Abstract Generalized Distance Metrics in Implicit Surface Modelling
消色差超构表面复合透镜

文章编号:1005-5630(2022)03-0037-07DOI : 10.3969/j.issn.1005-5630.2022.03.006消色差超构表面复合透镜张 敏,陆咏诤,彭 嘉,文 静(上海理工大学 光电信息与计算机工程学院,上海 200093)摘要:超构表面因其体积轻薄易于集成化,有望在某些特定场合取代传统透镜实现多功能光学器件。
超构表面的光束偏转角随波长的增加而增大,与传统折射透镜相比产生相反的色散,这种色散又被称为“异常色散”或“负色散”。
理论上利用超构表面的负色散和传统折射光学器件的正色散相抵消,可以完全矫正光学系统的色差。
由此出发,设计了一种基于光刻胶材料,由Pancharatnam-Berry (PB )相位型超构表面作为第一透镜,传统球面透镜作为第二透镜的消色差超构表面复合透镜,利用时域有限差分数值模拟软件FDTD Solutions 探索了该透镜在780~980 nm 波段的聚焦性能,证明了消色差光刻胶超构表面复合透镜优异的消色差效果。
相对传统的消色差超构表面通过相位补偿来消色差的方法,这种消色差设计简单且高效,为特定波段内的消色差成像提供了一定的借鉴意义。
关键词:光刻胶;超构表面;消色差中图分类号:O 436.1 文献标志码:AAchromatic metalens compund lensZHANG Min ,LU Yongzheng ,PENG Jia ,WEN Jing(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science andTechnology, Shanghai 200093, China )Abstract: Metalens has the prospective to replace the traditional lens for multifunctional sub-wavelength imaging due to its thinness and ease of integration. The beam deflection angle of the metalens increases with the increase of wavelength and produces opposite dispersion compared to the traditional refractive lens. This form of dispersion is also called "abnormal dispersion" or "negative dispersion". Theoretically, the negative dispersion of the metalens and the positive dispersion of traditional refractive optical devices can be used to fully offset the chromatic aberration of the optical system. Consequently, this study demonstrates the design of an achromatic metalens compound lens based on photoresist material by employing Pancharatmane-Berry (PB)phase metalens as the first lens and traditional spherical lens as the second lens, through finite difference time domain method. The focusing characteristics of the lens at λ = 780~980 nm are收稿日期 :2021-10-08基金项目 :国家重点研发计划(2018YFA0701800);国家自然科学基金(62175153、61775140)作者简介 :张 敏 (1996—),女,硕士研究生,研究方向为超构表面。
表面重建算法

表面重建算法概述表面重建算法是计算机图形学中的一个重要研究领域,其主要目的是从点云数据中生成连续、光滑的曲面模型。
表面重建算法应用广泛,如三维扫描、医学成像、地形建模等领域。
本文将介绍表面重建算法的基本原理、分类以及常用算法。
基本原理表面重建算法的基本原理是从离散的点云数据中生成连续、光滑的曲面模型。
点云数据通常由三维扫描仪或激光雷达等设备获取。
对于一个给定的点云,表面重建算法需要确定每个点在曲面上的位置和法向量。
分类表面重建算法可以分为两类:基于网格和基于隐式函数。
1. 基于网格基于网格的表面重建算法将点云转换为一个三角网格,然后通过对网格进行平滑处理来生成曲面模型。
其中最常用的方法是Poisson重构算法。
Poisson重构算法基于Poisson方程,该方程描述了曲面上任意一点处梯度向量与曲面法向量之间的关系。
该算法首先计算每个点在曲面上的法向量,然后通过对点云进行重采样得到一个规则的网格,最后利用Poisson方程求解得到曲面模型。
2. 基于隐式函数基于隐式函数的表面重建算法将点云转换为一个隐式函数,然后通过等值面提取算法生成曲面模型。
其中最常用的方法是Moving Least Squares (MLS)算法。
MLS算法首先对点云进行平滑处理,然后对每个点构建一个局部加权多项式函数。
该函数表示了该点附近的曲面形状,然后通过等值面提取算法生成曲面模型。
常用算法1. Marching Cubes算法Marching Cubes算法是一种基于网格的表面重建算法。
该算法将三维空间划分为一系列小立方体,并在每个立方体中确定等值面的位置和拓扑结构。
最终将所有立方体中的等值面拼接起来形成曲面模型。
2. Poisson重构算法Poisson重构算法是一种基于网格的表面重建算法。
该算法首先计算每个点在曲面上的法向量,然后通过对点云进行重采样得到一个规则的网格,最后利用Poisson方程求解得到曲面模型。
3. MLS算法MLS算法是一种基于隐式函数的表面重建算法。
基于Kriging模型的自适应多阶段并行代理优化算法

第27卷第11期2021年11月计算机集成制造系统Vol.27No.11 Computer Integrated Manufacturing Systems Nov.2021DOI:10.13196/j.cims.2021.11.016基于Kriging模型的自适应多阶段并行代理优化算法乐春宇,马义中+(南京理工大学经济管理学院,江苏南京210094)摘要:为了充分利用计算资源,减少迭代次数,提出一种可以批量加点的代理优化算法。
该算法分别采用期望改进准则和WB2(Watson and Barnes)准则探索存在的最优解并开发已存在最优解的区域,利用可行性概率和多目标优化框架刻画约束边界。
在探索和开发阶段,设计了两种对应的多点填充算法,并根据新样本点和已知样本点的距离关系,设计了两个阶段的自适应切换策略。
通过3个不同类型算例和一个工程实例验证算法性能,结果表明,该算法收敛更快,其结果具有较好的精确性和稳健性。
关键词:Kriging模型;代理优化;加点准则;可行性概率;多点填充中图分类号:O212.6文献标识码:AParallel surrogate-based optimization algorithm based on Kriging model usingadaptive multi-phases strategyYUE Chunyu,MA Yizhong+(School o£Economics and Management,Nanjing University of Science and Technology,Nanjing210094,China) Abstract:To make full use of computing resources and reduce the number of iterations,a surrogate-based optimization algorithm which could add batch points was proposed.To explore the optimum solution and to exploit its area, the expected improvement and the WB2criterion were used correspondingly.The constraint boundary was characterized by using the probability of feasibility and the multi-objective optimization framework.Two corresponding multi-points infilling algorithms were designed in the exploration and exploitation phases and an adaptive switching strategy for this two phases was designed according to the distance between new sample points and known sample points.The performance of the algorithm was verified by three different types of numerical and one engineering benchmarks.The results showed that the proposed algorithm was more efficient in convergence and the solution was more precise and robust.Keywords:Kriging model;surrogate-based optimization;infill sampling criteria;probabil让y of feasibility;multipoints infill0引言现代工程优化设计中,常采用高精度仿真模型获取数据,如有限元分析和流体动力学等E,如何在优化过程中尽可能少地调用高精度仿真模型,以提高优化效率,显得尤为重要。
隐式开曲面上多相图像分割的变分模型及算法

g e n c e . I n t h e lt a e na r t e o p t i mi z a t i o n p r o c e s s o f l be a l f u n c t i o n s , t h e c o n v e x r e l a x a t i o n t e c h n i q u e i s u s e d t o r e l x a t h e d i s c r e t e
隐式 开 曲面 上 多相 图像 分 割 的变 分 模 型 及 算 法 术
魏 伟 波 ,潘振 宽 ,崔桂 丽 , 端金 鸣
( 青 岛大学信息工程学 院 青岛 2 6 6 0 7 1 )
摘
要 :提出了一种隐式开 曲面上 多相 图像分割 的变分模 型并设计 了相 应的对偶方法和 S p l i t B r e g ma n算 法。任意拓扑 结构 的
t e r s e c t i o n o f z e r o l e v e l s e t o f a c o n t i n u o u s s i g n e d d i s t a n c e f u n c t i o n a n d a b i n a r y l a b e l f nc u t i o n . h e T mu l t i p l e r e g i o n d i v i s i o n o n a s u r f a c e a d o p t s t h e s c h e me o f u s i n g n一1 b i n a y r l a b e l f u n c t i o n s t o p a r t i t i o n n r e g i o n s . Va ia r t i o n l a mo d e l f o r mu lt i p h a s e
基于代表性体积单元的双模铝基复合材料性能拟实研究

精 密 成 形 工 程第16卷 第4期 36JOURNAL OF NETSHAPE FORMING ENGINEERING 2024年4月收稿日期:2024-01-20 Received :2024-01-20基金项目:国家自然科学基金(51931009,52192594,52120105001,52201052);魏桥国科高研院-中国科学院金属所研发项目(GYY-JSBU-2022-011)Fund :The National Natural Science Foundation of China (51931009, 52192594, 52120105001, 52201052); Bintech-IMR R&D Program (GYY-JSBU-2022-011) 引文格式:庞雨婷, 张峻凡, 王文广, 等. 基于代表性体积单元的双模铝基复合材料性能拟实研究[J]. 精密成形工程, 2024, 16(4): 36-44.PANG Yuting, ZHANG Junfan, WANG Wenguang, et al. Property Simulation of Bimodal Aluminum Matrix Composites Based on the Representative Volume Element Models[J]. Journal of Netshape Forming Engineering, 2024, 16(4): 36-44. *通信作者(Corresponding author )基于代表性体积单元的双模铝基复合材料性能拟实研究庞雨婷1,2,张峻凡2*,王文广1,2,肖伯律2,马宗义2(1.辽宁石油化工大学 机械工程学院,沈阳 113001;2.中国科学院金属研究所 师昌绪先进材料创新中心,沈阳 110016)摘要:目的 研究双模铝基复合材料连续区(Continuous Region ,CR )和非连续区(Discontinuous Region ,DR )力学性能对材料整体力学性能的影响规律,以深入了解双模铝基复合材料的强韧化机理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GeneralizedDistanceMetricsinImplicitSurfaceModellingMarkTiggesM.S.T.CarpendaleBrianWyvillDept.ofComputingScienceSchoolofComputingScienceUniversityofCalgarySimonFraserUniversitymtigges@cpsc.ucalgary.cacarpenda@cs.sfu.ca
AbstractImplicitsurfacesareoftendesignedthroughthedefinitionandadditionofoffsetsurfaces.Thesearetypicallydefinedusingaskeletonofprimitivessuchaspointsandlines.Apredefinedoffsetfromtheskeletondeterminesthesurface.Impliedinthiscommonlyusedtechniqueisthecomputationofthedistancefromtheskeleton.ItisnaturaltousetheEuclideandefinitionofdistance.Inthispaperwediscusspreviousandrecentworkthattakesadvantageofalternatedefinitionsofdistancetoachieveshapesthathavepreviouslybeendifficulttoattain.
1IntroductionTheshapeseasilymodeledwithcommonlyusedimplicitsurfaceshavetendedtobecurved(givingrisetotheirnicknameblobs).TheshapesmosteasilymodeledwithCSGtendtobeangular.ComplexmodelsthatrequiredcombinationsofthesetwotypesofshapescanbeachievedbycombiningthetwoapproachestomodelingthroughaprocesssuchastheBlobTree[10].However,blendingbetweenthedifferenttypesofshapestoachievedegreesofroundednessremainsaproblem,makingsomeshapesdifficulttodesign.Forinstance,basicgeometricshapeswithroundedcornerssuchascommonlyfoundinfurnitureandappliances.Throughtheuseofgeneraldistancemeasuresweshowhowtoacheiveshapesthatarenotjustblobbybutexhibitsomedegreeofblobbinesswhileretainingmostangularforms.Weshowalsohowtheseshapescanbeachievedusinganextensionofsuper-quadrics[3]andhowwecaneasilyblendbetweenthem.Blendingwiththeuseofsuper-quadricdistancemetricshasbeenpreviouslybeenavoidedduetoscalingandpolygonizationdifficulties[12].
Animplicitsurfaceisapointsetwhichsatisfiessomeimplicitfunction,ie..Thefunctionsusedgenerateascalarfield.Thesurfaceisthenalevelsetofthescalarfield.Anadvantageofthesesurfacesistheeasewithwhichcomplexmodelscanbeconstructedthroughblendingofscalarfieldsofdifferentimplicitfunctions.
Whileanyimplicitfunctioncanbeused,forexamplethatofasphere,recentuseofthisclassofsurfacescomputesascalarfieldbasedonafunctionofdistancefromaskeletonofprimitives.Theprimitivesaregenerallylines,points,circlesetc.ThesetechniqueswereintroducedbyBlinn[5],and
refinedbyWyvilletal.[11]andNishimuraetal.[8].Acommonformulationisshowninfunction2.(a)(b)(c)(d)(e)
Figure1:Asummaryoftheaffectofvariationofformetricsfortwodimensionalimplicitsurfaces.ofusingaEuclideandistancemetrictodeterminethedistanceofapointfromtheskeletonoftheimplicitsurface.
Whenintroducingimplicitsurfaces,Blinn[5]usedonlytheEuclideandistancemeasure.Hedidmentionhoweverthatingeneralanydistancemeasurecouldbeused.ItwasbrieflypointedoutinapaperfromBlancandSchlick[4]thatusingothermethodsfordistancemeasurecanextendthemodelingpowerofthesystem.Theirsuggestionwastousethemetric,expression3.
(3)Expression3canbeusedtoreplaceinfunction2,In
thiscase,whereistheclosestpointontheskeletontothequerypoint.
ThemetricisageneralizationoftheEuclideanmetric.NotethatisexactlytheEuclideandefinition.isknownastheManhattandistance.Theinterestinguseofthemetricoccursfor.Notethatinthelimitasgoestotheresultofthemetricissimplymax().Asummaryoftheaffectoftosurfaceshapefortwodimensionalimplicitsurfacesisshowninfigure1.
TheBlancandSchlickpaper,howeverdidnotprovidethemethodforcomputationofthenormalin3D.(Thenormalisthegradientofthedifferencevectorfromtheskeleton,seeappendixA).Thisproblemisanissuewhentheskeletonisnotapoint,section4.Themainpurposeoftheirworkwastosurveyexistingfieldanddistancefunctionsandpresentnewones.Themajorityoftheworkinthatpaperondifferentdistancemetricswasthroughtheuseofuserdefineddistancemetrics.Theirformulationforthisissimilarinprincipletotheuseofastar-shapedsetasinputforaMinkowskimetric[9].
3Super-quadricDistanceAsuper-ellipseisageneralizationofacircle.TheirintroductionwasbyFauxandPratt[7].Theyallowthespecificationofallshapesbetweensquares,circlesandpinchedcircles.
ThedefinitionofsuperellipseswasextendedtothreedimensionsbyBarr[3]toformsuper-quadrics.Theformulationforthesurfaceofasuper-quadricisgiveninequation5.
(6)Theabovefunctionfordistance,6,isageneralizationof