S4-吸收系数测定-调试计算示例
射线的吸收与物质吸收系数的测定

实验九γ射线的吸收与物质吸收系数μ的测定实验目的1.了解γ射线与物质相互作用的特性2.了解窄束γ射线在物质中的吸收规律3.测量其在不同物质中的吸收系数实验原理一、γ射线与物质的作用γ射线是由于原子核由激发态到较低的激发态退激(而原子序数Z和质量数A均保持不变)的过程中产生的,包括:(1)α或β衰变的副产品(2)核反应(3)基态激发三部分,是处于激发态原子核损失能量的最显著方式;由于γ射线具不带电、静止质量为0等特点决定了它同物质的作用方式与带电粒子不同,带电粒子(α或β粒子等)在一连串的多次电离和激发事件中不断地损失其能量,而γ射线与物质的相互作用却在单次事件中完全吸收或散射。
光子γ(γ射线)通过物体时会与其中的下述带电体发生相互作用:1)被束缚在原子中的电子;2)自由电子(单个电子);3)库仑场(核或电子的);4)核子(单个核子或整个核)。
这些类型的相互作用可以导致:光子的完全吸收、弹性散射、非弹性散射三种效应中的一种(在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种)表现为:光电效应:低能γ光子所有的能量被一个束缚电子吸收,核电子将其能量的一部分用来克服原子对它的束缚,成为光电子;其余的能量则作为动能,发生光电效应。
(光电效应)康普顿效应:γ光子还可以被原子或单个电子散射,当γ光子的能量(约在1MeV)大大超过电子的结合能时,光子与核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化,发生康普顿效应。
(康普顿效应) 电子对效应:若入射光子的能量超过1.02MeV,γ光子在带电粒子的库仑场作用下则可能产生正、负电子对,产生的电子对总动能等于γ光子能量减去这两个电子的静止质量能(2mc2=1.022MeV) (电子对效应)从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原γ子发生光电效应、康普顿效应和电子对效应损失能量;γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为hν的光子就消失,或散射后能量改变、并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射γ束中移去。
5吸收系数

当溶质在气相中的浓度很低时
b)液相总传质系数间的关系
c)气相总吸收系数与液相总吸收系数的关系
3)各种分系数间的关系
5、传质速率方程的分析
1)溶解度很大时的易溶气体
——气膜控制
气膜控制 例:水吸收氨或HCl气体
液膜控制
例:水吸收氧、CO2
2)溶解度很小时的难溶气体
当H很小时, ——液膜控制
3)对于溶解度适中的气体吸收过程
2.5.2 高组成气体吸收
当混合气体中溶质含量大于 10%以上时,而且被吸收的 数量又较多,称为高组成气体的吸收。与低组成气体相 1 气液两相流量沿塔高显著发生变化,因而操作线方程 式和吸收速率方程式中的组成采用摩尔分率表示。 2 吸收过程伴有显著的热效应,使液体温度升高,为非 等温吸收过程。液体的升温使溶质溶解度降低,将直接 影响气液平衡关系。
目的在于提供与吸收液不相平衡的气相,使其与由塔顶 喷淋而下的吸收液进行逆流接触。这样在解吸推动力的 作用下,溶质将不断由液相传递至气相,塔底得到较纯 净的溶剂,塔顶则得到溶质组分与惰性气体或者蒸汽的
混合物。
采用惰性气体 ( 空气、 N2 、 CO2 等 ) 的解吸过程,适用于脱
除少量溶质以回收溶剂,一般难以同时得到纯净的溶质组
2.4 吸收系数
吸收系数是反映吸收过程物系及设备传质动力学特性的 参数,是设计计算的基本数据,其大小主要受物系的性 质、操作条件及设备结构等三方面的影响。由于影响因 素十分复杂,目前还无通用的计算方法和计算公式。一 般是针对具体的物系,在一定的操作条件和设备条件下
进行实验,将实验数据整理成相应的经验公式或准数关
在吸收塔内装置冷却元件。如板式塔可以在塔板上安全冷却
蛇管或在板间设置冷却器; 引出吸收剂到外部进行冷却; 采用边吸收边冷却得吸收装置; 采用大得喷淋密度。
化工原理8.5 吸收系数

Re G
deu0
伽利略准数 (Gallilio) 重力对流动的影响
Ga
gl3 2
2 L
二、计算气膜吸收系数的准数关联式
ShG ReG ScG
kG
PD RTp Bml
ReG ScG
•适用条件: ReG 2103 ~ 3.5104 ScG 0.6 ~ 2.5
P 101~ 303kPa
•湿壁塔:l为塔径 •填料塔:l为拉西环外径
三、计算液膜吸收系数的准数关联式
ShL 0.00595ReL 0.67 ScL 0.33 Ga 0.33
kL
0.00595
CD 'Байду номын сангаасcSml
ReL
0.67
ScL
0.33
Ga 0.33
qn,L
出塔气体组成 Y2
出塔液体组成 X1
3、吸收系数的计算
Z V (Y1 Y2 ) KY aYm
KY
a
V (Y1 Y2 Z Ym
)
GA VP Ym
VP Z GA V (Y1 Y2 )
二、膜吸收系数的测定
–要求:另一相的阻力可以忽略或可以推算
–例:用水吸收低浓度氨气
8.5.3 吸收系数的准数关联式
一、传质过程中常用的几个准数
施伍德准数(Sherwood)
ShG
kG
RTpBm p
l DAB
包含代求得吸收膜系数(Nu) ShL
施密特准数(Schmidt)
kL
csm c
l DA B
准数 反映物性的影响 (Pr) Sc D
吸收系数的测定[1]
![吸收系数的测定[1]](https://img.taocdn.com/s3/m/51a34882680203d8ce2f244a.png)
吸收系数的测定一、实验目的1、了解填料吸收塔的构造,流程及其操作;2、了解吸收剂进口条件(L,x2,t)的变化对操作结果的影响;3、掌握气相总体积吸收系数(K Y a)的测定方法。
二、实验原理:1、吸收塔的操作和调节吸收操作的最终结果是表现在气体出口组成y2或回收率Ф上,因此降低y2(或提高Ф)是操作调节的目标。
气体的进口条件(V,y1)是由前一工序决定的,吸收剂的进口条件(L,x2,t)是可控制和调节的。
(1)、吸收剂用量L的改变这是常用的调节方法,当气体流量V不变,L增加,吸收速率N A增加,溶质吸收量增加,那么Y2减小,吸收率增大。
当液相阻力较小(气膜控制)。
L增大,吸收总系数变化较小或基本不变,溶质吸收量增加主要是平均推动力增大而引起;当液相阻力较大(液膜控制)L增大,吸收总系数大幅度增大,而平均推动力可能减小,但总的结果是使吸收率增大。
(2)、吸收剂入口温度t温度降低使气体溶解度增大,相平衡常数m减小。
对气膜控制过程,过程阻力1/K y a≈1/k Y a 。
但平均推动力增大,吸收效果变好;而对液膜控制过程,过程阻力1/K Y a≈m/k X a将减小,平均推动力或许会减少,但总的结果是吸收效果变好,Y2减小。
(3)、进口浓度x2x2降低,使塔顶推动力增大,全塔推动力增大,有利于吸收。
这里有两种情况应注意(1)当L/V>m。
气液两相在塔顶,接近平衡时,L增大,即L/V增大并不能使Y2明显降低,这时降低x2是有效的。
(2)当L/V<m,用增大L的方法,对提高回收率,降低(L/V(L/VYYY2X2,X2 X1, X1 X2 X1 X1’(1) (L/V)>m (2) (L/V)<m气相总体积吸收系数的测定由吸收速率方程 N A =K Y A △Y m =K Y aV 填料△Y m 得 Yma K Y ∆=填料V N A式中K Y a ——气相总体积吸收系数,kmol/m 3hN A ——吸收速率,kmol/h , 可由N A =V (Y 1-Y 2)求算V ——kmolB/h ,惰性气体流量,可有空气流量计读数经换算求得。
填料吸收塔的操作和吸收系数的测定

因本实验采用的物系不仅遵循亨利定律,而且气 膜阻力可以不计,在此情况下,整个传质过程阻 力都集中于液膜,即属液膜控制过程,则液侧体 积传质膜系数等于液相体积传质总系数,即
表3(1)填料吸收塔传质实验数据表(一) 被吸收的气体: 纯CO2; 吸收剂:水; 塔内径:35mm 塔类型 吸收塔 Ø环 填料种类 填料尺寸 (m) 4x10 填料层高度 (m) 0.65 CO2转子流量计读数 m3/h 0.200 CO2转子流量计处温度 ℃ 25.6 流量计处CO2的体积流量 m3/h 0.156 水转子流量计读数 30.0 水流量 30.0 中和CO2用Ba(OH)2的浓度 M mol/l 0.1 中和CO2用Ba(OH)2的体积 ml 10 滴定用盐酸的浓度 M mol/l 0.1
15.60 19.40 10 25.6 1.637252 0.01529 0.00209 3.39322 3.4382 0.0251 0.0073
填料吸收塔的操作和吸收系数
的测定
史 玉 琳
二 o 一五 年 六 月
一、实验目的
1.了解填料吸收塔的结构、性能和特点,练习 并掌握填料塔操作方法;通过实验测定数据的 处理分析,加深对填料塔流体力学性能基本理 论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定 方法,练习对实验数据的处理分ห้องสมุดไป่ตู้。
二、实验内容 1.测定填料层压强降与操作气速的关系,确定 在一定液体喷淋量下的液泛气速。 2进行纯水吸收二氧化碳、空气解吸水中二氧化 碳的操作练习,同时测定填料塔液侧传质膜系数 和总传质系数。
三、实验原理: 气体通过填料层的压强降
液泛区
L3 > L2 > L1 L0 =
0
吸收系数的测定[1]
![吸收系数的测定[1]](https://img.taocdn.com/s3/m/51a34882680203d8ce2f244a.png)
吸收系数的测定一、实验目的1、了解填料吸收塔的构造,流程及其操作;2、了解吸收剂进口条件(L,x2,t)的变化对操作结果的影响;3、掌握气相总体积吸收系数(K Y a)的测定方法。
二、实验原理:1、吸收塔的操作和调节吸收操作的最终结果是表现在气体出口组成y2或回收率Ф上,因此降低y2(或提高Ф)是操作调节的目标。
气体的进口条件(V,y1)是由前一工序决定的,吸收剂的进口条件(L,x2,t)是可控制和调节的。
(1)、吸收剂用量L的改变这是常用的调节方法,当气体流量V不变,L增加,吸收速率N A增加,溶质吸收量增加,那么Y2减小,吸收率增大。
当液相阻力较小(气膜控制)。
L增大,吸收总系数变化较小或基本不变,溶质吸收量增加主要是平均推动力增大而引起;当液相阻力较大(液膜控制)L增大,吸收总系数大幅度增大,而平均推动力可能减小,但总的结果是使吸收率增大。
(2)、吸收剂入口温度t温度降低使气体溶解度增大,相平衡常数m减小。
对气膜控制过程,过程阻力1/K y a≈1/k Y a 。
但平均推动力增大,吸收效果变好;而对液膜控制过程,过程阻力1/K Y a≈m/k X a将减小,平均推动力或许会减少,但总的结果是吸收效果变好,Y2减小。
(3)、进口浓度x2x2降低,使塔顶推动力增大,全塔推动力增大,有利于吸收。
这里有两种情况应注意(1)当L/V>m。
气液两相在塔顶,接近平衡时,L增大,即L/V增大并不能使Y2明显降低,这时降低x2是有效的。
(2)当L/V<m,用增大L的方法,对提高回收率,降低(L/V(L/VYYY2X2,X2 X1, X1 X2 X1 X1’(1) (L/V)>m (2) (L/V)<m气相总体积吸收系数的测定由吸收速率方程 N A =K Y A △Y m =K Y aV 填料△Y m 得 Yma K Y ∆=填料V N A式中K Y a ——气相总体积吸收系数,kmol/m 3hN A ——吸收速率,kmol/h , 可由N A =V (Y 1-Y 2)求算V ——kmolB/h ,惰性气体流量,可有空气流量计读数经换算求得。
紫外吸收系数法计算公式

紫外吸收系数法计算公式
A=ECL C=A/EL
A为吸收度;T为透光率;E为吸收系数,采用的表示方法是(E1%1cm),其物理意义为当溶液浓度为1%(g/ml),液层厚度为1cm时的吸收度数值;C为100ml溶液中所含被测物质的重量(按干燥品或无水物计算),g;L为液层厚度,cm。
紫外-可见分光光度法是在190~800nm波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。
当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。
因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。
从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmin。
吸收系数的测定

吸收系数的测定一、实训目的1、 了解填料吸收装置的基本流程及设备结构;2、 掌握吸收系数的测定方法;3、 了解空塔气速和喷淋密度对总吸收系数的影响;4、 了解气体空塔流速与压强降的关系。
二、基本原理 根据传质速率方程:mY A Y K N ∆= 即;mY A Y F K F N G ∆==所以;mY Y F G K ∆=通过实验分别测定和计算(单位时间吸收的组分量)、(气液两相接触面积)、(平均传质推动力)的值,便可代入上式计算得吸收系数的值。
1、 单位时间吸收的组分量G (Kmol/h ))(21Y Y V G -=上式中:V(惰性气体流量)用空气转子流量计来测定;Y 1(进塔气体组成)可通过测定进塔时氨及空气流量来计算得到;Y 2(出塔气体组成)采用化学法进行尾气分析测定和计算得到。
2、 气液两相接触面积F(m 2)zD a aV F ⨯⨯==24π上式中:V —填料的总体积(m 3) Z —填料层高度(m) D —吸收塔的内径(m) a —有效比表面积(m 2/m 3)η/t a a =式中:a t —干填料的比表面积(m 2/m 3)η—填料的表面效率,可根据最小润湿分率查图表(参看教材)最小润湿分率=规定的最小润湿率操作的润湿率式中:填料的最小润湿分率=0.08m 3/m 2.h(规定的最少润湿率) 操作的润湿率=W/a t (m 3/m 2.h)式中:W —喷淋密度,每小时每平方米塔截面上的喷淋的液体量。
(塔截面积)(水的体积流量)水Ω=V W3、 平均传质推动力mY ∆本实验的吸收过程处于平衡线是直线的情况下,所以可用对数平均推动力法计算mY ∆。
**ln*)(*)(22112211Y Y Y Y Y Y Y Y Y m -----=∆上式中:X m mXY )1(1*-+=P Em =P=大气压+塔顶表压+1/2塔内压差 液相浓度5%以下时亨利系数与温度的关系:本实验中:X 1由公式)()(2121Y Y V X X L -=-计算,其中:X 2=04、 转子流量计的计算公式:1)实验中用的空气转子流量计是以20 o C,1atm 的空气为介质来标定刻度的,如果工作介质不是该状态下的空气,可用下式来换算刻度指示值:112212112Q T P T P Q Q ⨯==ρρ2)如果还需要将Q 值换算成标准状态(0 o C,1atm )下的体积Q,则代入下式计算:21210012002220T T P P P T Q T P T P Q Q ==3)如果测定的是其它气体,而且是非20 o C,1atm 状态空气下则代入下式计算:20121021120ρρT P T P Q Q =4)如果还需要将Q 值换算成标准状态下的值:2021102100120ρρT T P P P T Q Q =上式中:2010ρρ、分别表示20 o C,1atm 状态下标定气体和被测气体的密度。