word完整版向量法解决立体几何问题方法复习总结推荐文档
(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法平行垂直问题基础知识(1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面ABCD , 的中点, PA =AB =1, BC =2.(1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC.[证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立空A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 ,uuur uuur uuur1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),uuur∥AB ,即 EF ∥AB.又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB.uuur uuur uuur uuur(2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC.又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC ,直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4)1 uuur 1uuur F 0 , 1,2 ,EF = -2, 0, 0 ,PB =(1,0, uuuruuurE ,F 分别是 PC ,PD间直角坐标系如图所示,则DC =(1,0,0), AB =(1,0,0).uuur 1uuur uuur(1)因为 EF =- 2AB ,所以 EF所以平面PAD⊥平面PDC.使用空间向量方法证明线面平行时, 既可以证明直线的方向向量和平面内一条直线的方向向 量平行,然后根据线面平行的判定定理得到线面平行, 也可以证明直线的方向向量与平面的法向 量垂直;证明面面垂直既可以证明线线垂直, 然后使用判定定理进行判定, 也可以证明两个平面 的法向量垂直 .例 2、在直三棱柱 ABC-A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点 E 在线段 BB 1上,且 EB 1=1,D ,F ,G 分别为 CC 1,C 1B 1,C 1A 1的中点. 求证: (1)B 1D ⊥平面 ABD ;(2)平面 EGF ∥平面 ABD.证明: (1)以B 为坐标原点, BA 、BC 、BB 1所在的直线分别为 x 轴、 y 轴、z 轴建立空间直角坐标系,如图所示,则 B(0,0,0), D(0,2,2),B 1(0,0,4),设 BA =a ,则 A(a,0,0),uuur uuur uuuur 所以BA =(a,0,0),BD =(0,2,2), B 1D =(0,2,-2),uuuur uuur uuuur uuurB 1D ·BA =0, B 1D ·BD =0+4-4=0,即 B 1D ⊥BA ,B 1D ⊥BD.又 BA ∩BD =B ,因此 B 1D ⊥平面 ABD.a uuur a(2)由(1)知, E(0,0,3),G 2,1,4 ,F(0,1,4),则 EG = 2,1,1 , uuuur uuur uuuur uuurB 1D ·EG =0+2-2=0, B 1D ·EF =0+2-2=0,即 B 1D ⊥EG ,B 1D ⊥EF.又 EG ∩EF =E ,因此 B 1D ⊥平面 EGF. 结合 (1)可知平面 EGF ∥平面 ABD. 利用空间向量求空间角基础知识(1) 向量法求异面直线所成的角:若异面直线 a ,b 的方向向量分别为 a ,b ,异面直线所成的角为uuurEF =(0,1,1),|a ·b|. |a||b|.θ,则cos θ=|cos〈a,b〉|=(2) 向量法求线面所成的角:求出平面的法向量 n ,直线的方向向量 a ,设线面所成的角为 θ,则|n ·a|sin θ=|cos 〈n ,a 〉|=|n||a|. (3) 向量法求二面角:求出二面角θ为锐角,则 cos θ=|cos 〈n 1,n 2〉|=||n n 11|·|n n 22||; θ为钝角,则 cos θ=-|cos 〈 n 1,n 2〉|=- ||n n 11|·|n n 22||. 例 1、如图,在直三棱柱 A 1B 1C 1-ABC 中, AB ⊥AC ,AB =AC =2,A 1A = 4, 点D 是BC 的中点.(1) 求异面直线 A 1B 与 C 1D 所成角的余弦值; (2) 求平面 ADC 1与平面 ABA 1 所成二面角的正弦值. uuur(2)设平面 ADC 1 的法向量为 n 1=(x ,y ,z),因为 AD =(1,1,0), uuuurn 1·AC 1 =0,即 x +y = 0 且 y +2z =0,取 z =1,得 x = 2,y =- 2,所以, n 1= (2,-2,1)是平面 ADC 1 的一个法向量.取平面 ABA 1 的一个法向量为 n 2=(0,1,0).设平面 ADC 1 与平面 ABA 1 所成面角的大小为 θ.n 1·n 22 2 5由|cos θ|=|n 1||n 2| =9×1=3,得 sin θ=3 .5因此,平面 ADC 1 与平面 ABA 1所成二面角的正弦值为 3 .α-l -β的两个半平面 α与 β的法向量 n 1, n 2,若二面角 α-l - β所成的角若二面角 α-l - β所成的角[解] (1)以 A 为坐标原点,建立如图所示的空间直角坐标系 uuuur C(0,2,0), D (1,1,0),A 1(0,0,4), A-xyz ,则 A(0,0,0),B(2,0,0), uuuurC1(0,2,4),所以 A 1B =(2,0,-4),C 1D (1,-1, -4).uuuur uuuur 因为 cos〈 A 1B , C 1D 〉uuuur uuuur A 1B ·C 1D uuuur uuuur = =| A 1B ||C 1D | 20× 18183 10 10 所以异面直线 A 1B 与 C 1D 所成角的余弦值为31010.uuuur ACuuur = (0,2,4),所以 n 1·AD =例2、如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1) 证明:AB⊥A1C;(2) 若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.[解] (1)证明:取 AB 的中点 O ,连接 OC ,OA 1,A 1B.因为 CA =CB ,所以 OC ⊥AB.由于 AB =AA 1,∠BAA 1=60°,故 △AA 1B 为等边三角形,所以 OA 1⊥AB. 因为 OC ∩OA 1=O ,所以 AB ⊥平面 OA 1C. 又 A 1C? 平面 OA 1C ,故 AB ⊥A 1C.(2)由(1)知 OC ⊥AB ,OA 1⊥AB.又平面 ABC ⊥平面 AA 1B 1B ,交线为 AB , 所以 OC ⊥平面 AA 1B 1B ,故 OA ,OA 1,OC 两两相互垂直.uuur uuur以 O 为坐标原点, OA 的方向为 x 轴的正方向, |OA |为单位长,建立如图所示的空间直角坐标系 O-xyz. 由题设知 A (1,0,0),A 1(0, 3, 0),C (0,0, 3),B (-1,0,0). uuur uuuur uuuur则BC =(1,0, 3), BB 1 = AA 1 =(-1, 3,0),设 n =(x ,y , z)是平面 BB 1C 1C 的法向量,uuurn ·BC =0,x + 3z = 0, 则 uuuur 即可取 n =( 3,1,- 1).n ·BB 1 =0.- x + 3y =0.uuuuruuuur A 1C =- 3 , 3) .uuuur故 cos n , A 1Cn ·A 1C uuuur =|n|| A 1C |10 5所以 A 1C 与平面 BB 1C 1C 所成角的正弦值为 105(1) 运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2) 求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求.例3、如图,在四棱锥S-ABCD 中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD 上一点,AE=ED=3,SE⊥AD. (1)证明:平面SBE⊥平面SEC;(2)若SE=1,求直线CE 与平面SBC所成角的正弦值.解:(1)证明:∵平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,SE? 平面SAD,SE⊥ AD,∴SE⊥平面ABCD. ∵BE? 平面ABCD,∴SE⊥BE. ∵AB⊥ AD,AB∥CD,CD=3AB=3,AE=ED=3,∴∠AEB=30°,∠CED=60°. ∴∠BEC=90°,即BE⊥ CE. 又SE∩ CE=E,∴BE⊥平面SEC. ∵BE? 平面SBE,∴平面SBE⊥平面SEC.(2)由(1)知,直线ES,EB,EC两两垂直.如图,以E为原点,EB为x轴,EC为y轴,ES uuur为z 轴,建立空间直角坐标系.则E(0,0,0),C(0,2 3,0),S(0,0,1),B(2,0,0),所以CE =(0,-uuur uur2 3,0),CB =(2,- 2 3,0),CS=(0,-2 3,1).设平面SBC 的法向量为n =(x,y,z),uuurn·CB =0,2x-2 3y=0,则uur 即令y=1,得x=3,z=2 3,n·CS =0. -2 3y+z=0.则平面SBC的一个法向量为n =( 3,1,2 3).uuur设直线CE与平面SBC所成角的大小为θ,则sin θ=| n··C uu E ur |=14,|n| |·CE |1故直线CE与平面SBC所成角的正弦值为4.例4、如图是多面体ABC-A1B1C1 和它的三视图.=0,(1)线段 CC 1 上是否存在一点 E ,使 BE ⊥平面 A 1CC 1?若不存在,请说明理由,若存在,请 找出并证明;(2)求平面 C 1A 1C 与平面 A 1CA 夹角的余弦值.解: (1)由题意知 AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则 A(0,0,0),uuuur A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则 CC 1 =(-1,1,2),uuuur uuurA 1C =(0,-2,-2).设 E(x ,y ,z),则CE =(x ,y +2,z),uuuur uuur uuuurEC 1 =(-1-x ,- 1-y,2-z ).设 CE =λEC 1 (λ>0),uuuurA 1C 1 =(-1,- 1,0), x =- λ- λ,x则 y + 2=- λ- λ,y - λ -2-λ 则E 1+λ, 12+λ,2λ,1+λ,z =2λ-λ,z uuur 2+λBE = 1+λ, -2-λ 1+λ, 2λ 1+λuuu rBE 由 uuur uuuur A 1C1uuuur ·A 1C=0, 2+λ 2+λ 1+λ+1+λ=0,- 2-λ 2λ1+λ+12+λλ=0, 解得 λ=2,uuur uuuur所以线段CC1 上存在一点E,CE =2EC1 ,使BE⊥平面A1CC1.=0,uuuur m ·A 1C 1 = 0, (2)设平面 C 1A 1C 的法向量为 m =(x ,y ,z),则由 uuuurm ·A 1C = 0, 取 x =1,则 y =- 1, z =1.故 m =(1,-1,1),而平面 A 1CA 的一个法向量为 n =(1,0,0),则 cos 〈m ,n 〉=|m m ||n n |= 13= 33,故平面 C 1A 1C 与平面 A 1CA 夹角的余弦值为 33. 利用空间向量解决探索性问题例 1、如图 1,正△ ABC 的边长为 4,CD 是 AB 边上的高, E ,F 分别是 AC 和 BC 边的中点, 现将△ ABC 沿 CD 翻折成直二面角 A-DC-B(如图 2).(1)试判断直线 AB 与平面 DEF 的位置关系,并说明理由; (2)求二面角 E-DF-C 的余弦值;(3) 在线段 BC 上是否存在一点 P ,使AP ⊥DE ?如果存在,求出 B B C P 的值;如果不存在,请说 明理由.[解] (1)在△ABC 中,由 E ,F 分别是 AC ,BC 中点,得 EF ∥AB.又 AB?平面 DEF ,EF?平 面 DEF ,∴AB ∥平面 DEF.(2)以点 D 为坐标原点,以直线 DB ,DC ,DA 分别为 x 轴、y 轴、 z 轴,建立空间直角坐标系,则 A(0,0,2), B(2,0,0),C(0,2 3,0),E(0, 3,1),F(1,uuur uuur uuur3,0), DF =(1, 3,0), DE =(0, 3,1), DA =(0,0,2).uuur平面 CDF 的法向量为 DA =(0,0,2).设平面 EDF 的法向量为 n =(x , y ,z),-x -y =0, 得- 2y - 2z =uuurDF ·n =0,则 uuurDE ·n =0, x + 3y = 0, 即 取 n =(3,- 3, 3), 3y +z =0,uuur cos 〈 DA , n 〉uuur·=| D u D u AA ur ·||n n|= 721,所以二面角 E-DF-C 的余弦值为721.uuur uuur uuur 2 3(3)存在.设 P(s ,t,0),有 AP =(s ,t ,- 2),则 AP ·DE = 3t -2=0,∴t = 3 , uuur uuur uuur uuur又 BP =(s - 2,t,0), PC =(-s,2 3-t,0),∵BP ∥PC ,∴(s -2)(2 3-t)=-st ,2 3 4 uuur 1uuur ∴ 3s +t =2 3. 把 t = 23 3代入上式得 s = 34,∴BP =13BC,∴在线段BC 上存在点 P ,使 AP ⊥DE. 此时, B B C P =31.1 空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推 理,只需通过坐标运算进行判断 .2 解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为 点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于 运用这一方法 . 例 2、.如图所示,在直三棱柱 ABC-A 1B1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若 D 为 AA 1 中点,求证:平面 B 1CD ⊥平面 B 1C 1D ; (2)在 AA 1 上是否存在一点 D ,使得二面角 B 1-CD-C 1 的大小为 60°? 解: (1)证明:如图所示,以点 C 为原点,CA ,CB ,CC 1所在直线分别为 x ,y ,z 轴建立空间直角坐标系.则 C(0,0,0),A(1,0,0), B 1(0,2,2),C 1(0,0,2),D(1,0,1),空间向量在处理空间问题时具有很大的优越性, 能把“非运算”问题“运算”化, 即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系, 因而建立空间直角坐标系问题成为近几年试题新的命题点.、经典例题领悟好例 1、如图,四棱锥 P-ABCD 中, PA ⊥底面 ABCD ,BC =CD =2,AC =4,π∠ACB =∠ACD =3,F 为 PC 的中点, AF ⊥PB.(1)求 PA 的长;(2)求二面角 B-AF-D 的正弦值. (1)学审题 ——审条件之审视图形由条件知 AC ⊥BD ―建―系→DB ,AC 分别为 x ,y 轴―→写出 A ,B ,C ,D 坐标―P ―A ―⊥―面―A ―B ―C ―D →uuur uuur 设P 坐标P―F―=→CF 可得 F 坐标A ―F―⊥→PBAF ·PB =uuuur 即C 1B 1 uuuur uuur =(0,2,0), DC 1 =(-1,0,1),CD =(1,0,1). uuuur 由 C 1B 1 uuur uuuur uuurCD =(0,2,0) (1,0·,1)=0+0+0=0,得C 1B 1 ⊥CD ,即C 1B 1⊥CD. uuuur 由 DC 1 uuur uuuur uuurCD =(-1,0,1)(1,0·,1)=-1+0+1=0,得 DC 1 ⊥CD ,即 DC 1⊥CD. 又 DC 1∩C 1B 1=C 1,∴CD ⊥平面 B 1C 1D.又 CD? 平面 B 1CD ,∴平面 B 1CD ⊥平面 B 1C 1D.(2)存在.当 AD = 时,二面角 B 1-CD-C 1 的大小为 60°.理由如下: uuur uuur 设 AD =a ,则 D 点坐标为 (1,0,a), CD =(1,0,a),CB 1 =(0,2,2), 设平面 B 1CD 的法向量为 m =(x ,y , z),uuur m ·CB 1 = 02y +2z =0,则 uuur ?令 z =-1,得 m =(a,1,- 1).m ·CD =0 x +az = 0, uuur uuur|m ·CB |又∵CB =(0,2,0)为平面 C 1CD 的一个法向量,则 cos 60 =° uuur |m| |·CB |=a 2+ 21=2,2解得 a = 2(负值舍去 ),故 AD = 2= 2 AA 1.∴在AA 1 上存在一点 D 满足题意.空间直角坐标系建立的创新问题 (2) 学审题uuur由 (1) ―→ ADuuur AFuuur AB 的0―→得 P 坐标并求 PA 长.向量n―1,――n2―分―别―为―平―面――F ―A ―D 、――平―面―F ―A ―B―的→法向量n 1·u A u D ur =0且n 1·u A u F ur=0―→求得n 1·n 2―→求得夹 角余弦.[解] (1)如图,连接 BD 交AC 于O ,因为 BC =CD ,即△BCD 为等腰三角形,又 AC 平分∠ uuur uuur uuurBCD ,故 AC ⊥BD.以O 为坐标原点, OB ,OC , AP 的方向分别为 x 轴,y 轴, z 轴的正方向,ππ建立空间直角坐标系 O-xyz ,则 OC =CDcos 3= 1.而 AC =4,得 AO =AC -OC =3.又 OD =CDsin 3= 3,故 A (0,- 3,0),B ( 3,0,0),C (0,1,0),D (- 3,0,0).z uuur z因PA ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F0,-1,2.又AF = 0,2,2,uuurz 2PB =0,即 6-2=0,z =2 3(舍去- 2 3), uuur所以 |PA |=2 3.uuur uuur (2)由(1)知AD =(- 3,3,0), ABuuur uuurPB =( 3,3,- z ),AF ⊥PB ,故 uuur=( 3, 3,0), AF =(0,2, 3).设平面 FAD 的法n 1=(x 1,y 1,z 1),平面 FAB 的法向量为 n 2=(x 2,y 2,z 2), uuur由 n 1·AD = 0, uuur - 3x 1+ 3y 1= 0, AF = 0,得2y 1+ 3z 1= 0,因此可取 n 1=(3, 3,- 2).uuur由 n 2·AB = 0, uuur 3x 2+3y 2= 0,AF =0,得故可取 n 2=(3,- 3,2).从而法向量 n 1,n 2 的夹角的余弦值为 cos 〈n 1, n 2〉= n 1·n 2 1|n 1||·n 2|=8.故二面角B-AF-D 的正弦值为387.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系 本题利用 AC ⊥BD ,若图中存 在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系 .在没有明显的垂直关系 时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系, 注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称 .例 2、如图,在空间几何体中,平面 ACD ⊥平面 ABC ,AB =BC = CA =DA = DC =BE =2.BE 与平面 ABC 所成的角为 60°,且点 E 在平面 ABC 内的射影落在∠ ABC 的平分线上.(1)求证: DE ∥平面 ABC ; (2)求二面角 E-BC-A 的余弦值.解:证明: (1)易知△ABC ,△ACD 都是边长为 2的等边三角形,取 AC 的中点 O ,连接 BO ,DO ,则 BO ⊥AC ,DO ⊥AC. ∵平面 ACD ⊥平面 ABC , ∴DO ⊥平面 ABC.作 EF ⊥平面 ABC ,则 EF ∥DO. 根据题意,点 F 落在 BO 上,∴∠EBF =60 °, 易求得 EF =DO = 3,∴四边形DEFO 是平行四边形, DE ∥OF. ∵DE?平面 ABC ,OF? 平面 ABC ,∴DE ∥平面 ABC.(2)建立如图所示的空间直角坐标系 O-xyz ,可求得平面 ABC 的一个法向量为 n 1=(0,0,1). uuur uuur可得C (-1,0,0),B (0, 3,0),E (0, 3-1, 3),则CB =(1, 3,0), BE =(0,-1, 3)y ,z ) ·(0,- 1, 3)=0,可取 n 2=(-3, 3,1).设平面 BCE 的法向量为 n 2=(x , uuur y ,z ),则可得 n 2·CB =0, uuurn 2·BE =0,故 cos 〈n 1,n 2 〉n 1·n 1 13|n 1||·n 2|= 13 .又由图知, 所求二面角的平面角是锐角,即(x ,y ,z ) ·(1, 3,0)=0,(x ,故二面角 E-BC-A 的余弦值为 1133.专题训练1.如图所示,在多面体 ABCD -A 1B 1C 1D 1中,上、下两个底面 A 1B 1C 1D 1和 ABCD 互相平行, 且都是正方形, DD 1⊥底面 ABCD ,AB ∥A 1B 1,AB = 2A 1B 1=2DD 1=2a. (1)求异面直线 AB 1 与 DD 1所成角的余弦值; (2)已知 F 是 AD 的中点,求证: FB 1⊥平面 BCC 1B 1. 解:以 D 为原点, DA , DC ,DD 1所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角 坐标系,则 A (2a,0,0),B (2a,2a,0), C (0,2a,0),D 1(0,0,a ),F (a,0,0), uuuur uuuur uuuur uuuur (1)∵AB 1=(-a ,a ,a ),DD 1=(0,0,a ),∴cos 〈 AB 1 , DD 1 〉 B 1(a ,a ,a ),C 1(0,a ,a ). uuuur uuuur AB 1 ·DD 1 3 = uuuur uuuur = ,|AB 1 | ·|DD 1 | 33 所以异面直线 AB 1 与 DD 1 所成角的余弦值为3 .uuuur uuur uuur(2)证明:∵BB 1=(-a ,-a ,a ),BC =(-2a,0,0),FB 1=(0, uuurFB 1 uuur FB 1 uuuur BB 1 =0, uuur ∴FB 1⊥BB 1, FB 1⊥BC. ·BC = 0.a ,a), ∵BB 1∩ BC = B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱 ABC-A 1B 1C 1中,AA 1C 1C 是边长为 4的正方形,平面ABC ⊥平面 AA 1C 1C ,AB = 3, BC =5.(1)求证: AA 1⊥平面 ABC ; (2)求二面角 A 1-BC 1-B 1 的余弦值;BD(3)证明:在线段 BC 1上存在点 D ,使得 AD ⊥A 1B ,并求 BC1的值.解: (1)证明:因为四边形 AA 1C 1C 为正方形,所以 AA 1⊥AC.因为平面 ABC ⊥平面 AA 1C 1C ,且 AA 1 垂直于这两个平面的交线 AC ,所以 AA 1⊥平面ABC.(2)由(1)知 AA 1⊥AC , AA 1⊥AB. 由题知 AB =3,BC =5,AC =4,所以 AB ⊥AC.如图,以 A 为原点建立空间直角坐标系 A-xyz ,则 B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),uuuur A 1B =uuuur- 4), A 1C 1 =(4,0,0).设平面 A 1BC 1 的法向量为 n =(x ,y ,z),uuuurn ·A 1B =0, 3y -4z = 0,则 uuuur 即 令 z =3,则 x = 0,y =4,所以 n =(0,4,3).n ·A 1C 1 =0.4x = 0.由题知二面角 A 1-BC 1-B 1 为锐角,所以二面角 A 1-BC 1-B 1 的余弦值为 25uuur uuuur(3) 证明:设 D(x ,y ,z)是直线 BC 1 上一点,且 BD =λBC 1 .所以 (x ,y -3,z)=λ(4,- 3,4).解得 x =4λ,y =3-3λ,z =4λ.uuur uuur uuuur所以 AD =(4λ,3-3λ,4λ).由 AD ·A 1B =0,即 9-25λ=0,解得9因为25∈[0,1],所以在线段 BC 1 上存在点 D ,使得 AD ⊥A 1B.BD 9 此时,BC1=λ=25.3.如图(1),四边形 ABCD 中,E 是BC 的中点, DB =2,DC =1,BC = 5,AB =AD = 2.将图(1)沿直线 BD 折起,使得二面角 A-BD-C 为 60°,如图(2).(1)求证: AE ⊥平面 BDC ;(2)求直线 AC 与平面 ABD 所成角的余弦值.1解: (1)证明:取 BD 的中点F ,连接 EF ,AF ,则AF =1,EF =2,∠AFE =60°. 3. 2.同理可得,平面 B 1BC 1 的一个法向量为 m =(3,4,0).所以 cos 〈 n , m 〉 =n ·m=16. =|n||m|=25.169 λ=25.由余弦定理知 AE =21 2-2×1×12cos 60∵AE2+EF2=AF2,∴AE⊥EF.∵AB=AD,F 为BD 中点.∴BD⊥AF. 又BD=2,DC=1,BC=5,∴BD2+DC2=BC2,即BD⊥CD.又E为BC中点,EF∥CD,∴BD⊥EF.又EF∩AF=F,∴BD⊥平面AEF.又BD⊥ AE,∵BD∩ EF=F,∴AE⊥平面BDC.(2)以E 为原点建立如图所示的空间直角坐标系,则 A 0,0,23,11C -1,2,0 ,B 1,-2,0 ,D -1,-21,0 ,uuurDB =(2,0,0),uuur uuurDA =1,AC =-1,12,设平面ABD 的法向量为n=(x,y,z),uuurn·DB =0 由uuurn·DA =02x=0,得13x+2y+2 z=0,取z= 3 ,则y=-3,又∵n=(0,-3,3).uuuruuur n·AC 6∴cos〈n ,AC 〉=uuur=-.|n||AC | 4故直线AC 与平面ABD 所成角的余弦值为410.4.如图所示,在矩形ABCD 中,AB=3 5,AD=6,B D 是对角线,过点A 作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ ADE向上折起,使点D到点P的位置,且PB=41.(1)求证:PO⊥平面ABCE;(2)求二面角 E-AP-B 的余弦值.解: (1)证明:由已知得 AB =3 5,AD =6,∴BD =9. 在矩形 ABCD 中,∵AE ⊥BD ,DO AD∴Rt △AOD ∽Rt △BAD ,∴AD = BD ,∴DO = 4,∴BO = 5. 在△POB 中,PB = 41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB.又 PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面 ABCE.(2)∵BO =5,∴AO = AB 2- OB 2=2 5.以 O 为原点,建立如图所示的空间直角坐标系,则 P(0,0,4),A(2 5,0,0), B(0,5,0), uuuruuurPA =(2 5, 0,- 4), PB =(0,5,- 4).取 x =2 5得 n 1=(2 5,4,5).又 n 2=(0,1,0)为平面 AEP 的一个法向量, n 〉= n 1·n 2 4 4 61n2〉=|n 1| |·n 2|= 61×1= 61 ,5.如图,在四棱锥 P-ABCD 中,侧面 PAD ⊥底面 ABCD ,侧棱 PA =PD = 2,PA ⊥ PD ,底面 ABCD 为直角梯形,其中 BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为 AD 中点.(1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离;(3) 线段 PD 上是否存在一点 Q ,使得二面角 Q-AC-D 的余弦值为 36?若存在,求出 Q PQ D 的值; 若不存在,请说明理由.解: (1)在△PAD 中,PA =PD ,O 为 AD 中点,所以 PO ⊥AD.又侧面 PAD ⊥底面 ABCD ,平面 PAD ∩平面 ABCD = AD ,PO? 平面 PAD ,所以 PO ⊥平面 ABCD.又在直角梯形 ABCD 中,连接 OC ,易得 OC ⊥AD ,所以以 O 为坐标原点, OC ,OD ,OP 所在直线分别为 x ,y ,z 轴建立空间直角坐标系, 则 P(0,0,1),A(0,-1,0),B(1,-1,0),C(1,0,0),设 n 1=(x ,y ,z)为平面 APB 的法向量.则 uuurn 1·PA =0,uuurn 1·PB = 0,2 5x - 4z =0, 即 5y -4z =0. ∴cos 〈n 1,故二面角 E-AP-B 的余弦值为 4 6161D(0,1,0),uuur∴PB =(1,-1, uuur- 1),易证 OA ⊥平面 POC ,∴OA =(0,- 1,0)是平面 POC 的法向量, uuur uuur cos〈 PB ,OA 〉 uuur uuur Puu B ur ·O uu A ur = 33. ∴直线PB 与平面 POC 所成角的余弦值为 36. | PB ||OA | 3 3uuuruuur (2) PD =(0,1,- 1), CP =(-1,0,1).设平面 PDC 的一个法向量为 u =(x ,y ,z ), uuur CP =- x + z=0,uuurPD =y -z =0,取 z =1,得 u = (1,1,1).∴B 点到平面 PCD 的距离为 d = (3)假设存在一点 Q ,则设 uuur PQ = uuur uuur λPD (0<λ<1).∵PD =(0,1,-1),uuur uuur ∴PQ =(0,λ,- λ)= OQ -OP ,∴OQ =(0,λ,1-λ),∴Q(0,λ,1-λ). uuu r uuu r uuur设平面 CAQ 的一个法向量为 m =(x ,y ,z ),又 AC =(1,1,0),AQ =(0,λ+1,1-λ) uuur m ·AC =x +y = 0,则 uuur 取 z = λ+ 1,得 m = (1- λ, λ-1, λ+ 1), m ·AQ = λ+1 y + 1- λz =0. 又平面 CAD 的一个法向量为 n =(0,0,1),二面角 Q-AC-D 的余弦值为 36, 所以 |cos 〈m , n 〉 |=||m m ||n n ||= 36,得 3λ2-10λ+3=0,解得 λ=13或λ=3(舍), PQ 1 所以存在点 Q ,且 QD =2. 6.如图,在四棱锥 S-ABCD 中,底面 ABCD 是直角梯形,侧棱 SA ⊥底面 ABCD , AB 垂直于 AD 和 BC ,SA =AB =BC =2,AD =1.M 是棱 SB 的中点. (1)求证: AM ∥平面 SCD ; (2)求平面 SCD 与平面 SAB 所成二面角的余弦值; (3)设点 N 是直线 CD 上的动点, MN 与平面 SAB 所成的角为 θ,求 sin θ的最大值.解:(1)以点 A 为原点建立如图所示的空间直角坐标系, 则A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),uuuur uuur S(0,0,2),M(0,1,1).所以 AM =(0,1,1), SD = (1,0,uuur -2), CD=(-1,-2,0).设平面 SCD 的法向量是 n =(x ,y ,z ),uuurSD ·n =0, 则 uuurCD ·n =0, x -2z = 0, 即 令 z = 1,则 x =2,y =- 1, -x -2y =0. uuuur uuuur于是 n =(2,-1,1).∵AM ·n =0,∴AM ⊥n.又AM?平面 SCD ,∴AM∥平面SCD.(2)易知平面SAB的一个法向量为n1=(1,0,0).设平面SCD 与平面SAB所成的n1·n 1,0,0 ·2,-1,1 2 6 6 则|cos φ|=|n1| ·|n| =1·6=1·6=3 ,即cos φ=3 .∴平面SCD 与平面SAB所成二面角的余弦值为36.uuuur(3) 设N(x,2x-2,0)(x∈[1,2]) ,则MN =(x,2x-3,-1).又平面SAB 的一个法向量为n1=(1,0,0),7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠ FAB=∠ DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;(2)求二面角F-CD-A 的余弦值.解:(1)证明:由已知得,BE∥AF,BC∥AD,BE∩BC=B,AD∩AF=A,∴平面BCE∥平面ADF. 设平面DFC∩平面BCE=l,则l过点 C.∵平面BCE∥平面ADF,平面DFC∩平面BCE=l,平面DFC ∩平面ADF =DF.∴DF∥l,即在平面BCE上一定存在过点C的直线l,使得DF∥l.(2)∵FA⊥AB,FA⊥CD,AB与CD 相交,∴FA⊥平面ABCD.故以A为原点,AD,AB,AF分别为x轴,y轴,z轴建立空间直角坐标系,如图.由已知uuur uuur 得,D(1,0,0),C(2,2,0),F(0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x,y,z),面角为φ,∴sin θ=x,2x-3,-1 ·1,0,x2+2x-3 2+- 1 2·1x-12x+101·x357)max=110 x1 2-12 x1+5则 n =(2,-1,1),不妨设平面 ABCD 的一个法向量为 m =(0,0,1).m ·n 1 6∴cos 〈m , n 〉=|m||n|= 6= 6,由于二面角 F-CD-A 为锐角,∴二面角 F-CD-A 的余弦值为 66.8、.如图,在四棱锥 P-ABCD 中,PD ⊥平面 ABCD ,四边形 ABCD 是菱形,AC =2,BD =2 3, E 是 PB 上任意一点. (1)求证: AC ⊥DE ;(2)已知二面角 A-PB-D 的余弦值为 515,若E 为PB 的中点,求EC 与平面 PAB 所成角的正弦值. 解: (1)证明:∵PD ⊥平面 ABCD ,AC? 平面 ABCD ,∴PD ⊥AC , ∵四边形 ABCD 是菱形,∴BD ⊥AC ,又 BD ∩PD =D ,∴AC ⊥平面 PBD ,平面 PBD ,∴AC ⊥DE.(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面 ABCD ,分别以 OA ,OB ,OE 所在直线为 x 轴,y 轴, z 轴建立空间直角坐标系,设 PD =t ,则 A (1,0,0),B (0, 3,0),C(-1,0,0),E 0,0,2t ,P (0, uuur uuur- 3,t ), AB = (-1, 3,0), AP =(-1,- 3,t ).由(1)知,平面 PBD 的一个法向量为 n 1=(1,0,0),设平面 PAB 的法向量为 n 2=(x ,y ,z ),则设 EC 与平面 PAB 所成的角为 θ,∵EC =(-1,0,- 3), n 2=( 3,1,1),15面角 A-PB-D 的余弦值为 5 ,则 |cos 〈n 1,n ·DF =0, 则 uuur n ·DC=0x =2z ,不妨设 z =1.x =-2y , 312= 515,解得 t =2 3或 t =- 2 3(舍去), 4+ 2m ·n uuur n 2·AB =令 y = 1,得 n 2= 3,1,2 3根据 uuurn 2·AP =则sin θ=|cos〈EC ,n2〉=,∴EC 与平面PAB 所成角的正弦值为2× 5 5 519、如图 1,A ,D 分别是矩形 A 1BCD 1上的点, AB =2AA 1=2AD =2,DC =2DD 1,把四边形 A 1ADD 1沿 AD 折叠,使其与平面 ABCD 垂直,如图 2所示,连接 A 1B ,D 1C 得几何体 ABA 1-DCD 1.(1)当点 E 在棱 AB 上移动时,证明: D 1E ⊥A 1D ;π(2)在棱 AB 上是否存在点 E ,使二面角 D 1-EC-D 的平面角为 6?若存在,求出 AE 的长;若不存在,请说明理由.解: (1)证明,如图,以点 D 为坐标原点, DA ,DC ,DD 1所在直线为x 轴,y 轴, z 轴建立空间直角坐标系 D-xyz ,则 D(0,0,0),A(1,0,0), C(0,2,0),A 1(1,0,1),D 1(0,0,1).设 E(1,t,0),uuuur uuuur uuuur A 1D =(- 1,0,- 1),∴D 1 E ·A 1D =1×(-1)+t ×0+(-1)×(-1)=0,∴D 1E ⊥A 1D. uuur(2)假设存在符合条件的点 E.设平面 D 1EC 的法向量为 n =(x ,y ,z),由(1)知EC =(-1,2-t,0),uuurn ·EC =0,- x + 2-t y = 0, 1 1则 uuuur 得令 y =21,则 x =1- 21t ,z =1,n ·D 1E = 0x +ty -z =0, 2 2uuuur 显然平面 ECD 的一个法向量为 DD 1 =(0,0,1), uuuur|n ·DD 1 | =uuuur =|n||DD 1 |uuuur则D 1E =(1, t ,- 11 n = 1-2t ,2,1是平面 D 1EC 的一个法向量,uuuur则 cos 〈n , π31 1=cos 6,解得 t = 2- 3 (0≤t ≤2). 1-21t2+41+1故存在点E,当AE=2-π面角D1-EC-D 的平面角为6.1。
向量法解决立体几何问题总结(一)

向量法解决立体几何问题总结(一)向量法解决立体几何问题前言立体几何问题在数学中起到重要的作用,理解和解决立体几何问题对于提升数学思维和解决实际问题都有着积极的影响。
传统的解决方法包括使用平面几何、几何画法等,但这些方法在处理复杂的立体几何问题时可能面临一些困难。
向量法作为一种新的解决方法,在解决立体几何问题方面具有独特的优势和应用空间。
正文1. 什么是向量法向量法是一种几何运算方法,通过定义和运算向量的方式,对立体几何问题进行求解。
向量法帮助我们将几何问题转换为向量问题,进而使用向量的性质和运算来解决。
在向量法中,我们可以通过坐标表示向量,进行向量加减法、数量乘法、点乘、叉乘等运算。
2. 向量法解决立体几何问题的优势•空间直观:向量法将立体几何问题转化为向量问题,使得问题的空间特性更加直观可见。
通过绘制向量图形,我们可以更好地理解问题,有助于从几何角度进行分析。
•简化问题:通过向量法,我们可以将复杂的立体几何问题简化为向量运算问题,减少了繁琐的计算步骤和猜测过程,提高了问题解决的效率。
•统一性:向量法具有统一的运算法则和性质,使得不同类型的立体几何问题可以采用相似的解决思路和方法。
这为解决立体几何问题提供了一种通用的框架,提升了问题解决的一致性和可重复性。
3. 向量法解决立体几何问题的应用案例•平面与直线交点:通过将平面和直线的方程转化为向量形式,可以求得它们的交点。
这样的应用可以用于计算平面与光线的交点,进而用于光线追踪、计算机图形学等领域。
•空间线段位置关系:通过向量的数量乘法和点乘运算,可以判断两个空间线段之间的位置关系,如重叠、相交、平行等。
这样的应用可以用于计算机辅助设计、机器人运动规划等领域。
•图形投影:通过向量的点乘运算,可以求得一个图形在另一个图形上的投影。
这样的应用可以用于计算机图形学、建筑设计等领域。
结尾向量法作为一种新的解决立体几何问题的方法,在数学和工程领域都有着广泛的应用。
向量法解立体几何题的总结(免费版)

向量法解立体几何题的总结一、基本工具1.数量积:cos a b a b θ⋅=2.射影公式:向量a 在b 上的射影为a b b⋅ 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A -4.平面的法向量(略)二、考点及对策高考题主要围绕点线面体之间的关系与度量展开,具体如下:1. 关系1.1平行关系1.1.1线线平行⇔两线的方向向量平行1.1.2线面平行⇔线的方向向量与面的法向量垂直1.1.3面面平行⇔两面的法向量平行1.2垂直关系1.2.1线线垂直(共面与异面)⇔两线的方向向量垂直1.2.2线面垂直⇔线与面的法向量平行1.2.3面面垂直⇔两面的法向量垂直1.4共面与异面关系判断直线AB 与CD 是否异面:Step1求两直线的公共法向量n ;Step2判断AC (或BD )是否与n 垂直;Step3若AC (或BD )与n 垂直,则两直线共面;否则,两直线异面.2. 度量2.1距离2.1.1点点距离点()111,,P x y z 与()222,,Q x y z的距离为PQ = 2.1.2点线距离(平面上)求点()00,P x y 到直线:l 0Ax By C ++=的距离:Step1在直线上取一点(),Q x y ;Step2向量PQ 在法向量(),n A B =上的射影PQ n n ⋅P 到l 的距离.2.1.3点面距离求点()00,P x y 到平面α的距离: step1 在平面α上去一点(),Q x y ,得向量PQ ;step2 计算平面α的法向量n ;step3计算PQ 在α上的射影,即为点P 到面α的距离.2.1.4线线距离(共面与异面)2.1.4.1共面直线距离转化为点线距离2.1.4.2异面直线距离求异面直线1l 与2l 的距离:Step1计算两异面直线的公共法向量n ;Step2在异面直线1l 与2l 上分别取一点1P 与2P ,得12PP; Step3计算12PP 在n 上的射影,即为异面直线1l 与2l 的距离. 2.1.5线面距离转化为点面距离2.1.6面面距离转化为点面距离2.2夹角2.2.1线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角2.2.2线面夹角求线面夹角的步骤:Step1先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角;Step2再求其余角,即是线面的夹角.2.2.3面面夹角(二面角)若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.2.3面积与体积略。
高中数学立体几何向量法归纳共44页文档

6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
拉
6、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
高中数学:向量法解立体几何总结

高中数学:向量法解立体几何总结向量法解立体几何1.直线的方向向量和平面的法向量⑴.直线的方向向量:若a、b是直线l上的任意两点,则ab为直线l的一个方向向量;与ab平行的任意非零向量也是直线l的方向向量.(2)平面法向量:如果向量n的直线垂直于平面?,那么把这个向量称为垂直于平面的向量?,记录为n??,如果n??,那么向量n叫做平面?的法向量.(3)平面法向量的计算方法(待定系数法):①建立适当的坐标系.② 设定飞机?的法向量是n?(x,y,z)。
③求出平面内两个不共线向量的坐标a?(a1,a2,a3),b?(b1,b2,b3).?? NA.0④ 根据法向量的定义建立方程??n?b?0⑤解方程组,取其中一组解,即得平面?的法向量.2.使用向量法确定空间中的平行关系⑴线线平行。
设直线l1,l2的方向向量分别是a、b,则要证明l1∥l2,只需证明a∥b,即A.kb(k?r)。
⑵线面平行。
设直线l的方向向量是a,平面?的法向量是u,则要证明l∥?,只需证明A.u、 A?U0⑶面面平行。
若平面?的法向量为u,平面?的法向量为v,要证?∥?,只需证u∥v,即证u??v.3.用矢量法确定空间的垂直关系⑴线线垂直。
设直线l1,l2的方向向量分别是a、b,则要证明l1?l2,只需证明a?b,即A.B0⑵线面垂直① (方法1)让线l的方向向量为平面?如果法向量是u,那么l??,只要证明你是个“u”,即a??U②(法二)设直线l的方向向量是a,平面?内的两个相交向量分别为m、n,若A.M0,那么我A.N(3)面对面垂直。
如果是飞机?的法向量是u,平面?的法向量是V,需要证明吗,只是一张证书?v、即时证明你?五、04、利用向量求空间角⑴求异面直线所成的角已知a和B是两条不同的平面直线,a,C和B,D分别是a和B上的任意两点,a和B 形成的角度是?,则cos??ac?bdacbd.(2)求出直线和平面之间的角度求法:设直线l的方向向量为a,平面?的法向量为u,直线与平面所成的角为?,a与u的夹角为?,则?为?的余角或?的补角剩下的就是:罪??余弦??(3)求二面角a?uau.二面角的平面角是指二面角的平面角??L在任意边上取一个点o,分别在两个半平面上做射线Ao?l、波?l、然后呢?AOB是二面角??L平面角如图:Abolboa解决方案:设置二面角??L两个半平面的法向量分别为m和N,然后让m和N的夹角为?,二面角??L平面角是?,二面角?是M和N的夹角吗?还是根据具体图形确定其辅助角度?锐角或钝角:如果?是锐角,则cos??cos??m?nmn,即??arccosm?nmn;MN如果是钝角,那么cos余弦,那是??阿卡斯mn?锰??MN5。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
高考数学总复习教案新课程改革考点高分专用word版立体几何中的向量方法

立体几何中的向量方法ZHI SHI SHU LI 知识梳理 ) 1.两个重要的向量 (1)直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有无数个. (2)平面的法向量直线l ⊥平面α,取直线l 的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量. 2.空间位置关系的向量表示3.两条异面直线所成角的求法设两条异面直线a ,b 的方向向量分别为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a ||b |(其中φ为异面直线a ,b 所成的角). 4.直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n ·e ||n ||e |.5.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=AB →,CD →.(2)如图②③,n 1,n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=cosn 1,n 2,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).6.利用空间向量求距离(1)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为d =|AB →·n ||n |.(2)线面距、面面距均可转化为点面距进行求解.ZHONG YAO JIE LUN重要结论) 1.直线的方向向量的确定:l 是空间一直线,A ,B 是l 上任意两点,则AB →及与AB →平行的非零向量均为直线l 的方向向量.2.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.SHUANG JI ZI CE 双基自测 )1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( C ) A .45°B .135°C .45°或135°D .90°[解析] cosm ,n=m ·n |m |·|n |=12=22,∴m ,n =45°.∴二面角为45°或135°.2.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是( B )A .45°B .60°C .90°D .120°[解析] 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,∴C 1(2,0,2),E (0,1,0),F (0,0,1). ∴EF →=(0,-1,1),BC 1→=(2,0,2). ∴EF →·BC 1→=2,记EF →,BC 1所成角为θ. ∴cos θ=22×22=12.∴EF 和BC 1所成角为60°.3.在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( C ) A .15B .255C .55D .25[解析] 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (12,0,0),E (12,12,0),F (0,12,1),P A →=(0,0,-2),DE →=(0,12,0),DF →=(-12,12,1).设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0,取z =1,则n =(2,0,1),设P A 与平面DEF 所成的角为θ, 则sin θ=|P A →·n ||P A →||n |=55,∴P A 与平面DEF 所成角的正弦值为55.故选C . 4.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 10[解析] 建立坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2). BC 1→=(-1,0,2),AE →=(-1,2,1), cosBC 1→,AE →=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010. 5.如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是π6.[解析] 分别取AC 、A 1C 1的中点D 、D 1,连接BD ,D 1D ,易知D 1D ⊥平面ABC ,且BD ⊥AC ,故以D 为坐标原点,AC 、DB 、DD 1所成的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系. 易知B (0,32,0),C 1(-12,0,2),∴C 1B →=(12,32,-2),设BC 1与侧面ACC 1A 1所成的角为θ, ∵平面ACC 1A 1的一个法向量为n =(0,1,0), ∴sin θ=|C 1B →·n |C 1B →|·|n ||=323×1=12,∴θ=π6.考点1 利用向量证明空间的平行与垂直——师生共研例1 如图所示,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .[解析] (1)如图,建立空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4),D (2,0,2),所以DE →=(-2,4,0).易知平面ABC 的一个法向量为AA 1→=(0,0,4), 因为DE →·AA 1→=0,∴DE →⊥AA 1→,又DE ⊄平面ABC , 所以DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). 因为B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0, 所以B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF . 又AF ∩FE =F ,所以B 1F ⊥平面AEF .名师点拨 ☞利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. 〔变式训练1〕如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)求证:平面A 1B 1D ⊥平面ABD ; (2)求证:平面EGF ∥平面ABD .[证明] 以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则B (0,0,0),D (0,2,2),B 1(0,0,4),E (0,0,3),F (0,1,4).设BA =a ,则A (a,0,0),G (a2,1,4),A 1(a,0,4).(1)因为BA →=(a,0,0),BD →=(0,2,2),B 1D →=(0,2,-2), 所以B 1D →·BA →=0,B 1D →·BD →=0.所以B 1D →⊥BA →,B 1D →⊥BD →,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,所以B 1D ⊥平面ABD .因为B 1D ⊂平面A 1B 1D ,所以平面A 1B 1D ⊥平面ABD . (2)因为EG →=(a 2,1,1),EF =(0,1,1),B 1D →=(0,2,-2),所以B 1D →·EG →=0,B 1D →·EF →=0. 所以B 1D ⊥EG ,B 1D ⊥EF .因为EG ∩EF =E ,所以B 1D ⊥平面EGF .又由(1)知B 1D ⊥平面ABD ,所以平面EGF ∥平面ABD .考点2 利用向量求空间的角——多维探究角度1 异面直线所成的角例2 (2018·江苏高考)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.[解析] 如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1, 则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB →,OC →,OO 1→}为基底,建立空间直角坐标系O -xyz .因为AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P (32,-12,2). 从而BP →=(-32,-12,2),AC 1→=(0,2,2).故|cosBP →,AC 1→|=|BP →·AC 1→||BP →|·|AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以Q (32,12,0),因此AQ →=(32,32,0),AC 1→=(0,2,2),CC 1→=(0,0,2). 设n =(x ,y ,z )为平面AQC 1的一个法向量, 则⎩⎪⎨⎪⎧AQ →·n =0,AC 1→·n =0,即⎩⎪⎨⎪⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成角为θ, 则sin θ=|cosCC 1→,n|=|CC 1→·n ||CC 1→|·|n |=25×2=55,所以直线CC 1与平面AQC 1所成角的正弦值为55. 角度2 线面角例3(2018·课标Ⅱ,20)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. [解析] (1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的法向量OB →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则AM →=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n ,AM →·n =0得⎩⎪⎨⎪⎧2y +23z =0,ax +(4-a )y =0, 可取n =(3(a -4),3a ,-a ), 所以cosOB →,n=23(a -4)23(a -4)2+3a 2+a2.由已知可得|cos OB →,n|=32. 所以23|a -4|23(a -4)2+3a 2+a 2=32.解得a =-4(舍去)或a =43.所以n=(-833,433,-43).又PC→=(0,2,-23),所以cos PC→,n=34.所以PC与平面P AM所成角的正弦值为34.角度3二面角例4如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.[解析](1)在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,因为BE∩EF=E,所以AC⊥EF.因为AB=BC,所以AC⊥BE.所以AC⊥平面BEF.(2)由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1). 所以BC →=(-1,-2,0),BD →=(1,-2,1). 设平面BCD 的法向量为n =(x 0,y 0,z 0),则 ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,即⎩⎪⎨⎪⎧x 0+2y 0=0,x 0-2y 0+z 0=0.令y 0=-1,则x 0=2,z 0=-4. 于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cosn ,EB →=n ·EB →|n ||EB →|=-2121.由题知二面角B -CD -C 1为钝角, 所以其余弦值为-2121. (3)由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1). 因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.名师点拨 ☞求空间角时要注意的问题(1)求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角范围为(0,π2].(2)求直线与平面所成角时,注意求出两向量夹角的余弦值的绝对值应为线面角的正弦值.(3)求二面角时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与两法向量n1,n2的夹角是相等,还是互补.〔变式训练2〕(1)(角度1,2)(2019·山东模拟)如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.①求证:BD⊥平面ACFE;②当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成的角的余弦值大小.(2)(角度2,3)(2017·北京高考)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面P AD ⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.①求证:M为PB的中点;②求二面角B-PD-A的大小;③求直线MC与平面BDP所成角的正弦值.[解析](1)①∵四边形ABCD是菱形,∴BD⊥AC.∵AE⊥平面ABCD,BD⊂平面ABCD,∴BD⊥AE.∵AC∩AE=A,∴BD⊥平面ACFE.②以O为原点,OA→,OB→的方向为x轴,y轴正方向,过O且平行于CF的直线为z轴(向上为正方向),建立空间直角坐标系,则B(0,3,0),D(0,-3,0),E(1,0,2),F(-1,0,→=(-1,0,a).a)(a>0),OF设平面EBD的法向量为n=(x,y,z),则有⎩⎪⎨⎪⎧n ·OB →=0n ·OE →=0,即⎩⎪⎨⎪⎧3y =0x +2z =0,令z =1,则n =(-2,0,1), 由题意得sin45°=|cos OF →,n|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22,解得a =3或-13. 由a >0,得a =3,OF →=(-1,0,3),BE →=(1,-3,2), cosOF →,BE →=-1+610×8=54,故异面直线OF 与BE 所成的角的余弦值为54. (2)①如图1,设AC ,BD 的交点为E ,连接ME .因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为ABCD 是正方形, 所以E 为BD 的中点. 所以M 为PB 的中点.②取AD 的中点O ,连接OP ,OE ,如图2所示. 因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为ABCD 是正方形,所以OE ⊥AD .如图2建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2). 设平面BDP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎪⎨⎪⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z = 2.于是n =(1,1,2). 平面P AD 的法向量为p =(0,1,0). 所以cos 〈n ,p 〉=n·p |n||p|=12.由题知二面角B -PD -A 为锐角, 所以它的大小为π3.③由题意知M (-1,2,22),C (2,4,0),MC →=(3,2,-22).设直线MC 与平面BDP 所成角为α,则sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269.所以直线MC 与平面BDP 所成角的正弦值为269.考点3 利用向量求空间的距离——师生共研例5 如图,平面P AD ⊥平面ABCD ,四边形ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.(1)求证:平面EFG ⊥平面P AB ;(2)求点A 到平面EFG 的距离.[解析] 如图,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:因为EF →=(0,1,0), AP →=(0,0,2),AB →=(2,0,0),所以EF →·AP →=0×0+1×0+0×2=0, EF →·AB →=0×2+1×0+0×0=0, 所以EF ⊥AP ,EF ⊥AB . 又因为AP ,AB ⊂平面P AB , 且P A ∩AB =A ,所以EF ⊥平面P AB . 又EF ⊂平面EFG , 所以平面EFG ⊥平面P AB .(2)设平面EFG 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=(x ,y ,z )·(0,1,0)=0,n ·EG →=(x ,y ,z )·(1,2,-1)=0,所以⎩⎪⎨⎪⎧y =0,x +2y -z =0.取n =(1,0,1),又AE →=(0,0,1),所以点A 到平面EFG 的距离d =|AE →·n ||n |=12=22.名师点拨 ☞(1)空间中两点间的距离的求法两点间的距离就是以这两点为端点的向量的模.因此,要求两点间的距离除了使用距离公式外,还可转化为求向量的模.(2)求点P 到平面α的距离的三个步骤 ①在平面α内取一点A ,确定向量P A →的坐标. ②确定平面α的法向量n . ③代入公式d =|P A →·n ||n |求解.提醒:用向量法求点到平面的距离关键是确定平面法向量. 〔变式训练3〕如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点. (1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积. (2)求证:DM ⊥平面ACE .[解析] (1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0,∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2). AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .利用向量解决位置探究型问题例6 (2018·天津高考)如图,AD ∥BC 且AD =2BC ,AD ⊥CD ,EG ∥AD 且EG =AD ,CD ∥FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2. (1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E -BC -F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.[解析] 依题意,可以建立以D 为原点,分别以DA →,DC →,DG →的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC →=(0,2,0),DE →=(2,0,2). 设n 0=(x ,y ,z )为平面CDE 的法向量, 则⎩⎪⎨⎪⎧n 0·DC →=0,n 0·DE →=0,即⎩⎪⎨⎪⎧2y =0,2x +2z =0,不妨令z =-1,可得n 0=(1,0,-1).又MN →=(1,-32,1),可得MN →·n 0=0,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC →=(-1,0,0),BE →=(1,-2,2),CF →=(0,-1,2). 设n =(x ,y ,z )为平面BCE 的法向量, 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x =0,x -2y +2z =0,不妨令z =1,可得n =(0,1,1). 设m =(x ,y ,z )为平面BCF 的法向量, 则⎩⎪⎨⎪⎧m ·BC →=0,m ·CF →=0,即⎩⎪⎨⎪⎧-x =0,-y +2z =0,不妨令z =1,可得m =(0,2,1). 因此有cosm ,n=m ·n |m ||n |=31010,于是sin m ,n=1010. 所以,二面角E -BC -F 的正弦值为1010. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP →=(-1,-2,h ). 易知,DC →=(0,2,0)为平面ADGE 的一个法向量,故 |cosBP →,DC →|=|BP →·DC →||BP →||DC →|=2h 2+5, 由题意,可得2h 2+5=sin60°=32,解得h =33∈[0,2]. 所以,线段DP 的长为33.名师点拨 ☞对于位置探究型问题,要善于根据点的位置结合问题的有关定理灵活设出未知量,使未知数个数尽量少,综合已知和结论构造等式求解. 〔变式训练4〕在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是正方形,且BC =BB 1=2,∠A 1AB =∠A 1AD =60°.(1)求证:BD ⊥CC 1;(2)若动点E 在棱C 1D 1上,试确定点E 的位置,使得直线DE 与平面BDB 1所成角的正弦值为714. [解析] (1)证明:连接A 1B ,A 1D ,AC ,因为AB =AA 1=AD ,∠A 1AB =∠A 1AD =60°,所以△A 1AB 和△A 1AD 均为正三角形,于是A 1B =A 1D ,设AC 与BD 的交点为O ,连接A 1O ,则A 1O ⊥BD ,又四边形ABCD 是正方形,所以AC ⊥BD ,而A 1O ∩AC =O ,所以BD ⊥平面A 1AC .又AA 1⊂平面A 1AC ,所以BD ⊥AA 1,又CC 1∥AA 1,所以BD ⊥CC 1.(2)由A 1B =A 1D =2,及BD =2AB =2,知A 1B ⊥A 1D ,于是A 1O =12BD =22AA 1, 且AO =12BD =22AA 1,从而A 1O ⊥AO , 结合A 1O ⊥BD ,AO ∩BD =O ,得A 1O ⊥底面ABCD ,所以OA ,OB ,OA 1两两垂直.如图,以点O 为坐标原点,OA →的方向为x 轴的正方向,建立空间直角坐标系O -xyz .则A (1,0,0),B (0,1,0),D (0,-1,0),A 1(0,0,1),C (-1,0,0),DB →=(0,2,0),BB 1→=AA 1→=(-1,0,1),D 1C 1→=DC →=(-1,1,0),由DD 1→=AA 1→=(-1,0,1),易求得D 1(-1,-1,1). 设D 1E →=λD 1C 1→(λ∈[0,1]),则(x E +1,y E +1,z E -1)=λ(-1,1,0),即E (-λ-1,λ-1,1),所以DE →=(-λ-1,λ,1).设平面B 1BD 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ·DB →=0,n ·BB 1→=0,得⎩⎪⎨⎪⎧y =0,-x +z =0, 令x =1,得n =(1,0,1),设直线DE 与平面BDB 1所成角为θ,则sin θ=|cosDE →,n |=|1×(-λ-1)+0×λ+1×1|2×λ2+(1+λ)2+1 =714, 解得λ=12或λ=-13(舍去), 所以当E 为D 1C 1的中点时,直线DE 与平面BDB 1所成角的正弦值为714.。
(word完整版)空间向量与立体几何高考冲刺总复习(文科)

空间向量与立体几何高考冲刺总复习(文科)【考点梳理】考点一、空间几何体的表面积和体积1、旋转体的表面积2、几何体的体积公式(1)设棱(圆)柱的底面积为S ,高为h ,则体积V=Sh;(2)设棱(圆)锥的底面积为S ,高为h ,则体积V=13Sh;(3)设棱(圆)台的上、下底面积分别为S’,S ,高为h ,则体积V=13('S )h;(4)设球半径为R ,则球的体积V=43π3R 。
要点诠释:1、对于求一些不规则几何体的体积常用割补的方法,转化成已知体积公式的几何体进行解决。
2、重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.3、要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.考点二:空间向量的有关概念空间向量:空间中,既有大小又有方向的量;空间向量的表示:一种是用有向线段表示,A 叫作起点,B 叫作终点;一种是用小写字母a (印刷体)表示,也可以用(而手写体)表示.向量的长度(模):表示空间向量的有向线段的长度叫做向量的长度或模,记作或.向量的夹角:过空间任意一点O 作向量a b ,的相等向量OA u u u r和OB u u u r,则∠AOB 叫作向量a b ,的夹角,记作〈〉,a b ,规定0π≤〈〉≤,a b .如图:AB u u u ra r||AB uuu r||a r零向量:长度为0或者说起点和终点重合的向量,记为0.规定:0与任意向量平行.单位向量:长度为1的空间向量,即.相等向量:方向相同且模相等的向量. 相反向量:方向相反但模相等的向量.共线向量(平行向量):如果表示空间向量的有向线段所在的直线互相平行或重合.平行于记作,此时.a b 〈〉r r ,=0或a b 〈〉r r ,=π. 共面向量:平行于同一个平面的向量,叫做共面向量. 要点诠释:(1)数学中讨论的向量是自由向量,即与向量的起点无关,只与大小和方向有关. 只要不改变大小和方向,空间向量可在空间内任意平移;(2)当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线.(3)对于任意一个非零向量,我们把aarr 叫作向量的单位向量,记作0a u u r .0a u u r 与同向.(4)当a b 〈〉r r ,=0或π时,向量平行于,记作;当 a b 〈〉r r ,=2π时,向量a b r r ,垂直,记作a b ⊥r r.考点三:空间向量的直角坐标运算空间两点的距离公式若,,则①;②;||1a =ra ρb ρb a ρϖ//a ρb ρa ρb ρa ρb ρa ρa ρa ρa ρb ρb a ρϖ//111(,,)A x y z 222(,,)B x y z 222111212121(,,)(,,)(,,)AB OB OA x y z x y z x x y y z z =-=-=---u u u r u u u r u u ur||AB ==u u u r③ AB 的中点坐标为121212222x +x y +y z +z ⎛⎫⎪⎝⎭,,. 空间向量运算的的坐标运算设,,则① ; ③ ; ③ ; ③ ;③ 222111a a a x y z ==++r r r g ,222222b b b x y z ==++r r r g ;③ ()121212222222111222cos 00a ba b a b a bx y z x y z ==≠≠++++r rr r r rg r r g g ,,.空间向量平行和垂直的条件若,,则①,,;③. 要点诠释:(1)空间任一点P 的坐标的确定:过P 作面xOy 的垂线,垂足为'P ,在面xOy 中,过'P 分别作x 轴、y 轴的垂线,垂足分别为A C 、,则|'|||||x P C y AP z PP ===,,''.如图:(2)夹角公式可以根据数量积的定义推出:,其中θ的范围是.(3)与任意空间向量平行或垂直.111(,,)a x y z =r 222(,,)b x y z =r121212(,,)a b x x y y z z +=+++r r121212(,,)a b x x y y z z -=---r r111(,,)()a x y z R λλλλλ=∈r121212a b x x y y z z ⋅=++r r111(,,)a x y z =r 222(,,)b x y z =r12//a b a b x x λλ⇔=⇔=r r r r 12y y λ=12()z z R λλ=∈⇔111222x y z x y z ==222(0)x y z ≠12121200a b a b x x y y z z ⊥⇔⋅=⇔++=r r r ra b a b |a ||b|cos a b cos a b |a ||b|⋅⋅=<⋅>⇒<⋅>=⋅r rr r r r r r r rr r [0,]π0r考点四:用向量方法讨论垂直与平行要点诠释:(1)直线的方向向量:若A、B是直线l上的任意两点,则为直线l的一个方向向量;与平行的任意非零向量也是直线l的方向向量.(2)平面的法向量:已知平面,直线,取的方向向量,有,则称为为平面的法向量.一个平面的法向量不是唯一的.考点五:用向量方法求角ABu u u rABu u u rαlα⊥l aα⊥a aαcos θ(平面α与β的法向量分别为1n 和2n ,平面α与β的夹角为θ)要点诠释:③当法向量与的方向分别指向二面角的内侧与外侧时,二面角的大小等于,的夹角的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量法解决立体几何问题方法复习总
结
向量法解决立体几何问题
a//b,其中a,b为直线l,m的方向向量
r r r r
a n,其中a为直线l的方向向量,n为面的法向量
a=xb+yc,其中a为直线I的方向向量,b, c为面内的两不共线向量
ir uu LT uu
n|//n2,其中m,n2分别为面,的法向量
a b,其中a,b为直线l,m的方向向量
r r r r
a//n,其中a为直线I的方向向量,n为面的法向量
a b且a c,其中a为直线丨的方向向量,b,c为面内的两不共线向量
IT ui ir uu
n( n2,其中n1, n2分别为面,的法向量
cos cos a,b ,其中a,b为两直线的方向向量
r r r r
sin cos a,n ,其中a为直线方向向量,n为面的法向量
LT UU
cos cos n「n2,其符号由图像而定
(2)点线距:利用向量共线转化为点点距处理
uuu r
PA n r (3)点面距:d uu,其中P为面外某点,A为面内任何一点,n为面的法向量,所求
外某点P到面的距离
另外,平行线的距离转化为点线距,异面直线的距离转化为点面距,线面距和面面距都可化为点面距来处理
5、向量的坐标运算
(1)r r a b
x1x2%(2)
r
a x/x2
y2z2
(3)r r a /
/b X L
x2y
y2
z_
Z2
.知识梳理4、距离问题
(1)点点距: UU
U
AB
X2)2 (y1 y2)2 (z1 Z2)2
(1
)
l //m
(2
)
l //
l //
(3
)
//
2、垂直冋题
(1) l m
(2)l
l
(3)
3、角度问题
(1)线线
角:
(2)线面
角:
d为面1、平行问题
、习题精练
BC与A1 D1的中点,棱长为1,求1 在正方ABCD —A1B1C1D1中,E,F分别是
(1)直线AE与DF成角余弦值
(2)直线BD1与平面A1ADD 1成角正弦值
(3)二面角B1-AE-B余弦值
2、在正方ABCD —A1B1C1D1中,E,F分别是BC与A1 D1的中点,棱长为1,求
(1) A到CD1的距离
(2) CF与AE的距离
(3) B到面B1AC的距离
(4) AA1与面BDD 1B1的距离
3、在四棱柱ABCD-ABGD 中,CQ丄平面ABCD底面ABCD为等腰梯形,AB//CD,AB=4 , BC=CD=2AA=2, E,E i, F分别是棱AD,AA , AB的中点
证明:(1 )直线EE//平面FCC;
(2) 求二面角B-FC i-C的余弦值。
所在平面互相垂直,△ ABE是等腰直4、(09四川19)如图,正方形ABCD所在平面与平面四边形ABEF 角三角
形,AB=AE,FA=FE , / AEF=45 .
(I)求证:EF丄平面BCE
(H)设线段CD、AE的中点分别为P、M,求证:PM//平面BCE
(川)求二面角F-BD-A的余弦值.
5、(10四川18)已知正方体ABCD A'B'C'D'中,点M是棱AA'的中点,点0是对角线BD'的中点,
(I)求证:0M为异面直线AA'与BD'的公垂线;
(n)求二面角M BC' B'的余弦值;
6、( 12四川19)如图,在三棱锥P ABC中,APB 90o, 平面ABC
内的射影0在AB上。
(I)求直线PC与平面ABC成角的正弦值;
(n)求二面角B AP C的余弦值。
PAB 60o, AB BC CA,点P 在
参考答案
1、(1)1
(2
21(3)兰536
2、(1)空⑵.5
⑶3⑷
2532
3、⑵
4(3)3 后
4、(3)—
11
1
5、(2)-
3
6、(1)上3 (2)上5
4 5。