225x y y x=++………………………………………………………………8分59≥=. 当且仅当12x y ==时,取“=”. ……………………………….………………10分 解法二:(1)同解法一;(2)1,x y +=且0,0x y >>,2222221111(1)(1)x y x y x y --∴--=⋅………………………………………………6分 22(1)(1)(1)(1)x x y y x y +-+-=⋅ 22(1)(1)x y y x x y ++=⋅………………………………………………..……………7分 1x y xy xy +++=…………………………………………………….……………8分 21xy =+2219()2x y ≥+=+ 当且仅当12x y ==时,取“=”. ……………………………….……………………10分。