新人教版八年级下数学第十六章分式单元检测题及答案

合集下载

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

第16章分式单元测试题(人教版初中数学八年级下册)

第16章分式单元测试题(人教版初中数学八年级下册)

第十六章 分式 单元测试题一、选择题1.在x 1、21、212+x 、y x +3、ma 1+中分式的个数有 ( )A .2个B .3个C .4个D .5个2.下列分式中一定有意义的是 ( )A .112+-x x B .21x x + C .1122-+x x D .12+x x3.如果226x x x ---=0,则x 等于 ( ) A .±2 B .-2 C .2 D .3 4.把分式2()a b ab+中的a b 和都扩大4倍,那么分式的值 ( ) A .扩大为原来的4倍 B .扩大为原来的2倍 C .缩小为原来的41D .不变 5.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=---6.若分式x -51与x322-的值互为相反数,则x = ( ) A .-2.4 B .125C .-8D .2.47.将()()1021,3,44-⎛⎫-- ⎪⎝⎭这三个数按从小到大的顺序排列,正确的结果是 ( )A .()03-<114-⎛⎫ ⎪⎝⎭<()24- B .114-⎛⎫⎪⎝⎭<()03-<()24-C .()24-<()03-<114-⎛⎫ ⎪⎝⎭ D .()03-<()24-<114-⎛⎫⎪⎝⎭8.已知311=-y x ,则yxy x y xy x ---+55的值为 ( ) A .27-B .27C .72D .72-9.如果关于x 的方程xmx x -=--552无解,则m 的值为 ( ) A .-2 B .5 C .2 D .310.能使分式221x xx --的值为零的所有x 的值是 ( )A .0x =B .1x =C . 0x =或1x =D .0x =或1x =± 11.若22347x x ++的值为14,则21681x x +-的值为 ( )A .1B .-1C .-17D .1512.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5 天交货,设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+二、填空题13.科学家发现一种病毒的长度约为0.000043mm ,科学记数法表示0.000043的结果为 .14.不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05.0012.02.0x x .15.化简:3222222232a b a b a abab a ab b a b+--÷++-= . 16.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u+1v =1f. 若f =6厘米,v =8厘米,则物距u = 厘米.17.已知:15a a+=,则4221a a a ++=_____________.18.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,那么代数式2222a b a b--的值是____________.三、解答题19.计算:(1)22225103721x y y y x x ÷; (2)2113()1244x x x x x x x -++-÷++++.20.先化简代数式222222()()()a b a b aba b a b a b a b +--÷-+-+,然后请你任意先择一组你自己所喜欢的,a b 的值代入求值.21.解方程:(1)21133x x x -+=--; (2)1617222-=-++x x x x x .22.已知下面一列等式.(1)请你按这些等式左边的结构特征写出它的一般性等式:1×12=1-12;12×13=12-13;13×14=13-14;14×15=14-15;……(2)验证一下你写出的等式是否成立. (3)利用等式计算:1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x ++++++++++.23.若方程122-=-+x ax 的解是正数,求a 的取值范围.关于这道题,有位同学做出如下解答:解 :去分母得,22x a x +=-+. 化简,得32x a =-.故23ax -=. 欲使方程的根为正数,必须23a->0,得a <2. 所以,当a <2时,方程122-=-+x ax 的解是正数.上述解法是否有误?若有错误请说明错误的原因,并写出正确解答;若没有错误,请说出每一步解法的依据.24.用价值为100元的甲种涂料与价值为200元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克售价是多少元?25.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成.问原来规定修好这条公路需多长时间?26.为增强市民节水意识,某自来水公司水费计算办法如下:若每户每月用水不超过5m 3,则每立方米收费1.5元;若每户每月用水超过5m 3,则超过部分每立方米收取较高的定额费用.2月份,小王家用水量是小李家用水量的23,小王家当月水费是17.5元, 小李家当月水费是27.5元,求超过5m 3的部分每立方米收费多少元?参考答案 一、选择题1-5 BACCD 6-10 DABDA 11-12 AD 二、填空题13. 54.310-⨯ 14.100650025x x --- 15.2ab 16.24 17.24 18.5三、解答题19.(1)32x y ;(2)21x x +-+. 20.化简结果为a b +,(取值要求:a b ≠). 21.(1)2x =;(2)3x =. 22.(1)1n ·11111n n n =-++;(2)111n n -=+1(1)(1)n n n n n n +-++1(1)n n =+1n =·11n +;(3)244x x +. 23.有错,当a <2时,分母有可能为零;改正:因为2x ≠,所以223a -≠,4a ≠-,所以结果为a <2且4a ≠-. 24.9元. 25.12个月. 26.2元/吨.。

最新八年级下期数学第十六章分式单元测试题及答案

最新八年级下期数学第十六章分式单元测试题及答案

八年级下期数学第十六章分式单元测试题及答案一、选择题(本题共16分,每小题2分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列各式中,一定成立的是( )A 、1-=---b a a b B 、()222b a b a -=- C 、y x yx xy y x -=---1222 D 、()2222a b b ab a -=+- 3、与分式23.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 4、下列分式中的最简分式(不能再约分的)是( )A 、112++a aB 、aa a 222++ C 、cd ab 42 D 、2)1(22++a a 5、下列说法正确的是 ( )A 、若n m >,则88->-n mB 、42≤-x 的解集是2≥xC 、当m =32时, m m 23-无意义 D 、分式2)2(++m m m 总有意义6、下列从左边到右边的变形正确的是( )A 、)32(4124822b a ab ab ab b a -=--B 、22)21(41-=+-x x x C 、mm m 2321=+ D 、1=-+-b a b b a a7、若分式)1)(4()4)(4(--+-m m m m 的值为零,则m = ( )A 、±4B 、 4C 、 4-D 、 18、下列化简正确的是 ( )A 、b a b a b a +=++2B 、1-=+--b a b aC 、1-=---b a b aD 、b a b a b a -=--22二、填空题(本题共16分,每小题2分)1、 当x 时,分式42+-x x 有意义。

2、若32=a b ,则=+-ba b a 。

3、当x 时,分式242+-x x 的无意义;(1分) 当x 时,分式242+-x x 值为零;(1分) 4、计算(结果用科学计数技术法表示)(1) (3×10-8)×(4×103)= (1分) (2) (2×10-3)2÷(10-3)3 = (1分)5、化简:ab bc a 2= ,(1分) 12122+--x x x -2122x x -- = ;(1分) 6、化简:a y ya 242-⋅= ,(1分) =-÷+-)1(11m m m . (1分) 7、如果分式333++x x x 与的差为2 ,那么x 的值是 . 8、若=++≠==a c b a a c b a 则),0(753 .三、化简、计算(本题共25分,第1—5题每小题4分,第6题5分)1、a b a b a b a -+-+2、y y y y y y 93322-⋅⎪⎪⎭⎫ ⎝⎛+--3、 19)1(961222--⨯+÷++-a a a a a a4、x x x x x x x x -÷+----+4)44122(225、2224442yx x y x y x y x y y x x +÷--+⋅-6、已知:ba ab ab b a ++-==+21,4求:的值。

新人教版八年级下数学第十六章分式单元检验题及答案

新人教版八年级下数学第十六章分式单元检验题及答案

八年级 ( 下 >数学单元检测题<第十六章 分式)一、选择题 <每题3 分,共 30 分)1.以下式子是分式的是< )A .xB.2C .xD. x y2x22.以下各式计算正确的选项是<)A . a a 1B .bb 2C .n na, a 0bb 1aabmmaD .nn a mm a3.以下各分式中,最简分式是< )A .3 x yB. m 2n 2 C .a 2b 27 x ymna 2b ab 2D .x 2 y 2x 2 2 xy y 24.化简 m23m的结果是 <)9 m 2mB.m C.mm A.m3D.3 mm 3m 35.若把分式xy中的 x 和 y 都扩大 2 倍,那么分式的值<)xyA .扩大 2 倍B .不变C .减小 2倍D .减小 4倍6.若分式方程1 3ax有增根,则 a 的值是 < )x 2a xA . 1B . 0C.— 1 D .— 27.已知abc ,则 a b的值是 <)234 cA .4B.7D.5 5448.一艘轮船在静水中的最大航速为30 千 M/时,它沿江以最大航速顺水航行100 千 M 所用时间,与以最大航速逆流航行 60 千 M 所用时间相等,江水的流速为多少?设江水的流速为x 千 M/时,则可列方程<)Xs3IIMCUcUA. 10060B. 100x 60x3030x x3030C. 10060D. 100x 6030x30x x30309.某学校学生进行急行军训练,估计行60 千 M的行程在下午 5 时抵达,后出处于把速度加速20% ,结果于下午 4 时抵达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程 <) Xs3IIMCUcUA.60x 601 B.60601x20%x x 20%60601 D.60601C.x(1x x(120%)x20%)10. 已知a b c k ,则直线 y kx2k 必定经过<)c a c a bbA. 第一、二象限B.第二、三象限C.第三、四象限D. 第一、四象限二、填空题 <每题 3分,共 18分)11.计算 a 2 b3(a2 b) 3=.12.用科学记数法表示—0.000 000 0314=.132a1..计算a 24a214.方程3704的解是.x x9,16,25,36,15.瑞士中学教师巴尔末成功地从光谱数据中获得5122132巴尔末公式,进而翻开了光谱神秘的大门。

人教版八年级数学下册第十六章测试卷及答案

人教版八年级数学下册第十六章测试卷及答案

人教版八年级数学下册第十六章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.在下列各式中,不是二次根式的有( )同号,且A.3个 B.2个 C.1个 D.0个2.( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-13. 下列式子中,为最简二次根式的是( )A4. 下列计算错误的是( )A BC D5.下列计算正确的是( )A.32=6 B.(-25)3=-85C.(-2a2)2=2a4 D6.若实数a,b满足ab>0,则化简( )A7.( )A.5和6之间 B.6和7之间C.7和8之间 D.8和9之间8.若x<0,( )A.0 B.-2 C.0或2 D.29.已知a,b,c为△ABC的三边长,|b-c|=0,则△ABC的形状是( ) A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10. 已知实数x,y满足:y( )A..5二.填空题(共8小题,每小题3分,共24分)11.计算_______.12. 已知a <2,_________.13.如图是一个简单的数值运算程序,当输入x ,则输出的值为________.输入x →→输出14.在△ABC 中,a,b,c 为三角形的三边长,化简2|c -a -b|=________.15.x 的取值范围是________.16.实数a,b 在数轴上对应点的位置如图所示,______.17.某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B 处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n(n >1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k 的代数式表示).18.已知三角形的三边长分别为a,b,c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S 其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 若一个三角形的三边长分别为2,3,4,则其面积是________.三.解答题(共7小题, 66分)19.(8分) 计算下列各式:;20.(8分) 先化简,再求值:a 2-b 2a ÷(a -2ab -b 2a ),其中a 2,b 2.21.(8分) 已知x 2,求(9+2-2)x +4的值.22.(8分) 已知实数a,b 满足(4a -b +11)20,求1的值.23.(10分)如图,用两个边长均为的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长.宽之比为4∶3,且面积为720 cm 2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.24.(10分) 先阅读材料,再回答问题:已知x1,求x2+2x-1的值.计算此题时,若将x1直接代入,则运算非常麻烦.仔细观察代数式,发现由x1,得x+1所以(x+1)2=3.整理,得x2+2x=2.再代入求值会非常简便.解答过程如下:解:由x1,得x+1∴(x+1)2=3.整理,得x2+2x=2,∴x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x2,求6-2x2+8x的值.25.(14分) (1)用"="">""<"填空:4++16________2+5________2(2)由(1)中各式猜想m+n与,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?参考答案1-5BABCD 6-10ABDBD12. 2-a14. -a -3b +3c15. x>216. -2a 17.k n19. 解:(1)原式=2=5;(2)原式=20.解:原式=(a +b)(a -b)a ÷a 2-2ab +b 2a =(a +b)(a -b)a ·a(a -b)2=a +b a -b .当a 2,b 2时,21. 解:原式=(9+2)2-2)+4=(9+--1+4=81-80-1+4=422. 解:由题意得{4a -b +11=013b -4a -3=0解得{a =14b =12.则1==14×14×223. 解:(1)30(cm)(2)不能,理由如下:设长方形纸片的长为4x cm,宽为3x cm,则4x·3x =720,解得x =∴4x =30,∴不能剪出符合要求的长方形纸片24. 解:由x 2,得x -2∴(x -2)2=5.整理,得x 2-4x =1,∴6-2x 2+8x =6-2(x 2-4x)=6-2×1=4.25. 解:(1)>;>;=(2)m 理由如下:当m≥0,n≥0时2≥0,∴2-2≥0.∴m -∴m (3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a >0,b >0,ab =200.根据(2)中的结论可得a 2×20=40,∴所用的篱笆至少为40 m.。

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

八年级(下)数学单元检测题(第十六章 分式)一、选择题(每小题3分,共30分)1.下列式子是分式的是( B )A .2xB .x 2C .πx D .2y x + 2.下列各式计算正确的是(C )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( A )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( B ) A.3+m m B.3+-m m C 。

3-m m D 。

m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( C ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( D ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( D ) A .54 B. 47 C.1 D 。

45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( A )A .x x -=+306030100B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( D )A .1%206060++=x x B. 1%206060-+=x x C 。

八年级数学下册第十六章《分式》单元 解答题大全 新课标人教版 (14)

八年级数学下册第十六章《分式》单元 解答题大全 新课标人教版 (14)

八年级数学下册第十六章《分式》单元解答题大全 新课标人教版1. 阅读命题:计算:111.(1)(1)(2)(2)(3)x x x x x x +++++++ 解:原式=11111111223xx x x x x -+-+-+++++=113.3(3)x x x x -=++ 请仿照上题,计算123.(1)(1)(3)(3)(6)x x x x x x +++++++ 2. x 为何值时,分式9322-+x x 的值为正数?3. 先化简()÷(1﹣),然后从﹣<x <范围内选取一个合适的整数作为x 的值代入求值.4. 已知269a a -+与1b -互为相反数,求()()ab a b ba-÷+的值.5. 通分:c ab y b a x 2296与 1612122-++-a a a a 与 6. 解答⑴当a 为何值时,分式方程)1)(2(21221+-+=+----x x ax x x x x (1)分式方程无解?(2)分式方程解就负数?7. 已知x 的方程x mm x x -=----3434无解,求m 的值。

8. 已知:x+x 1 =2,求x 2+(x1)2的值.9. 若5-a 和()24+b 互为相反数,求()222114b ab a b a a b b a b a ab ++÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-+-. 10. 阅读并理解下面解题过程: 因为a 为实数,所以11,022≥+≥a a ,所以11102≤+<a .请你解决如下问题: 求分式546422+-+-x x x x 的取值范围. 11.先化简,再求值..31,3,2222==--+-y x y x y x y x 其中 12. ·· 已知x =2011,y =2012,求代数式22x y xy y x x x ⎛⎫--÷- ⎪⎝⎭的值. 13. 先化简,再求值:,其中x 是不等式3x+7>1的负整数解. 14. 提高题 ①已知1x-1y=3,求5352x xy yx xy y+---的值 ②已知a 2-4a+9b 2+6b+5=0,求1a-1b 的值.③已知x+1x=3,求2421x x x ++的值。

(完整版)新人教版八年级数学下册第十六章分式过关练习题附答案-副本

(完整版)新人教版八年级数学下册第十六章分式过关练习题附答案-副本

分式综合检测题A卷一、选择题1.在以下各式中,分式的个数是()a2 , 1 , a , x2 , m2,xy ,2 a b x 1 x x A.3B.4C.5D.2 2.以下各式中不是分式的是()A x. B .xC .abD .1 13 x xy x3.已知分式x21的值等于零,x 的值为()3x 3A.1 B.1C.1D.12 4.有理数a、b 在数轴上的对应点如图:代数式a b的值()a bA.大于 0 B .小于 0 C .等于 0 D .不可以确立5.假如分式x 1存心义,那么x 的取值范围是()x 3A.x 0 B .x1 C .x3 D. x 3 6.以下式子正确的选项是()A.bb2 B .a b0 C.a b1D. 0.1a 0.3b a 3b a a2 a b a b 0.2a b2a b7.6表示一个整数,则整数x 的可能取值的个数是()1 xA .8B.6C .5D.48.汽车从甲地开往乙地, 每小时行驶 v 1 千米, t 小时后能够抵达, 假如每小时多行驶 v 2千米,那么能够提早抵达的小时数是( )A . v 2tB .v 1t C .v 1v2D .v 1tv 2t v 1 v 2v 1 v 2v 1 v 2v 2v 1二、填空题(每空 3 分,共 30 分)1.若分式 ab 中的 a 和 b 都扩大到 10 a 和 10 b ,则分式的值扩大__________ 倍 .a b2.分式 1, 2x ,3y的最简公分母是 ___________.x x 2 4 2 x3.当 m 4 时,方程 mxn 4x 的解是 ___________.4.计算1 1 r __________.rs rs24k k 2ak 0 ,用含有 b 、 k 的代数式表示 a ,则 a_________.5.已知 b6.假如x 1 2 3 1x有增根,那么增根是 _________.2 x7.假如x 2 y 1,那么x_________.x 3 y8.(08 年宁夏回族自治区 ) 某市对一段全长 1500 米的道路进行改造. 原计划每日修 x 米, 为了尽量减少施工对城市交通所造成的影响,实质施工时,每日修路比原计划的 2 倍还多35 米,那么修这条路实质用了天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)数学单元检测题
(第十六章 分式)
一、选择题(每小题3分,共30分)
1.下列式子是分式的是( )
A .2x
B .x 2
C .π
x D .2y x + 2.下列各式计算正确的是( )
A .11--=b a b a
B .ab
b a b 2
= C .()0,≠=a ma na m n D .a m a n m n ++= 3.下列各分式中,最简分式是( )
A .()()y x y x +-73
B .n m n m +-22
C .2222ab b a b a +-
D .222
22y
xy x y x +-- 4.化简2
293m m m --的结果是( ) A.3+m m B.3
+-m m C.3-m m D.m m -3 5.若把分式xy
y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 6.若分式方程
x a x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2
7.已知432c b a ==,则c
b a +的值是( ) A .54 B. 47 C.1 D.4
5 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )
A .
x x -=+306030100 B .30
6030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后
来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( )
A .
1%206060++=x x B. 1%
206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)
(x x 10.已知 k b a c c a b c b a =+=+=+,则直线2y kx k =+一定经过( ) A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
二、填空题(每小题3分,共18分)
11.计算2323()a b a b --÷= .
12.用科学记数法表示—0.000 000 0314= .
13.计算22142
a a a -=-- . 14.方程3470x x
=-的解是 . 15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴
尔末公式,从而打开了光谱奥秘的大门。

请你尝试用含你n 的式子表示巴尔末公式 .
16.如果记 2
2
1x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2
211211=+;f(12)表示当x=12时y 的值,即f(12)=221()1215
1()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n )= (结果用含n 的代数式表示).
三、解答题(共52分)
17.(10分)计算:
(1))2(216322b a a bc a b -⋅÷ ; (2)93234962
22-⋅+-÷-+-a a b a b
a a .
18.(10分)解方程求x :
(1)114112=---+x x x ; (2)0(,0)1
m n m n mn x x -=≠≠+.
19.(7分)有一道题: “先化简,再求值:22241()244
x x x x x -+÷+-- 其中,x=—3”. 小玲做题时把“x=—3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?
20.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。

某校师生也活动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?
21.(8分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内
按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.
22.(9分)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.
参考答案
一、选择题
BCABC DDADB
二、填空题
11、46a b 12、8
3.1410--⨯ 13、12a + 14、30 15、2
2(2)(2)4n n ++- 16、12
n - 三、解答题
17、(1)234a c -;(2)2
3(2)
a b --. 18、(1)1x =为增根,此题无解;(2)m x n m =
-. 19、解:原式计算的结果等于24x +, …………………………………6分
所以不论x 的值是+3还是—3结果都为13 …………………………7分
20、解:设第一天参加捐款的人数为x 人,第二天参加捐款的人数为(x+6)人, …………………………………………1分 则根据题意可得:480060005
x x =+, …………………………………4分 解得:20x =, ……………………………………………………6分 经检验,20x =是所列方程的根,所以第一天参加捐款的有20人,第二天有26人,两天合计46人. …………………………………………………8分
21、解:设前一小时的速度为xkm/小时,则一小时后的速度为1.5xkm/小时, 由题意得:1801802(1)1.53
x x x ---=, 解这个方程为182x =,经检验,x=182是所列方程的根,即前前一小时的速度为182.
22、解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³. ………………………………………………1分
根据题意,得 10%)251(9096=+-x
x . ………………………4分 解这个方程,得x =2.4. ……………………………………7分 经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元).
所以,该市今年居民用气的价格为3元/ m³. ………………9分。

相关文档
最新文档