分式单元练习题
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
分式单元测试题(含答案)

四、解方程:(6 分)
23. 1 2 12 。 x 3 3 x x2 9
五、列方程解应用题:(10 分) 24.甲、乙两个工程队共同完成一项工程,乙队先单独做 1 天, 再由两队合作 2 天就完成全部工程,已
知甲队与乙队的工作效率之比是 3:2,求甲、 乙两队单独完成此项工程各需多少天?
A.2 或-2
B.2
C.-2
D.4
2x 5 y
5.不改变分式
2 的值,把分子、分母中各项系数化为整数,结果是( )
2 x y
3
2x 15y
A.
4x y
4x 5y
B.
2x 3y
6x 15y
C.
4x 2y
12x 15y
D.
4x 6y
a2 ab
4a
1
6.分式:①
,②
,③
,④
x 1
件的 m 的值;若不存在,请说明理由。
(2)当 x 4sin 300
10 、 y tan 600 时,求 1
2x x y
x2
2xy 3x 3y
y2
x 2 xy x2 y2
值。
的 8、某商店在“端午节”到来之际,以 2400 元购进一批盒装粽子,节日期间每盒 按进价增加 20%作为售价,售出了 50 盒;节日过后每盒以低于进价 5 元作为售 价,售完余下的粽子,整个买卖过程共盈利 350 元,求每盒粽子的进价.
19.当 x
3 x 时,分式 的值为负数.
2x
20.计算(x2 y2 y x
三、计算题:(每小题 6 分,共 12 分)
21. 3 6 x 5 ; x 1 x x2 x
分式单元测试题(含答案)

(时间:60分钟,满分:100分)一、填空题:(每题2分,共22分)1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x +x=3,则421x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+-- 16.下列分式一定有意义的是( )A .21x x +B .22x x +C .22x x -- D .23x x + 17.已知a 2+b 2=6ab 且a>b>0,则a b a b+-的值为( )A B C .2 D .±218.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4 B .4804804x x -+=20 C .48048020x x -+=4 D .4804804x x --=20 三、计算题;(每题3分,共12分)19.2224422a a a a a a +-+-+ 20.11a --1-a21.2242()4422x x x x x x x ---÷-++-; 22.1-22244x y x y x y x xy y--÷+++.四、解答题(每题4分,共8分)23.321(1)x x x x +---=0 24.5425124362x x x x -+=---五、解答题(每题6分,共18分)25.先化简,再用你喜爱的数代入求值:2232214()2442x x x x x x x x x+---÷--+-26.若235x y z ==,且3x+2y-z=14,求x ,y ,z 的值.27.阅读下列材料: x+1x =c+1c 的解是x 1=c ,x 2=1c; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c; x+2x =c+2c 的解是x 1=c ,x 2=2c; x+3x =c+3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x+m x =c+m c (m ≠0)的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x+2211a x a =+--.六、解决问题(共26分)28.(8分)甲,乙两地相距19km ,某人从甲地出发去乙地,先步行7km ,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速度是骑自行车的速度的13,求步行和骑自行车的速度各是多少.30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.(1)这个学校八年级的学生总数在什么范围内(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人参考答案1.≠3 =322.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b+ 6.0 7.2或4 8.-1 9.150 10.-•1 •11.1812.B 13.D 14.C 15.C 16.A 17.A 18.C19.22a - 20.221a a -- 21.82x + 22.-y x y + 23.无解 24.无解 25.2x x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m c (2)x 1=a ,x 2=11a a +- 28.•步行速度为5km/h ,骑自行车速度为20km/h29.步行速度为6km/h ,•骑自行车速度为18km/h •30.(1)人数多于240人,不大于300人 (2)300人第7章测试卷讲评课Ⅰ.本题针对第7题●反馈 若31a +表示一个整数,则整数a 可以取哪些值 Ⅱ.本题针对第11题●反馈 已知x=12,求351x x x ++的值. Ⅲ.本题针对第26题●反馈1 已知1x -1y=3,求55x xy y x xy y +---的值. ●反馈2 已知234x y z ==,求2222323x y z xy yz xz -+-+的值. ●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求22222223657x y z x y z ++++的值. Ⅳ.本题针对第28,29题●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.参考答案Ⅰ.反馈:2,0,-2,-4Ⅱ.反馈:由x=12,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1, 所以33322255532331(1)(1)11x x x x x x x x x x x x x x xx x x +++++++========Ⅲ.反馈1:72反馈2:173反馈3:1Ⅳ.反馈:原来送货人有14人,销售人员有112人.&。
分式单元检测题(精品资料,共10套)

《分式》单元检测试题(一)一 选择(36分)1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 如果把分式yx x 232-中的x,y 都扩大3倍,那么分式的值( ) A 扩大3倍 B 不变 C 缩小3倍 D 扩大2倍5 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或36 计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 7 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 48 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 59 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 210 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 11 把分式方程12121=----x x x ,的两边同时乘以x-2,约去分母,得( ) A 1-(1-x)=1 B 1+(1-x)=1 c 1-(1-x)=x-2 D 1+(1-x)=x-212 已知 k ba c c abc b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空(21)1 写出一个分母至少含有两项且能够约分的分式2 ()a b ab ab a 2332222=++ 3 7m =3,7n =5,则72m-n =4 一组按规律排列的式子:()0,,,,41138252≠--ab ab a b a b a b ,其中第7个式子是 第n 个式子是 5 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 6 方程04142=----x x x 的解是 7 若2222,2ba b ab a b a ++-=则= 三 化简(12) 1 ()d cd b a c ab 234322222-•-÷ 2 111122----÷-a a a a a a3⎪⎭⎫ ⎝⎛---÷--225262x x x x四 解下列各题(8)1 已知b ab a b ab a b a ---+=-2232,311求 的值 2 若0<x<1,且xx x x 1,61-=+求 的值五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程( 12 ) 1 12332-=-x x 2 1412112-=-++x x x七 (7)2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款 4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?《分式》单元检测试题(二)一、选择题(每小题3分,共30分)1、下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,m 1中,是分式的共有( )A 、1个B 、2个C 、3个D 、4个2、使分式24x x -有意义的x 的取值范围是( ) A 、2x = B 、2x ≠ C 、2x =- D 、2x ≠- 3、若分式22943x x x --+的值为零,则x 的值为( ) A 、3 B 、3或-3 C 、-3 D 、04、若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A 、y x 23B 、223y xC 、y x 232D 、2323yx 5、根据分式的基本性质,分式b a a --可变形为( )A 、b a a --B 、 b a a +C 、 b a a --D 、 b a a +-6、化简2293m m m --的结果是( ) A 、3+m m B 、3+-m m C 、3-m m D 、mm -3 7、计算xx -++1111的正确结果是( ) A 、0 B 、212x x - C 、212x - D 、122-x 8、下列运算正确的是 ( )A 、236x x x ⋅=B 、22124x x --=-C 、235()x x -=D 、22223x x x --=-9、一水池有甲、乙两个进水管,若单独开甲、乙管各需a 小时、b 小时可注满空地;现两管同时打开,那么注满空池的时间是( )A 、1a +1bB 、1abC 、1a b +D 、ab a b+ 10、赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完。
分式单元测试一(附答案)

分式1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+ (4)x yx y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111xx x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xyx -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。
5、解下列分式方程:(1)x x x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
分式单元复习测试题

324332⎪⎭⎫⎝⎛⋅⎪⎪⎭⎫ ⎝⎛x y y x 分式单元测试题一、填空题(39分)1、在)(1y x m -、23xx 、212+x 、πxy 3、y x +3、m 23+、3-x 中分式的有 个。
2、要使分式1(1)(2)x x x ++-有意义,则x 应满足 。
3、将分式yx yx 5.15.01.0+-的分子分母各项系数化为整数,其结果为 。
4、计算x x -++1111的结果是 。
5、方程04142=----xx x 的解是 6、分式22m m 1m 2m -+-约分后的结果是 。
7、一工作,甲独做a 天完成,乙独做b 天完成,则两人合作一天的工作量是 8、若分式方程231x x -=1m x -有增根,则m 的值为9、某工厂原计划a 天完成b 件产品,由于情况发生变化,要求提前x 天完成任务,则现在每天要比原计划每天多生产 件产品.10、已知113x y -=,则代数式21422x xy yx xy y ----的值为11、若分式34922+--x x x 的值为零,则x 的值为 12、当m = 时,关于x 的分式方程213x mx +=--无解. 13、某市今年计划修建一段全长1500米的景观路,为了尽量减少施工对城市交通的影响,实际工作效率比原计划提高了20%,结果提前2天完成任务.若设原计划每天修路x 米,则根据题意可列方程 . 二、解答题(1每小题4分,5-9每题7分,其余每题5分)1、计算:(1)b a a b a b --- (2)(3))1(1a a a a -÷- (4))(22a bb a aab a -÷-2、化简:(1)aa a a a 21)242(22+∙--- (2)4)22(2-÷+--a a a a a a3、解分式方程: (1)21221-=+--x x x (2)512552x x x +=-- (3)21x x +-211x -=0.4、先化简121)11(2+-÷--a a a a ,然后选择一个合适的你最喜欢的a 的值,代入求值.5、甲班与乙班同学到离校15千米的公园秋游,两班同时出发,甲班的速度是乙班同学速度的1.2倍,结果比乙班同学早到半小时,求两个班同学的速度各是多少?6、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年1月份的水费是36元,已知小明家今年1月份的用水量比去年12月份的用水量多6m 3.求该市今年居民用水的价格.7.某项工程需在规定日期内完成,若甲队单独做,恰好如期完成;若乙队单独做,则要延期3天完成。
《分式与分式方程》单元测试卷含答案精选全文完整版

可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
分式单元测试题7套

分式单元测试题1一、选择题 1.在式子,,,,中,分式有( )A .1个B .2个C .3个D .4个2.分式无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=3 3.下列各分式中与分式的值相等是( ) A . B . C . D .—4.计算(—)·的结果是( )A . 4B . -4C .2aD .-2a5.分式方程的解是( ) A .x=-2 B .x=2 C . x=±2 D.无解 6.把分式中的,都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的C .扩大为原来的9倍D .不变 7.若分式的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .B .C .D . 二、填空题 9.当x= 时,分式值为零. 10.计算.= . 11.用科学记数法表示0.002 014= .12.分式的最简公分母是____ ______.13.若方程无解,则__________________. 14.已知-=,则的值为________________.15.若=+(R 1≠R 2),则表示R 1的式子是________________. 16.某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________. 三、解答题17.计算:(1)(2x -3y 2)-2÷(x -2y )3; (2) ÷ +.x y 3πa 13+x 31+x aa 232+x xb a a --b a a --b a a +-a b a -ab a-2-a a 2+a aaa 24-2114339x x x +=-+-(0)xyx y x y+≠+x y 1334922+--x x x 72072054848x -=+72072054848x +=+720720548x -=72072054848x-=+22x x --2323()a b a b --÷222439xx x x --与322x mx x -=--m =a 1b 121ba ab-R 111R 21R 21+-x x 41222-+-x x x 11-x18.先化简,再求值:,其中. 19.解方程.20.先仔细看(1)题,再解答(2)题. (1)a 为何值时,方程= 2 + 会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3. (2)当m 为何值时,方程-=会产生增根?25.贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路 的长度.26.荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案. (1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成. 在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.211122x x x -⎛⎫-÷ ⎪++⎝⎭2x =21124x x x -=--3x x -3ax -1y y -2m y y -1y y-分式单元测试题2一、选择题 1.在,,,中,是分式的有( ). A .1个 B .2个 C .3个D .4个2.如果把分式中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍3.分式有意义的条件是( ). A .x ≠0 B .y ≠0 C .x ≠0或y ≠0 D .x ≠0且y ≠0 4.下列分式中,计算正确的是( ).A .B .C .D . 5.化简的结果是( ). A . B .a C .a -1 D .6.化简·(x -3)的结果是( ). A .2B .C .D . 7.化简,可得( ).A .B .C .D . 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .B .C .D .二、填空题9.当x =__________时,分式无意义.10.化简:=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2.12.已知x =2 012,y =2 013,则(x +y )·=__________. 13.观察下列各等式:,,,…,根据你发现的规律计算:=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.2a b -(3)x x x +5πx +a ba b+-2xx y+22x yx y-+2()23()3b c a b c a +=+++222a b a b a b +=++22()1()a b a b -=-+2212x y xy x y y x -=---211a a a a --÷1a 11a -21131x x x +⎛⎫- ⎪--⎝⎭21x -23x -41x x --1111x x -+-221x -221x --221xx -221xx --80705x x=-80705x x =+80705x x=+80705x x =-13x -22x y x y x y---2244x y x y+-1111212=-⨯1112323=-⨯1113434=-⨯2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+三、解答题17.化简:.18.已知x -3y =0,求·(x -y )的值. 19.(1); (2).20.已知y =.试说明不论x 为任何有意义的值,y 的值均不变.21.为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?32322222b b ab b a b a a b ab b a ++÷--+-2222x yx xy y+-+271326x x x +=++11222x x x-=---222693393x x x x x x x+++÷-+--分式单元测试题31. 当x=______时,分式212+-x x 有意义;当 x=_____时,分式)2)(1(12+--x x x 的值为0.2.根据分式的性质填空 (1)22()()x yy x y -=-; (2) 22()1a a a a -=--- 3.约分:21545x x -=_________;ayax yx --=_____________.4.分式21,,234y x x y xy的最简公分母是______________. 5.用科学记数法表示: 0.00000980 =____________________. 6. 计算:222x xy y ⎛⎫÷= ⎪-⎝⎭______________. 7.在3x π-,2a b +,13m +,2a a 中分式的个数是________个. 8. 关于x 的方程311x m x x -=--产生增根,则m 的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式单元练习题 姓名_____________学号____________
一、填空题
1、当_______x 时,分式31-+x x 有意义,当_______x 时,1
2+-x x 的值为0. 2、分式2
2)(,)(,ac y x y bc y x x ab xy +-的最简公分母是 ; 3、某种感冒病毒的直径是120000000000.0米,用科学记数法表示为 4、若解方程21533x x x -=---产生增根,则增根是 5、当=a ____________时,关于x 的方程
23ax a x +-=54
的解是1=x 二、计算题 (1)93234
96222-⋅+-÷-+-
a a
b a b a a (2)222x y xy x y x y +---
(3)22111a a a a a ++--- (4)29631a
a --+
三、解分式方程
(1)
14122-=-x x (2)1233x x x =+--
(3)
1412112-=-++x x x (4)2233111
x x x x +-=-+-
三、先化简,再选择一个你喜欢又使原式有意义的数代入求值:.1
21)11(2+-÷--a a a a
四、在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同
一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度。
五、某校师生去离校15km 的千果园参观,张老师带领服务组与师生队伍同时出发,服务组的行进速度是师生队伍的1.2倍,以便提前30分钟到达做好准备,求服务组与师生队伍的行进速度。
六、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数与甲队单独完成此项工程所需天数的比为4:5,求甲、乙两个施工队单独完成此项工程各需多少天?
七、关于x 的方程
233
x k x x =+--会产生增根,求k 的值。