LLC半桥谐振资料AN2450

合集下载

LLC谐振电路工作原理及参数

LLC谐振电路工作原理及参数

实现方式
通过调整电路元件的参数 或添加阻抗变换器来实现 阻抗匹配。
影响
阻抗匹配可以提高信号传 输效率,减小信号损失和 反射,提高系统的稳定性。
04
LLC谐振电路设计
设计流程
确定目标输出电压和电流
根据应用需求,确定LLC谐振电路的 目标输出电压和电流。
选择合适的磁性元件
根据目标输出电压和电流,选择合适 的变压器和电感器。
当LLC转换器工作在容性工作状态时, 转换器的输入电压低于其输出电压。 此时,转换器的效率较低,输出功率 较小。
03
LLC谐振电路参数
品质因数Q
01
定义
品质因数Q是衡量电感或电容的 储能与耗能之间的比值,用于描 述电路的频率选择性。
02
03
计算公式
影响
$Q = frac{2pi f_0W}{P}$,其中 $f_0$是谐振频率,W是储能,P 是耗能。
根据谐振频率和电感器的值,计算电容器的容量。
确定电阻的阻值
根据输出电压和电流,确定电阻的阻值,以实现电流限制或电压调 节。
仿真与优化
使用仿真软件进行电路仿真
使用仿真软件对LLC谐振电路进行建模和仿真, 以验证设计的正确性和性能。
优化电路参数
根据仿真结果,优化电路参数,以提高效率、 减小体积或降低成本。
LLC谐振电路工作原理及 参数
• LLC谐振电路概述 • LLC谐振电路工作原理 • LLC谐振电路参数 • LLC谐振电路设计 • LLC谐振电路性能测试 • LLC谐振电路实际应用案例
01
LLC谐振电路概述
定义与特点
定义
LLC谐振电路是一种电子电路,由 电感、电容和电抗元件组成,通 过调整元件参数,使电路在特定 频率下产生谐振。

半桥LLC谐振转换器的配置与特性讲解

半桥LLC谐振转换器的配置与特性讲解

半桥LLC谐振转换器的配置与特性讲解
等离子和液晶电视如今已经走入了千家万户,这两种电器的开关电源设计比较特殊,只能采用有源或者无源PFC模式,并且需要能够长时间在无散热通风的环境下工作。

这就要求电源不仅要拥有高功率密度和平滑的电磁干扰信号,还要尽量少的使用元器件。

而在这些方面,半桥LLC谐振转换器拥有诸多的优势。

 半桥LL谐振电容和谐振电感的配置
 单谐振电容和分体谐振电容都存在于半桥转换器当中。

如图1所示。

对于单谐振电容配置而言,它的输入电流纹波和均方根(RMS)值较高,而且流经谐振电容的均方根电流较大。

这种方案需要耐高压(600~1,500V)的谐振电容。

不过,这种方案也存在尺寸小、布线简单等优点。

 (a)单谐振电容;(b)分体谐振电容。

 图1:半桥LLC转换器的两种不同配置
 分体谐振电容相较于单个谐振电容而言,其输入电流纹波和均方根值较小。

谐振电容仅处理一半的均方根电流,且所用电容的电容量仅为单谐振电容的一半。

当利用钳位二极管(D3和D4)进行简单、廉价的过载保护时,这种方案中,谐振电容可以采用450V较低额定电压工作。

 顾名思义,半桥LLC转换器中包含2个电感(励磁电感Lm和串联的谐振电感Ls)。

根据谐振电感位置的不同,谐振回路也包括两种不同的配置,一种为分立解决方案,另一种为集成解决方案。

这两种解决方案各有其优缺点,采用这两种方案的LLC的工作方式也有轻微差别。

 将谐振电感安装在变压器外面是有目地的。

其能够帮助设计者提高设计的。

半桥llc谐振变换器工作原理_概述及解释说明

半桥llc谐振变换器工作原理_概述及解释说明

半桥llc谐振变换器工作原理概述及解释说明1. 引言1.1 概述本篇文章主要介绍了半桥LLC谐振变换器的工作原理,从基础概念出发,逐步深入解释其原理和设计考虑。

半桥LLC谐振变换器作为一种高效率、高稳定性的电源转换器,在工业、计算机以及新能源领域应用广泛。

通过该文章的阅读,读者可以全面了解半桥LLC谐振变换器的内部结构、工作原理以及应用案例分析,并对实现该变换器的关键要点有所掌握。

1.2 文章结构本文共分为五个主要部分:引言、半桥LLC谐振变换器工作原理、实现半桥LLC 谐振变换器的要点、实际应用案例分析以及结论与展望。

在引言中,将简要概括文章内容并说明目的,帮助读者对全文有一个初步的认识和预期。

接下来,我们将详细介绍半桥LLC谐振变换器的工作原理,包括概述、原理详解以及关键参数和设计考虑。

然后,我们将讨论实现该变换器所需注意的要点,包括控制策略选择与设计、调节回路设计与优化以及功率传输与效率提升技术。

随后,通过实际应用案例分析,我们将覆盖工业、计算机和新能源领域中半桥LLC谐振变换器的具体应用情况。

最后,在结论与展望部分,对文章进行总结,并展望未来该领域的研究方向。

1.3 目的本文的目的是介绍半桥LLC谐振变换器的工作原理及其相关要点和应用案例,为读者提供一个全面深入的了解。

通过本文,读者将能够掌握该变换器的基本概念、内部结构以及关键设计参数和考虑因素。

此外,通过实际应用案例分析,读者可以更好地了解半桥LLC谐振变换器在不同领域中的具体应用场景和效果。

最后,在结论与展望部分,我们会对该领域未来发展方向进行初步讨论。

希望通过这篇文章,读者可以加深对半桥LLC谐振变换器的理解,并在相关领域中有所应用和创新。

2. 半桥LLC谐振变换器工作原理2.1 谐振变换器概述谐振变换器是一种常用的电力电子转换器,其主要目的是将电能从一个形式转换为另一个形式。

在半桥LLC谐振变换器中,输入直流电压会被转换成高频交流电压,并通过输出侧得到所需的功率输出。

半桥llc谐振拓扑

半桥llc谐振拓扑

半桥LLC谐振拓扑:电路设计与优化在电力电子领域,LLC谐振拓扑作为一种高效、可靠的电路结构,被广泛应用于各种电源供应系统。

半桥LLC谐振拓扑作为LLC谐振拓扑的一种变体,具有其独特的优点和优化空间。

本文将深入探讨半桥LLC谐振拓扑的基本原理、电路设计以及优化策略。

一、基本原理LLC谐振拓扑主要由两个电感(Lr和Lm)和一个电容(Cr)组成。

在半桥LLC 谐振拓扑中,电容Cr被分为两个相等容量的电容,分别与Lr和Lm形成两个独立的谐振回路。

这种结构使得电路能够在不同的频率下进行工作,提高了电源的效率和稳定性。

二、电路设计1.元件参数选择在半桥LLC谐振拓扑的电路设计中,需要合理选择Lr、Lm和Cr的参数。

这些参数的选择直接影响着电路的性能和稳定性。

在设计过程中,通常需要结合系统的具体需求,利用仿真软件进行参数优化。

2.功率开关管的选择功率开关管是半桥LLC谐振拓扑中的重要元件,其选择直接影响着电路的效率和可靠性。

在选择功率开关管时,需要考虑其耐压值、导通电阻、开关速度等参数,以确保电路的正常运行。

三、优化策略1.调整谐振频率谐振频率是半桥LLC谐振拓扑的重要参数,通过调整Lr、Lm和Cr的参数,可以实现对谐振频率的优化。

在调整过程中,需要综合考虑系统的效率、体积和成本等因素。

2.优化功率开关管的控制策略功率开关管的控制策略对半桥LLC谐振拓扑的性能有着重要影响。

通过优化控制策略,可以降低开关损耗、提高电源效率,同时还能减小电磁干扰。

常用的控制策略包括PWM控制和PFM控制等。

半桥LLC谐振变换器介绍

半桥LLC谐振变换器介绍

半桥LLC谐振变换器介绍半桥LLC谐振变换器由一个半桥拓扑架构和一个LLC谐振网络组成。

半桥拓扑意味着变换器的输入端上有两个开关,一个用于连接正极电源,另一个用于连接负极电源。

这种拓扑结构使得半桥LLC谐振变换器能够实现双向电能传输,即可以将电能从正极电源转移到负极电源,也可以将电能从负极电源转移到正极电源。

LLC谐振网络是变换器的核心部分,由一个电感、两个电容和一个开关组成。

谐振网络是为了减小开关器件的开关损耗而设计的,通过合理选择电感和电容的参数,使得串联谐振电路在工作过程中能够保持恒定的频率,从而降低了功率转换过程中的功率损耗。

半桥LLC谐振变换器具有许多优点,使其成为电力电子领域中常用的变换器之一、首先,它具有高效率。

由于谐振网络的存在,半桥LLC谐振变换器在工作过程中能够实现零电压开关,即在开关器件切换时,电流为零,从而减小了开关损耗。

其次,它具有高频率。

谐振网络的设计使得变换器能够在高频率下工作,从而减小了磁性元件的体积和重量。

此外,半桥LLC谐振变换器还具有高功率密度的特点,能够在小尺寸的空间内实现高功率的转换。

半桥LLC谐振变换器在实际应用中具有广泛的用途。

它可以应用于电力电子系统中的各种场景,如电动汽车充电器、太阳能逆变器和数据中心的电源供应等。

同时,由于其高效率、高频率和高功率密度的特点,半桥LLC谐振变换器也成为了新能源领域、工业自动化领域和通信领域中的研究热点。

总之,半桥LLC谐振变换器是一种高效率、高频率和高功率密度的电力电子变换器。

它由半桥拓扑架构和LLC谐振网络组成,能够实现双向电能传输。

在实际应用中,半桥LLC谐振变换器具有广泛的用途,被广泛应用于各种电力电子系统中。

LLC谐振半桥原理

LLC谐振半桥原理

LLC原理与设计2011-09-08硬件部•要了解LLC,就要先了解软开关。

对于普通的拓扑而言,在开关管开关时,MOSFET的D-S间的电压与电流产生交叠,因此产生开关损耗。

如图所示为了减小开关时的交叠,人们提出了零电流开关(ZCS)和零电压开关(ZVS)两种软开关的方法。

对于ZCS:使开关管的电流在开通时保持在零,在关断前使电流降到零。

对于ZVS:使开关管的电压在开通前降到零,在关断时保持为零。

•导通过程中,大部分电流从MOSFET中流过,流过Coss的非常小,甚至可以忽略不计,因此Coss的充电速度非常慢,电流VDS上升的速率也非常慢。

也可以这样理解:正是因为Coss的存在,在关断的过程中,由于电容电压不能突变,因此VDS的电压一直维持在较低的电压,可以认为是ZVS,即0电压关断,功率损耗很小。

同样的,在开通的过程中,由于Coss的存在,电容电压不能突变,因此VDS的电压一直维持在较高的电压,实际的功率损耗很大。

因为MOS在开关过程中,开通损耗占很大比例,相反IGBT关断时由于尾拖电流造成的损耗就要比开通过程的损耗大,所以IGBT如果满足ZCS,MOS满足ZVS,损耗就要小得多。

最早的软开关技术是采用有损缓冲电路来实现。

从能量的角度来看,它是将开关损耗转移到缓冲电路中消耗掉,从而改善开关管的工作条件。

这种方法对变换器的效率没有提高,甚至会使效率降低。

目前所研究的软开关技术不再采用有损缓冲电路,这种技术真正减小了开关损耗,而不是损耗的转移,这就是谐振技术。

谐振变换器主要由开关网络和谐振槽路组成,它使得流过开关管的电流变为正弦波而不是方波,然后设法使开关管在某一时刻导通,实现零电压或零电流开关。

之所以LLC谐振腔要呈感性,是因为需要电压超前电流,一旦呈感性,则谐振腔的电流在上管开通前的流通方向是负的,正是因为这个负电流,才能给上管放电、下管充电,使得上管MOS两端的电压为0,开通前为0了,那么开通时便实现了ZVS。

半桥LLC谐振变换工作原理及磁件设计方法

半桥LLC谐振变换工作原理及磁件设计方法

半桥LLC谐振变换工作原理及磁件设计方法半桥LLC谐振变换的基本结构包括两个电容和两个电感组成的谐振网络,以及两个开关管和一个变压器。

在工作过程中,当一个开关通断,谐
振电容中的电能开始储存,同时谐振电感中的电流开始增加。

当另一个开
关通断时,前一个开关管关断,其上的能量通过电容和电感进行谐振,输
出到负载。

半桥LLC谐振变换的关键在于谐振网络的设计。

首先,需要确定谐振
频率,通常选择高频工作以减小体积和重量。

然后,根据输入电压和输出
功率,选择合适的电容和电感值。

其中,电容的选择应注意其电压和电流
的承受能力,电感的选择应注意其自感、绕组电流和磁芯饱和等特性。

磁件设计是半桥LLC谐振变换中的重要部分,主要包括变压器和电感
的设计。

首先,需要根据输入输出电压比和功率需求确定变压器的变比。

然后,根据变比和电感值计算出所需的匝数。

接下来,在选择铁芯材料时,应注意其磁导率、饱和磁场和温度特性等。

最后,根据铁芯截面积和匝数
计算出变压器和电感的尺寸。

在半桥LLC谐振变换的设计中,还需要考虑到开关管的选择、控制电
路的设计和损耗功率的计算等因素,以保证系统的稳定性和效率。

总之,半桥LLC谐振变换利用谐振网络将输入直流电压转换为高频交
流电压,通过合理的磁件设计和谐振网络参数的选择,实现电能的高效转换。

这种变换器结构在实际应用中具有很高的灵活性和可靠性,为电力电
子领域提供了一种重要的解决方案。

半桥 llc 谐振变换器参数计算

半桥 llc 谐振变换器参数计算

半桥 LLC 谐振变换器参数计算1. 引言半桥 LLC 谐振变换器是一种常见的电源拓扑结构,其在电源应用中具有较为广泛的应用。

在设计半桥 LLC 谐振变换器时,合理计算各项参数对于其性能的提升具有重要意义。

本文将从半桥 LLC 谐振变换器的基本原理入手,介绍相关参数的计算方法,并结合实例进行说明。

2. 基本原理半桥 LLC 谐振变换器由半桥逆变器和LLC谐振拓扑结构组成。

其工作原理可分为两个阶段:谐振阶段和电流控制阶段。

在谐振阶段,电感和电容共同组成谐振回路,实现功率的传递和变换;在电流控制阶段,通过控制开关管实现输出电压的控制。

3. 参数计算在设计半桥LLC 谐振变换器时,需计算若干重要参数,其中包括电感、电容、开关管参数等。

3.1 电感参数电感参数的计算是半桥 LLC 谐振变换器设计中的重要一环。

电感值的选择需考虑到工作频率、电压和电流的要求。

一般而言,电感的计算公式为:L = V * (1-D) / (f * ΔI_L)其中,L为电感值,V为输入电压,D为占空比,f为工作频率,ΔI_L为电感电流波动。

3.2 电容参数另外,电容参数的计算亦为关键。

电容的选取需考虑到输出电压波纹、输出功率等因素,通常可以根据以下公式进行计算:C = I_out / (f * V_r)其中,C为电容值,I_out为输出电流,f为工作频率,V_r为输出电压波纹。

3.3 开关管参数开关管参数的选取也是至关重要的。

包括导通电流、耐压、开通损耗和关断损耗等指标都需要进行合理的计算和选取。

4. 实例分析为了更好的说明参数计算的方法,下面我们以某半桥 LLC 谐振变换器设计为例,进行参数计算和分析。

工作条件:输入电压:400V输出电压:48V输出电流:10A工作频率:100kHz电感和电容参数计算:根据上述工作条件,我们可以先计算出电感值和电容值的初步估算。

在具体设计过程中,还需综合考虑线性度、饱和电流等因素进行调整。

电感值计算:L = 400 * (1-0.5) / (100 * 5)L ≈ 4μH电容值计算:C = 10 / (100 * 4)C ≈ 25μF开关管参数选取:在实际设计中,需综合考虑导通电流、耐压、开通损耗和关断损耗等因素,选取合适的开关管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AN2450Application note LLC resonant half-bridge converter design guidelineIntroductionThe growing popularity of the LLC resonant converter in its half-bridge implementation (seeFigure1)is due to its high efficiency, low level of EMI emissions, and its ability to achievehigh power density. Such features perfectly fit the power supply demand of many modernapplications such as LCD and PDP TV or 80+ initiative compliant ATX silver box. One of themajor difficulties that engineers are facing with this topology is the lack of informationconcerning the way the converter operates and, therefore, the way to design it in order tooptimize its features.The purpose of this application note is to provide a detailed quantitative analysis of thesteady-state operation of the topology that can be easily translated into a design procedure.Exact analysis of LLC resonant converters (see [1.] ) leads to a complex model that cannotbe easily used to derive a handy design procedure. R. Steigerwald (see [2]) has described asimplified method, applicable to any resonant topology, based on the assumption that input-to-output power transfer is essentially due to the fundamental Fourier series components ofcurrents and voltages.This is what is commonly known as the "first harmonic approximation" (FHA) technique,which enables the analysis of resonant converters by means of classical complex ac-circuitanalysis. This is the approach that has been used in this paper.The same methodology has been used by Duerbaum (see [3] ) who has highlighted thepeculiarities of this topology stemming from its multi-resonant nature. Although it providesan analysis useful to set up a design procedure, the quantitative aspect is not fully completesince some practical design constraints, especially those related to soft-switching, are notaddressed. In (see [4] ) a design procedure that optimizes transformer's size is given but,again, many other significant aspects of the design are not considered.The application note starts with a brief summary of the first harmonic approximationapproach, giving its limitations and highlighting the aspects it cannot predict. Then, the LLCresonant converter is characterized as a two-port element, considering the inputimpedance, and the forward transfer characteristic. The analysis of the input impedance isuseful to determine a necessary condition for Power MOSFETs' ZVS to occur and allowsthe designer to predict how conversion efficiency behaves when the load changes from themaximum to the minimum value. The forward transfer characteristic (see Figure3) is ofgreat importance to determine the input-to-output voltage conversion ratio and providesconsiderable insight into the converter's operation over the entire range of input voltage andoutput load. In particular, it provides a simple graphical means to find the condition for theconverter to regulate the output voltage down to zero load, which is one of the main benefitsof the topology as compared to the traditional series resonant converter.October 2007Rev 5 1/32Contents AN2450Contents1FHA circuit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2Voltage gain and input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3ZVS constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4Operation under overload and short-circuit condition . . . . . . . . . . . . 17 5Magnetic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7Design example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238Electrical test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268.1Efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268.2Resonant stage operating waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 10Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312/32AN2450List of figures List of figuresFigure 1.LLC resonant half-bridge converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2.FHA resonant circuit two port model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3.Conversion ratio of LLC resonant half-bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 4.Shrinking effect of l value increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 5.Normalized input impedance magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 6.Capacitive and inductive regions in M - fn plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 7.Circuit behavior at ZVS transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 8.Voltage gain characteristics of the LLC resonant tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 9.Transformer's physical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 10.Transformer's APR (all-primary-referred) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 11.Transformer construction: E-cores and slotted bobbin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 12.LLC resonant half-bridge converter electrical schematic . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 13.Circuit efficiency versus output power at various input voltages. . . . . . . . . . . . . . . . . . . . . 27 Figure 14.Resonant circuit primary side waveforms at nominal dc input voltage and full load. . . . . . 28 Figure 15.Resonant circuit primary side waveforms at nominal dc input voltage and light load. . . . . 28 Figure 16.Resonant circuit primary side waveforms at nominal dc input voltage and no-load. . . . . . 29 Figure 17.Resonant circuit primary side waveforms at nominal dc input voltage and light load. . . . . 29 Figure 18.+200 V output diode voltage and current waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 19.+75 V output diode voltage and current waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303/32FHA circuit model AN2450 1 F H A circuit modelR out Half-bridge Driver V dc C rL r L m n:1C out Q 1Q 2D 1D 2V out I rtAN2450FHA circuit model5/32whose fundamental component v i.FHA (t) (in phase with the original square waveform) is:Equation 2where fsw is the switching frequency. The rms value V i.FHA of the input voltage fundamentalcomponent is:Equation 3As a consequence of the above mentioned assumptions, the resonant tank current i rt (t) willbe also sinusoidal, with a certain rms value I rt and a phase shift Φ with respect to thefundamental component of the input voltage:Equation 4This current lags or leads the voltage, depending on whether inductive reactance orcapacitive reactance dominates in the behavior of the resonant tank in the frequency regionof interest. Irrespective of that, i rt (t) can be obtained as the sum of two contributes, the firstin phase with the voltage, the second with 90° phase-shift with respect to it.The dc input current I i.dc from the dc source can also be found as the average value, along acomplete switching period, of the sinusoidal tank current flowing during the high sideMOSFET conduction time, when the dc input voltage is applied to the resonant tank:Equation 5where T sw is the time period at switching frequency.The real power P in , drawn from the dc input source (equal to the output power P out in thisideal case) can now be calculated as both the product of the input dc voltage V dc times theaverage input current I i.dc and the product of the rms values of the voltage and current's firstharmonic, times cos Φ :Equation 6the two expressions are obviously equivalent.The expression of the apparent power P app and the reactive power P r are respectively:Equation 7Let us consider now the output rectifiers and filter part. In the real circuit, the rectifiers aredriven by a quasi-sinusoidal current and the voltage reverses when this current becomeszero; therefore the voltage at the input of the rectifier block is an alternate square wave inphase with the rectifier current of amplitude V out .v iFHA t ()2π--V dc 2πf sw t ()sin =.v iFHA 2π------V dc =.i rt t ()2I rt 2πf sw t Φ–()sin 2I rt Φcos 2πf sw t ()2I rt –sin •Φ2πf sw t ()cos •sin ==I idc 1T sw ---------i rt t ()t d 2π------I rtΦcos =0T sw 2--------∫=.P in V dc I idc V iFHA I rt Φcos ==..P app V iFHA I rt =..P r V iFHA I rt Φsin =FHA circuit model AN24506/32The expressions of the square wave output voltage v o.sq(t) is:Equation 8which has a fundamental component v o.FHA(t):Equation 9whose rms amplitude is:Equation 10where Ψ is the phase shift with respect to the input voltage. The fundamental component of the rectifier current irect(t) will be:Equation 11where I rect is its rms value.Also in this case we can relate the average output current to the load I out and also derive the ac current I c.ac flowing into the filtering output capacitor:Equation 12Equation 13where P out is the output power associated to the output load resistance R out.Since v o.FHA(t) and i rect(t) are in phase, the rectifier block presents an effective resistive load to the resonant tank circuit, R o.ac, equal to the ratio of the instantaneous voltage and current:Equation 14Thus, in the end, we have transformed the non linear circuit of Figure1 into the linear circuit of Figure2, where the ac resonant tank is excited by an effective sinusoidal input source and drives an effective resistive load. This transformation allows the use of complex ac-analysis methods to study the circuit and, furthermore, to pass from ac to dc parameters (voltages and currents), since the relationships between them are well-defined and fixed (see equations Equation 3, Equation 5, Equation 6, Equation 10 and Equation 12 above).V osq t()4π--V out1n--n2πfswtΨ–()sinn13 5.,,=∑=...V oFHT t()4π--V out2(πf sw tΨ)–sin=.V oFHA22π----------V out=.i rect t()2I rect2(πf sw tΨ)–sin=I out2T sw---------irectt()t d22π----------I rectP outV out----------==T sw2--------∫V out Rout-----------==I cac I rect2I out2–=.R oacv oFHA t()i rect t()----------------------V oFHAI rect----------------8π2-----V2outP out-------------8π2-----Rout====...7/32In other words, the voltage conversion ratio is equal to one half the module of resonanttank's forward transfer function evaluated at the switching frequency.C r L r L m networkdc output n :1 ac resonant tankV dcI out R out R o.ac filter V i.FHA I rect I rt V outdc inputV o.FHA I i.dcZ in (j Ȧ)out V dc----------12n ------M f sw ()=8/32 2 Voltage gain and input impedanceStarting from Equation 18 we can obtain the expression of the voltage gain:Equation 20with the following parameter definitions:resonance frequency: characteristic impedance: quality factor: inductance ratio: normalized frequency: Under no-load conditions, (i.e. Q = 0) the voltage gain assumes the following form:Equation 21Figure 3 shows a family of plots of the voltage gain versus normalized frequency. Fordifferent values of Q, with λ = 0.2, it is clearly visible that the LLC resonant converterpresents a load-independent operating point at the resonance frequency f r (f n = 1), withunity gain, where all the curves are tangent (and the tangent line has a slope -2λ).Fortunately, this load-independent point occurs in the inductive region of the voltage gaincharacteristic, where the resonant tank current lags the input voltage square waveform(which is a necessary condition for ZVS behavior).The regulation of the converter output voltage is achieved by changing the switchingfrequency of the square waveform at the input of the resonant tank: since the working regionis in the inductive part of the voltage gain characteristic, the frequency control circuit thatkeeps the output voltage regulated acts by increasing the frequency in response to adecrease of the output power demand or to an increase of the input dc voltage. Consideringthis, the output voltage can be regulated against wide loads variations with a relativelynarrow switching frequency change, if the converter is operated close to the load-independent point. Looking at the curves in Figure 3, it is obvious that the wider the input dcM f n λQ ,,()11λλf n2------–+⎝⎠⎜⎟⎛⎞2Q 2f n 1f n ---–⎝⎠⎛⎞2+----------------------------------------------------------------------------=f r 12πL r C r----------------------=Z o L r C r -----2πf r L r 12πf r C r ----------------===Q Z o R ac ---------Z o n 2R oac------------------π28-----Z 0n 2-----P out V 2out -------------===.λL r L m------=f n f swf r -------=M OL f n λ,()11λλf n2------–+-----------------------------=9/32voltage range is, the wider the operating frequency range will be, in which case it is difficultto optimize the circuit. This is one of the main drawbacks common to all resonant topologies.This is not the case, however, when there is a PFC pre-regulator in front of the LLCconverter, even with a universal input mains voltage (85 V ac - 264 V ac ). In this case, in fact,the input voltage of the resonant converter is a regulated high voltage bus of ~400 V dcnominal, with narrow variations in normal operation, while the minimum and maximumoperating voltages will depend, respectively, on the PFC pre-regulator hold-up capabilityduring mains dips and on the threshold level of its over voltage protection circuit (about 10-15% over the nominal value). Therefore, the resonant converter can be optimized to operateat the load-independent point when the input voltage is at nominal value, leaving to the step-up capability of the resonant tank (i.e. operation below resonance) the handling of theminimum input voltage during mains dips.Figure 3.Conversion ratio of LLC resonant half-bridgeThe red curve in Figure 3 represents the no-load voltage gain curve M OL ; for normalizedfrequency going to infinity, it tends to an asymptotic value M ∞:Equation 22Moreover, a second resonance frequency f o can be found, which refers to the no-loadcondition or when the secondary side diodes are not conducting (i.e. the condition wherethe total primary inductance L r + L m resonates with the capacitor C r ); f o is defined as:Equation 23or in normalized form:Equation 24M ∞M OL f n ∞λ,→()11λ+------------==f o 12πL r L m +()C r-----------------------------------------f r λ1λ+------------==f no f o f r ---λ1λ+------------==10/32 At this frequency the no-load gain curve M OL tends to infinity. By imposing that the minimum required gain M min (at max. input dc voltage) is greater than the asymptotic value M ∞, it is possible to ensure that the converter can work down to no-load at a finite operating frequency (which will be the maximum operating frequency of the converter):Equation 25The maximum required gain M max (at min. input dc voltage) at max. output load (max. P out ), that is at max. Q, will define the min. operating frequency of the converter:Equation 26Given the input voltage range (V dc.min - V dc.max ), three types of operations are possible:●always below resonance frequency (step-up operations)●always above resonance frequency (step-down operations)●across the resonance frequency (shown in Figure 3).Looking at Figure 4, we can see that an increase of the inductance ratio value λ has the effect of shrinking the gain curves in the M - f n plane toward the resonance frequency f nr (which means the no-load resonance frequency f no increases) and contemporaneously reduces the asymptotic level M ∞ of the no-load gain characteristic. At the same time the peak gain of each curve increases.M min 2n V out V dcmax ------------------11λ+------------>=.M max 2n V out V dcmin -----------------=.11/32Figure 4.Shrinking effect of λ value increase Starting from Equation 16 we can obtain the expression of the normalized input impedanceZ n of the resonant tank:Equation 27whose magnitude is plotted in Figure 5, at different Q values, with λ = 0.2.The red and blue curves in the above mentioned figure represent the no-load and shortcircuit cases respectively, and are characterized by asymptotes at the two normalizedresonance frequencies f no and f nr (= 1). All the curves at different values of Q intercept atnormalized frequency f n.cross :Equation 28At frequencies higher than the crossing frequency f n.cross , the input impedance behavessuch that at increasing output current Iout (that is at increasing P out and Q) it decreases(coherently to the load resistance); the opposite happens at frequencies lower than f n.cross ,where the input impedance increases, while the output load resistance decreases.Z n f n λQ ,,()Z in f n λQ ,,()Z o ----------------------------------jf n λjf n Q+--------------------1f n 2–jf n ----------------+==f ncross 2λ12λ+----------------=.12/32Figure 5.Normalized input impedance magnitude The ac analysis can also help to estimate converter's efficiency η and predict how thischanges with the load. Considering the generic model similar to the one in Figure 2, wherethe resonant tank includes also the dissipative elements (i.e. series resistors for magneticcomponents winding losses and capacitor's ESR, and parallel resistors for magnetic lossesof inductors and transformer), we can compute the transfer function H LOSS (j ω) and the inputimpedance Z in.LOSS (j ω). By calculating input and output power in terms of H LOSS andZ in.LOSS , we get:Equation 29where Y in.LOSS is the admittance (reciprocal of Z in.LOSS ) and the input and output power areexpressed as:Equation 30Equation 31The region on the left-hand side of the diagram in Figure 5, i.e. for a normalized frequencylower than f no , is the capacitive region, where the tank current leads the half-bridge squarevoltage; at normalized frequency higher than the resonance frequency f nr (= 1), on the right-hand side region, the input impedance is inductive, and the resonant tank current lags theinput voltage. In the region between the two resonance frequencies the impedance can beeither capacitive or inductive, depending on the value of the impedance phase angle.By imposing that the imaginary part of Z n (f n , λ, Q) is zero (which means imposing that Z inhas zero phase angle, as Z o is real and does not affect the phase), we can find theηP out P in ----------H LOSS j ω()2R oac Re Y inLOSS j ω()[]---------------------------------------------------------==..P in V iFHA I rt Φcos V iFHA 2Re 1Z inLOSS j ω()-------------------------------==....P out V oFHA I rect V oFHA 2R oac -------------------V iFHA 2R oac -----------------H LOSS j ω()===.....13/32boundary condition between capacitive and inductive mode operation of the LLC resonantconverter.The analytical results are the following:Equation 32Equation 33where f nZ represents the normalized frequency where, for a fixed couple (λ- Q), the inputresonant tank impedance is real (and only real power is absorbed from the source); whileQ Z is the maximum value of the quality factor, below which, at a fixed normalized frequencyand inductance ratio (f n - λ) the tank impedance is inductive; hence, the maximum voltagegain available in that condition is also found:Equation 34By plotting the locus of operating points [M MAX (λ, Q), f nZ (λ,Q)], whose equation on M - f nplane is the following:Equation 35we can draw the borderline between capacitive and inductive mode in the region betweenthe two resonance frequencies, shown in Figure 6 It is also evident that the peak value ofthe gain characteristics for a given quality factor Q value, already lies in the capacitiveregion.Figure 6.Capacitive and inductive regions in M - f n planef nZ λQ ,()Q 2λ1λ+()–Q 2λ1λ+()–[]24Q 2λ2++2Q 2----------------------------------------------------------------------------------------------------------------=Q Z f n λ,()λ1f n2–----------------λf n ---⎝⎠⎛⎞2–=M MAX λQ ,()M f nZ λQ ),λQ ,,(()=M Z f n λ,()f n f n 21λ+()λ–--------------------------------------=ZVS constraints AN245014/32Moreover, by equating the second term of (Equation 35) to the maximum required gainM max (at minimum input voltage), and solving for f n , we get the minimum operatingfrequency f n.min which allows the required maximum voltage gain at the boundary betweencapacitive and inductive mode:Equation 36Furthermore, by substituting the minimum frequency (Equation 36) into the Equation 33, weget the maximum quality factor Q max which allows the required maximum voltage gain at theboundary between capacitive and inductive mode:Equation 37Finally, by equating the second term of the no-load transfer function (Equation 21) to theminimum required voltage gain M min , it is possible to find the expression of the maximumnormalized frequency f n.max :Equation 383 ZVS constraintsThe assumption that the working region lies inside the inductive region of operation is only anecessary condition for the ZVS of the half bridge MOSFETs, but not sufficient; this isbecause the parasitic capacitance of the half bridge midpoint, neglected in the FHAanalysis, needs energy to be charged and depleted during transitions. In order tounderstand ZVS behavior, refer to the half bridge circuit in Figure 7, where the capacitorsC oss and C stray are, respectively, the effective drain-source capacitance of the PowerMOSFETs and the total stray capacitance present across the resonant tank impedance, sothat the total capacitance C zvs at node N is:Equation 39which, during transitions, swings by ∆V = V dc . To allow ZVS, the MOSFET driving circuit issuch that a dead time T D is inserted between the end of the ON-time of either MOSFET andthe beginning of the ON-time of the other one, so that both are not conducting during T D .f nmin 111λ--11M max2-----------------⎠⎟⎞–⎝⎜⎛+----------------------------------------------=.Q max λM max --------------1λ--M max 2M max 21–--------------------------+=f nmax 111λ--11M min ------------–⎝⎠⎛⎞+-----------------------------------------=.C zvs 2C OSS C stray+=AN2450ZVS constraints15/32Due to the phase lag of the input current with respect to the input voltage, at the end of thefirst half cycle the inductor current I rt is still flowing into the circuit and, therefore it candeplete C ZVS so that its voltage swings from ∆V to zero (it will be vice versa during thesecond half cycle).In order to guarantee ZVS, the tank current at the end of the first half cycle (considering thedead time negligible as compared to the switching period, so that the current change isnegligible as well) must exceed the minimum value necessary to deplete C ZVS within thedead time interval T D , which means:Equation 40This current equals, of course, the peak value of the reactive current flowing through theresonant tank (it is 90° out-of-phase); the one that determines the reactive power level intothe circuit:Equation 41T DV g1I zvs i rt T sw 2---------⎝⎠⎛⎞C zvs V ∆T D -------2C OSS C stray +()V dc T D--------===I zvs 2I rt Φsin =ZVS constraints AN245016/32Moreover, as the rms component of the tank current associated to the active power is: Equation 42we can derive also the rms value of the resonant tank current and the phase lag Φ between input voltage and current (that is the input impedance phase angle at that operating point): Equation 43Equation 44Thus we can write the following analytic expression:Equation 45which is the sufficient condition for ZVS of the half-bridge Power MOSFETs, to be applied to the whole operating range. The solution of Equation 45 for the quality factor Q zvs that ensures ZVS behavior at full load and minimum input voltage is not convenient. Therefore, we can calculate the Q max value (at max. output power and min. input voltage), where the input impedance has zero phase, and take some margin (5% - 10%) by choosing: Equation 46and check that the condition (Equation 45) is satisfied at the end of the process, once the resonant tank has been completely defined. The process will be iterated if necessary.Of course the sufficient condition for ZVS needs to be satisfied also at no-load and maximum input voltage; in this operating condition it is still possible to find an additional constraint on the maximum quality factor at full load to guarantee ZVS. In fact the input impedance at no-load Z in.OL has the following expression:Equation 47Taking into account that:Equation 48and writing the sufficient condition for ZVS in this operating condition, that is:Equation 49I act I rtΦcosP inV iFHA---------------==.I rt I rt2Φ)2(I rt2Φ)2(sin+cosP inV iFHA---------------⎝⎠⎛⎞2I zvs22-----------+==.ΦaP inV iFHA I rt--------------------⎝⎠⎛⎞cos=.Φ()tanIm Z n f nλQ,,()[]Re Z n f nλQ,,()[]----------------------------------------------C zvsπT D-----------V dc2P in-----------≥=Q max•95÷Q zvs190=%%.Z inOL f n()jZ o f n11λ--+⎝⎠⎛⎞1f n---–=.Z o R ac Q=V iFHAmaxZ inOL f nmax()--------------------------------------I zvs Vdcmax()2-------------------------------≥..AN2450Operation under overload and short-circuit condition17/32we get the constraint on the quality factor for the ZVS at no-load and maximum inputvoltage:Equation 50Therefore, in order to guarantee ZVS over the whole operating range of the resonantconverter, we have to choose a maximum quality factor value lower than the smaller ofQ zvs.1 and Q zvs.2.4 Operation under overload and short-circuit conditionAn important aspect to analyze is the converter's behavior during output over-load and/orshort-circuit.Referring to the voltage gain characteristics in Figure 8, let us suppose that the resonanttank has been designed to operate in the inductive region for a maximum output powerP out.max (corresponding to the curve Q = Q max ) at a given output-to-input voltage ratio(corresponding to the horizontal line M = M x ) greater than 1,When the output power is increased from zero to the maximum value, the gain characteristicrelative to each power level changes progressively from the red curve (Q = 0) to the blackone (Q max ). The control loop keeps the value of M equal to M x , then the quiescent pointmoves along the horizontal line M = M x and the operating frequency at each load conditionis given by the abscissa of the crossover between the horizontal line M = M x and the voltagegain characteristic relevant to the associated value of Q.Figure 8.Voltage gain characteristics of the LLC resonant tankQ zvs22π--λf nmax λ1+()f nmax2λ–--------------------------------------------T D R ac C zvs ---------------------≤...。

相关文档
最新文档