分式单元测试题(含答案)

合集下载

分式单元测试题及答案

分式单元测试题及答案

分式单元测试题学生______ 日期_______ 得分_______一、填空题(每小题2分,共24分)1.将2()a b c ÷-写成分式的形式:________.2.用22,,1a x -+中的任意两个代数式组成一个分式:________.3.当x ________时,分式12x 有意义. 4.若2x =-,则分式22x-=________. 5.当x ________时,分式1x x -无意义. 6.当x ________时,分式32x x-的值为零. 7.计算:b a a b⋅=________. 8.化简:222a ab a=+________. 9.计算:232233-⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭________. 10.计算:511212x x+=________. 11.用科学记数法表示:0.0000056-=____________________.12.写成不含有分母的式子,323()a b a b -=- ________. 二、选择题(每小题3分,共12分)13.下列各式中,是分式的是 ( ).(A )12; (B )23a ; (C )222x x + ; (D )212x x +.14.下列方程中,2x =不是它的一个解的是( )(A )152x x +=;(B )240x -=;(C )2122x x x +=--;(D )22032x x x -=++.15.下列分式中,是最简分式的是( ).(A )x xy 2; (B )a xy 2; (C )221++x x ; (D )222yxy y x ++ .16.下列化简过程正确的是( ).(A )421262x x x =; (B )y x y x y x +=-+122; (C )x x x x x 3123222+=+ ; (D )2362+=---x x x x .三、计算题(每小题7分,共28分)17.22226543425x x x x x x x -++⋅+-- . 18.22562321x x x x x x -+-÷+++ .19.223123x x x ----2223x x x +--221223x x x -+--. 20.221x x y x y --+.四、解方程(每小题7分,共28分)21.213121x x =+-. 22.5155x x x -+=++.23.23856x x x -=-+2456x x x --+. 24.12x x -=+23x x -+.五、应用题(共8分)25.小丽、小明练习打字,小丽打字速度是小明的1.2倍,同样打600个字,小丽比小明少用1分钟,问小丽每分钟打字多少个?答案:1. 2a b c - .2. 2a -等. 3. 0x ≠. 4. 12. 5.1x =. 6.3x =. 7.1.8. 11b +. 9. 23 .10. 12x.11. 65.610--⨯ .12. 1323()a b a b ----. 13.(D ). 14.(C ). 15.(B ). 16.(D ).17.5x x + . 18.32x x -+ .19.23x x --. 20.22y x y -. 21.3x =. 22.无解. 23.无解.24.12x =-. 25.小丽每分钟打字120个.。

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

分式单元测试题(含答案)

分式单元测试题(含答案)

四、解方程:(6 分)
23. 1 2 12 。 x 3 3 x x2 9
五、列方程解应用题:(10 分) 24.甲、乙两个工程队共同完成一项工程,乙队先单独做 1 天, 再由两队合作 2 天就完成全部工程,已
知甲队与乙队的工作效率之比是 3:2,求甲、 乙两队单独完成此项工程各需多少天?
A.2 或-2
B.2
C.-2
D.4
2x 5 y
5.不改变分式
2 的值,把分子、分母中各项系数化为整数,结果是( )
2 x y
3
2x 15y
A.
4x y
4x 5y
B.
2x 3y
6x 15y
C.
4x 2y
12x 15y
D.
4x 6y
a2 ab
4a
1
6.分式:①
,②
,③
,④
x 1
件的 m 的值;若不存在,请说明理由。
(2)当 x 4sin 300
10 、 y tan 600 时,求 1
2x x y


x2
2xy 3x 3y
y2

x 2 xy x2 y2
值。
的 8、某商店在“端午节”到来之际,以 2400 元购进一批盒装粽子,节日期间每盒 按进价增加 20%作为售价,售出了 50 盒;节日过后每盒以低于进价 5 元作为售 价,售完余下的粽子,整个买卖过程共盈利 350 元,求每盒粽子的进价.
19.当 x
3 x 时,分式 的值为负数.
2x
20.计算(x2 y2 y x
三、计算题:(每小题 6 分,共 12 分)
21. 3 6 x 5 ; x 1 x x2 x

分式单元测试题(含答案)

分式单元测试题(含答案)

(时间:60分钟,满分:100分)一、填空题:(每题2分,共22分)1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x +x=3,则421x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+-- 16.下列分式一定有意义的是( )A .21x x +B .22x x +C .22x x -- D .23x x + 17.已知a 2+b 2=6ab 且a>b>0,则a b a b+-的值为( )A B C .2 D .±218.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4 B .4804804x x -+=20 C .48048020x x -+=4 D .4804804x x --=20 三、计算题;(每题3分,共12分)19.2224422a a a a a a +-+-+ 20.11a --1-a21.2242()4422x x x x x x x ---÷-++-; 22.1-22244x y x y x y x xy y--÷+++.四、解答题(每题4分,共8分)23.321(1)x x x x +---=0 24.5425124362x x x x -+=---五、解答题(每题6分,共18分)25.先化简,再用你喜爱的数代入求值:2232214()2442x x x x x x x x x+---÷--+-26.若235x y z ==,且3x+2y-z=14,求x ,y ,z 的值.27.阅读下列材料: x+1x =c+1c 的解是x 1=c ,x 2=1c; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c; x+2x =c+2c 的解是x 1=c ,x 2=2c; x+3x =c+3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x+m x =c+m c (m ≠0)的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x+2211a x a =+--.六、解决问题(共26分)28.(8分)甲,乙两地相距19km ,某人从甲地出发去乙地,先步行7km ,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速度是骑自行车的速度的13,求步行和骑自行车的速度各是多少.30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.(1)这个学校八年级的学生总数在什么范围内(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人参考答案1.≠3 =322.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b+ 6.0 7.2或4 8.-1 9.150 10.-•1 •11.1812.B 13.D 14.C 15.C 16.A 17.A 18.C19.22a - 20.221a a -- 21.82x + 22.-y x y + 23.无解 24.无解 25.2x x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m c (2)x 1=a ,x 2=11a a +- 28.•步行速度为5km/h ,骑自行车速度为20km/h29.步行速度为6km/h ,•骑自行车速度为18km/h •30.(1)人数多于240人,不大于300人 (2)300人第7章测试卷讲评课Ⅰ.本题针对第7题●反馈 若31a +表示一个整数,则整数a 可以取哪些值 Ⅱ.本题针对第11题●反馈 已知x=12,求351x x x ++的值. Ⅲ.本题针对第26题●反馈1 已知1x -1y=3,求55x xy y x xy y +---的值. ●反馈2 已知234x y z ==,求2222323x y z xy yz xz -+-+的值. ●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求22222223657x y z x y z ++++的值. Ⅳ.本题针对第28,29题●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.参考答案Ⅰ.反馈:2,0,-2,-4Ⅱ.反馈:由x=12,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1, 所以33322255532331(1)(1)11x x x x x x x x x x x x x x xx x x +++++++========Ⅲ.反馈1:72反馈2:173反馈3:1Ⅳ.反馈:原来送货人有14人,销售人员有112人.&。

分式单元测试一(附答案)

分式单元测试一(附答案)

分式1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+ (4)x yx y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111xx x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。

(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xyx -++ 的值。

(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。

(4)已知0132=+-a a ,求142+a a 的值。

4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。

5、解下列分式方程:(1)x x x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。

8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。

八年级上册数学《分式》单元测试含答案

八年级上册数学《分式》单元测试含答案

一.选择题
1.若分式 在实数范围内有意义,则实数x的取值范围是()
A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
[答案]D
[解析]
[分析]
直接利用分式有意义的条件分析得出答案.
[详解]∵代数式 在实数范围内有意义,
∴x+2]本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
[分析]
根据题意可得 ,解方程组可得A,B,再代入求值.
[详解]解:∵ ,
∴ ,
解得 ,
∴3A﹣B=6﹣4=2.
故3A﹣B的值是2.
[点睛]本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.
17.先约分,再求值: 其中 .
[答案]
[解析]
分析:先把分式的分子分母分解因式,约分后把A、B的值代入即可求出答案.
∴3x=36.
答:自行车的速度是12km/h,公共汽车的速度是36km/h.
[点睛]本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了 ,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
[答案]
[解析]
[分析]
分式方程两边同乘3(x+1),解出x的解,再检验解是否满足.
[详解]解:方程两边都乘 ,
得: ,
解得: ,
经检验 是方程的解,
原方程的解为 .
[点睛]本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.
16.若A,B为实数,且 ,求3A﹣B的值.

八年级上册数学《分式》单元综合测试题(附答案)

八年级上册数学《分式》单元综合测试题(附答案)
A. B. C. D.
[答案]A
[解析]
设安排x人加工A零件,加工B零件的是26-x,
,所以选A.
7.若关于x的分式方程 的解为正数,则满足条件的正整数m的值为()
A. 1,2,3B. 1,2C. 1,3D. 2,3
[答案]C
[解析]
试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,
分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.
[详解]解:方程两边都乘(x+1)(x-1)得,m-1-(x+1)=0,
解得,x=m-2,
(x+1)(x-1)=0,即x=±1时最简公分母为0,分式方程无解.
①x=-1时,m=1,
②x=1时,m=3,
所以m=1或3时,原方程无解.
答:每个机器人的标价至少是1190元.
考点:分式方程的应用;一元一次不等式的应用.
A. B. C. D.
4.下列运算结果为x-1的是()
A. B. C. D.
5.对于实数 定义一种新运算”*”: ,例如 ,则方程 的解是()
A B. C. D.
6.某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件 加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得( )
C、 分母中含有字母,因此是分式,故C正确;
D、 分母中均不含有字母,因此它们是整式,而不是分式,故D错误.
故选C.
[点睛]本题主要考查分式的定义,注意π不是字母,是常数,所以 是整式,而不是分式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 分式单元测试题
(时间:60分钟,满分:100分)
一、填空题:(每题2分,共22分) 1.当x_______时,分式
1
3
x x +-有意义,当x_______时,分式23x x -无意义.
2.当x_______时,分式29
3
x x --的值为零.
3.分式
311,,46y xy x xyz
-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a
a b
-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成. 6.若分式方程1
x x a
++=2的一个解是x=1,则a=_______. 7.若分式
1
3x
-的值为整数,则整数x=_______. 8.已知x=1是方程111
x k x
x x x +=
--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元. 10.已知
224(4)4
A Bx C
x x x x +=+++,则B=______.
11.若
1x +x=3,则421
x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:
3,7a b a +,x 2+12y 2,5,1,
18x
x π
-其中分式有( ) A .1个 B .2个 C .3个 D .4个 13.如果把分式
2x
x y
+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变
14.下列约分结果正确的是( )
A .2222881212x yz z x y z y =
B .22x y x y --=x-y
C .2211m m m -+--=-m+1
D .a m a
b m b
+=+
15.与分式
x y
x y
-++相等的是( ) A .
x y x y +- B .x y x y -+ C .-x y x y -+ D .x y
x y
+-- 16.下列分式一定有意义的是( )
A .21x x +
B .22
x x
+ C .22x x -- D .23x x +
17.已知a 2
+b 2
=6ab 且a>b>0,则
a b
a b
+-的值为( )
A B C .2 D .±2
18.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任
务,若设原计划每天挖xm ,那么所列方程正确的是( )
A .
48048020x x --=4 B .480480
4x x -
+=20 C .48048020x x -+=4 D .480480
4x x
-
-=20 三、计算题;(每题3分,共12分)
19.2224422a a a a a a +-+-+ 20.1
1
a --1-a
21.
2
2
42
()
4422
x x x
x x x x
--

-++-
; 22.1-
22
244
x y x y
x y x xy y
--
÷
+++
.
四、解答题(每题4分,共8分)
23.
32
1(1)
x
x x x
+
-
--
=0 24.
54251
24362
x x
x x
-+
=-
--
五、解答题(每题6分,共18分) 25.先化简,再用你喜爱的数代入求值:2232
214
()2442x x x x x x x x x +---÷
--+- 26.若235
x y z
==,且3x+2y-z=14,求x ,y ,z 的值.
27.阅读下列材料:
x+1x =c+1c 的解是x 1=c ,x 2=1c ; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c ;
x+2x =c+2c 的解是x 1=c ,x 2=2c ;
x+3x =c+3c 的解是x 1=c ,x 2=3c

……
(1)请观察上述方程与解的特征,猜想方程x+m x =c+m
c
(m ≠0)的解,并验证你的结论;
(2)利用这个结论解关于x 的方程:x+2211
a x a =+--.
六、解决问题(共26分)
28.(8分)甲,乙两地相距19km,某人从甲地出发去乙地,先步行7km,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.
29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速
度是骑自行车的速度的1
3
,求步行和骑自行车的速度各是多少.
30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.
(1)这个学校八年级的学生总数在什么范围内?
(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人?
参考答案
1.≠3 =
3
2
2.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b
+
6.0 7.2或4 8.-1 9.150 10.-•1 •11.
1
8
12.B 13.D 14.C 15.C 16.A 17.A 18.C
19.22a - 20.221a a -- 21.8
2
x + 22.-y x y +
23.无解 24.无解 25.
2
x
x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m
c
(2)x 1=a ,x 2=11a a +-
28.•步行速度为5km/h ,骑自行车速度为20km/h 29.步行速度为6km/h ,•骑自行车速度为18km/h •30. (1)人数多于240人,不大于300人 (2)300人
第7章测试卷讲评课
Ⅰ.本题针对第7题 ●反馈 若
3
1
a +表示一个整数,则整数a 可以取哪些值? Ⅱ.本题针对第11题
●反馈 已知,求35
1
x x x
++的值. Ⅲ.本题针对第26题 ●反馈1 已知
1x -1
y
=3,求55x xy y x xy y +---的值.
●反馈2 已知234
x y z
==,求2222323x y z xy yz xz -+-+的值.
●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求222
222
23657x y z x y z ++++的值.
Ⅳ.本题针对第28,29题
●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.
参考答案
Ⅰ.反馈:2,0,-2,-4
Ⅱ.反馈:由x=
1
2
,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1,
所以333222
5553233
1(1)(1)11x x x x x x x x x x x x x x x x x x +++++++=======
=
Ⅲ.反馈1:
72 反馈2:17
3
反馈3:1
Ⅳ.反馈:原来送货人有14人,销售人员有112人.。

相关文档
最新文档