6.1 定积分的元素法(学生版)

合集下载

定积分的元素法

定积分的元素法
b
平面图形的面积、体积及平面曲线的弧长,功,
水压力等.
5
A
y=ƒ(x)
D H
B
o a
E
F x x+Δx
b x
求曲边梯形 AabB 的面积 A 的方法为:
(1) 在[a , b]上任取一个小区间[x , x + dx],并求出总量 A 的
微分dA = ƒ(x)dx ; (面积元素(微元))
(2) 以微分表达式 ƒ(x)dx为被积表达式,在[a , b]上作定积分 (面积元素(微元)进行求和累加)
在区间 [a, b]的任一个子区间[x, x+Δx] 上, 部分量ΔU≈f (x)Δx.
4

定积分的元素法
设 U 是可用定积分表达的量,则计算量 U 的步骤为: • 选择函数 f(x),并确定自变量 x 的变化区间[a, b]; • 在[a, b]内考虑小区间[x, x+dx],求出相应于这个小 区间的部分量ΔU的近似值 f(x)dx。称f(x)dx为量U的 元素,记为dU= f(x)dx. • 计算 U=a f ( x )dx 应用方向:
A dA f ( x )dx
a a
3
bU具有以下特点: 量U与函数 f(x)及x的变化区间 [a, b]有 关.
若 f(x)≡常数,则 U= f(x)(b-a).
量U对区间具有可加性。即:把[a,b]分成若干部
分区间, 则 U相应地被分成了许多部分量之和.
第六章 定积分的应用
基本要求
1 掌握用定积分来求一些几何量和物理量的方法(元素法) 2 会建立一些简单的几何量与物理量的积分表达式 (如面积,体积,弧长、功、水压力等)
1
§6.1 定积分的元素法

§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)

§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)

则对应该小区间上曲边扇形面积的近似值为
dA 1 ( )2 d
2
所求曲边扇形的面积为
r ( ) d
A 1 2 ( ) d 2
x
《高等数学》
返回
下页
结束
例4. 计算阿基米德螺线 到 2 所围图形面积 .
解:
A
2
0
1 (a )2 d
2
02
y

ox
R x

《高等数学》
返回
下页
结束
微分的几何意义与切线段的长度
dy f (x)dx
y y f (x)
y
ds dy dx

o
x
x
切线段的长度
x dx
此直角三角形称为: 微分三角形
ds (d x)2 (d y)2 1 f 2 (x)dx (弧微分公式)
曲线 y f (x) C[a,b], s b 1 f 2 (x)dx.
4 3 a2
3
对应 从 0 变
2 a
o
x
d
例5. 计算心形线
所围图形的面积 .
解:
1 (1 cos )2 d
2
2
2
1 (3cos
)2
d
2
3
5.
4
《高等数学》
返回
与圆
(
3
,
(利用对称性)
)
23
d

o
2x
下页
结束
二、体积
1.平行截面面积为已知函数的立体体积
§6 定积分的应用
§6.1 定积分的元素法(微元法) §6.2 几何应用 §6.3 物理应用

6-1定积分的元素法59653

6-1定积分的元素法59653
பைடு நூலகம்
二、小结
元素法的提出、思想、步骤.
(注意微元法的本质)
思考题
微元法的实质是什么?
terima Kasih
得力马卡系
3) 以 所 求 量 U 的 元 素 f(x)d为 x被 积 表 达 式 , 在
区 间 [a,b]上 作 定 积 分 , 得 U a bf(x)d, x
即 为 所 求 量 U 的 积 分 表 达 式 .
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
元素法的一般步骤:
1 ) 根 据 问 题 的 具 体 情 况 , 选 取 一 个 变 量 例 如 x 为 积 分 变 量 , 并 确 定 它 的 变 化 区 间 [ a ,b ] ;
2)设想把区间[a,b]分成n个小区间,取其中任 一小区间并记为[x,xdx],求出相应于这小区 间的部分量U的近似值.如果U能近似地表示 为[a,b]上的一个连续函数在x处的值f(x)与 dx 的乘积,就把f(x)dx称为量U的元素且记作 dU,即dU f(x)dx;

定积分的元素法

定积分的元素法

课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课 时 计 划 ( 教 案 ) 一、()()=n y f x 型的微分方程 解法: 积分n 次 1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, …… 例1 求微分方程y '''=e 2x cos x 的通解.。

例2 求微分方程x x y cos sin -=''满足初始条件1)0(,2)0(='=y y 的特解。

二、),(y x f y '=''型的微分方程 解法: 设y '=p 则方程化为 p '=f (x , p ). 设p '=f (x , p )的通解为p =(x ,C 1), 则 ),(1C x dx dy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ. 例3 求微分方程 (1x 2)y ''=2xy 满足初始条件 y |x =0=1, y '|x =0=3的特解. 例4设由一质量分布均匀,柔软的细绳,其两端固定,求它在自身重力作用下的曲线方程.三、),(y y f y '=''型的微分方程 解法: 设y '=p ,有dy dp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p =. 设方程),(p y f dy dp p =的通解为y '=p =(y , C 1), 则原方程的通解为21),(C x C y dy +=⎰ϕ. 例5 求微分yy ''y '2=0的通解。

四、习题讲解329P Ex2(5)(6),4五、课堂小结、布置作业课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )。

第六章 定积分的应用(教学笔记)

第六章 定积分的应用(教学笔记)
例 计算抛物线 y 2 = 2 x 与直线 y = x − 4 所围成的图形面积。 解:1 、先画所围的图形简图, 交点: (2,−2) 和 (8,4) 。
2 .选择积分变量并定区间:选取 x 为积分变量,则 0 ≤ 3 .给出面积元素在 0 ≤ x ≤ 2 上, 在 2 ≤ x ≤ 8 上, 4 .列定积分表达式
4
−4
事实上, 也可以选择 x 为积分变量, 积 分 区 间 为 [0, 如图, 当小区间 8] . 面积微元为 [ x, x + dx] 取 在 [0, 2] 中 时 ,
dA = [ 2 x − (− 2 x )]dx , 而当小区间取
在 [2, 8] 中 时 , 面 积 微 元 为
4
y
y = 2x
(8,4)
dA = [ 2 x − ( x − 4)]dx , 因此, 积分区间
须分成 [0, 即所给图形由 2] 和 [2, 8] 两部分,
o
x=4 -y
y = − 2x
x
直线 x = 2 分成两部分, 分别计算两部分的面积再相加, 得所求面积, 即
A = ∫ [ 2 x − (− 2 x )]dx + ∫ [ 2 x − ( x − 4)]dx
解:
a 0 x = a cos t , (0 ≤ t ≤ 2π ) , S = 4 ∫ ydx = 4∫π b sin td (a cos t ) = π ab 0 2 y = b sin t ,
或S = 4

b
0
xdy = 4 ∫ 2 a cos td (b sin t ) = π ab
n
i
的极限
方才是精确值 A 。关键是确定 ∆ Ai ≈ f (ξ i ) ∆ x i ( ∆ Ai − f (ξ i ) ∆ xi = o ( ∆ xi ) )

高等数学教案章节题目第六章、定积分的应用§6-1定积分的元素法

高等数学教案章节题目第六章、定积分的应用§6-1定积分的元素法

高等数学教案§6-1 定积分的元素法一、 再论曲边梯形面积计算设f x ()在区间],[b a 上连续,且0)(≥x f ,求以曲线y f x =()为曲边,底为],[b a 的曲边梯形的面积A 。

1.化整为零用任意一组分点 b x x x x x a n i i =<<<<<<=- 110将区间分成n 个小区间[,]x x i i -1,其长度为),,2,1(1n i x x x i i i =-=∆-并记 },,,m ax {21n x x x ∆∆∆= λ相应地,曲边梯形被划分成n个窄曲边梯形,第i个窄曲边梯形的面积记为ni A i ,,2,1, =∆。

于是 ∑=∆=ni iA A 12.以不变高代替变高,以矩形代替曲边梯形,给出“零”的近似值 ),,2,1(],[)(1n i x x x f A i i i i i i =∈∀∆≈∆-ξξ 3.积零为整,给出“整”的近似值 ∑=∆≈ni iixf A 1)(ξ4.取极限,使近似值向精确值转化⎰∑=∆==→bani iidx x f x f A )()(lim1ξλ上述做法蕴含有如下两个实质性的问题:(1)若将],[b a 分成部分区间),,2,1(],[1n i x x i i =-,则A 相应地分成部分量),,2,1(n i A i =∆,而∑=∆=ni i A A 1这表明:所求量A 对于区间],[b a 具有可加性。

(2)用i i x f ∆)(ξ近似i A ∆,误差应是i x ∆的高阶无穷小。

只有这样,和式∑=∆ni iixf 1)(ξ的极限方才是精确值A 。

故关键是确定))()(()(i i i i i i i x o x f A x f A ∆=∆-∆∆≈∆ξξ通过对求曲边梯形面积问题的回顾、分析、提炼, 我们可以给出用定积分计算某个量的条件与步骤。

二、元素法1.能用定积分计算的量U ,应满足下列三个条件 (1) U 与变量x 的变化区间],[b a 有关; (2) U 对于区间],[b a 具有可加性;(3) U 部分量i U ∆可近似地表示成i i x f ∆⋅)(ξ。

S6-1定积分的元素法

S6-1定积分的元素法

n
S f ( i )xi
i 1
.
分法越细,越接近精确值
o
a x1 x2
xi i xi1
x xn1 b
.
曲边梯形的面积的回顾
f (i) y
oa
x x i i i 1 .
元素法
y=f (x)
1 大化小(分割) 2 常代变(近似)
Si f ( i )xi
3 近似和(求和)
分法越细,越接近精确值
4 取极限
x b
令分法无限变细
n
S =

lim
i 1
f
(
i
.). x
i
.
b
f ( x) dx
a
一、什么问题可以用微元分析法(定积分)解决 ?
1) 所求量 U 是与区间[a , b]上的某函数 f (x) 有关的 一个整体量 ;
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
n
S f ( i )xi i 1
分法越细,越接近精确值
4 取极限
x b
令分法无限变细
.. .
曲边梯形的面积的回顾
f (i) y
S
oa
x x i பைடு நூலகம் i 1 .
元素法
y=f (x)
1 大化小(分割) 2 常代变(近似)
Si f ( i )xi
3 近似和(求和)
n
S f ( i )xi i 1
表示为
定积分定义
二 、如何应用微元分析法(定积分)解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量

高等数学课件6-1定积分的元素法

高等数学课件6-1定积分的元素法

定积分的元素法:将积分区间划分为若干个小区间,然后计算每个小区间的积分值,最 后求和得到积分值
应用:计算不规则图形的体积
步骤:确定积分区间、划分小区间、计算每个小区间的积分值、求和得到积分值
注意事项:小区间的划分要均匀,积分值的计算要准确,求和时要注意精度
弧长公式:L=∫(a到b) f(x) dx 积分区间:a到b 积分函数:f(x) 计算方法:使用元素法进行积分计算
单击此处添加标题
缺点:当积分区间较宽时,计算误差较大
适用于求解定积分 适用于求解不定积分 适用于求解积分方程 适用于求解微分方程
确定积分区间和被积函数
将积分区间划分为若干个 小区间
计算每个小区间的积分值
求和得到积分结果
定积分的元素法:将曲线下的面积分割成若干个小矩形,然后求和 应用:计算不规则图形的面积 步骤:确定积分区间、分割区间、计算每个小矩形的面积、求和 注意事项:分割区间越小,计算结果越精确
积分区间必须是闭区间 积分函数必须是连续函数 积分函数必须是可积函数 积分区间内的函数值必须是有限的
定积分的几何意义是 函数在某一区间上的 面积,与函数在该区 间上的积分和相等
单击此处添加标题
元素法:一种计算定积分的方法
单击此处添加标题
原理:将积分区间划分为若干个小区间,在每个小区间内取一个代表点,然后计 算这些代表点的函数值,最后将这些函数值相加得到积分值
单击此处添加标题
优点:计算简单,易于理解
定积分的计算方法包括元素法、换元法、分部积分法等。
定积分是函数在 某一区间上的积 分和
定积分的值与积分 区间、被积函数和 积分变量有关
定积分的值与积 分区间的划分方 式无关
定积分的值与积 分变量的选取无 关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档