同济版线性代数课件--§3相似矩阵
03第三节相似矩阵

03第三节相似矩阵第三节相似矩阵分布图⽰★相似矩阵与相似变换的概念★例1 ★相似矩阵的性质★例2 ★相似矩阵的特征值与特征向量★矩阵与对⾓矩阵相似的条件★例3★例4★矩阵可对⾓化的条件★矩阵对⾓化的步骤★例5★例6★利⽤矩阵对⾓化计算矩阵多项式★矩阵对⾓化在微分⽅程组中的应⽤★例7 ★约当形矩阵的概念★例8 ★例9★例10★内容⼩结★课堂练习★习题4-3内容要点⼀、相似矩阵的概念定义1 设B A ,都是n 阶矩阵, 若存在可逆矩阵P ,使BAP P=-1,则称B 是A 的相似矩阵, 并称矩阵A 与B 相似.记为B A ~.对A 进⾏运算AP P 1-称为对A 进⾏相似变换, 称可逆矩阵P 为相似变换矩阵. 矩阵的相似关系是⼀种等价关系,满⾜:(1) 反⾝性: 对任意n 阶矩阵A ,有A A 与相似; (2) 对称性: 若B A 与相似, 则B 与A 相似;(3) 传递性: 若A 与B 相似, 则B 与C 相似, 则A 与C 相似. 两个常⽤运算表达式: (1) ))((111BP P AP P ABP P ---=;(2) BP lP AP kP P lB kA P 111)(---+=+, 其中l k ,为任意实数.⼆、相似矩阵的性质定理1 若n 阶矩阵A 与B 相似,则A 与B 的特征多项式相同,从⽽A 与B 的特征值亦相同.相似矩阵的其它性质: (1) 相似矩阵的秩相等;(2) 相似矩阵的⾏列式相等;(3) 相似矩阵具有相同的可逆性, 当它们可逆时,则它们的逆矩阵也相似.三、矩阵与对⾓矩阵相似的条件定理2=Λn λλλ21相似的充分必要条件为矩阵A 有n 个线性⽆关的特征向量.注: 定理的证明过程实际上已经给出了把⽅阵对⾓化的⽅法.推论1 若n 阶矩阵A 有n 个相异的特征值n λλλ,,,21 ,则A 与对⾓矩阵=Λn λλλ21 相似.对于n 阶⽅阵A ,若存在可逆矩阵P , 使Λ=-AP P 1为对⾓阵, 则称⽅阵A 可对⾓化. 定理3 n 阶矩阵A 可对⾓化的充要条件是对应于A 的每个特征值的线性⽆关的特征向量的个数恰好等于该特征值的重数. 即设i λ是矩阵A 的i n 重特征值, 则A 与Λ相似),,2,1()(n i n n E A r i i =-=-?λ。
线性代数同济大学第五版课件5-3

f(A) 与 f(B) 相似.
上页 下页
三、矩阵的对角化
对于 n 阶方阵 A , 若存在可逆矩阵 P , 使 P-1AP = ( 为对角矩阵),则称 A 能对角化.
以这些向量为列构造矩阵 P = ( p1 , p2 , · , pn ), · · 则 P 可逆, 且 AP = P , 其中 =diag (1 , 2 , · , n ) , · · 即 推论 P-1AP = .
证毕
如果n阶矩阵A的n个特征值互不相等,
则A与对角阵相似.
上页 下页
0 0 1 1 1 x , 问 x 为 何 值 时 , 例11 设 A 1 0 0 矩 阵A能 对 角 化 ?
第 三 节
主要内容
相似矩阵
相似矩阵的概念 相似矩阵的性质 矩阵对角化的充要条件
上页
下页
一、相似矩阵的概念
定义 7 设 A , B 为 n 阶方阵, 若有可逆矩阵P,
使 P-1AP = B , 则称矩阵 A 相似于矩阵 B. 对 A 进行运算
P-1AP 称为对 A 进行相似变换,可逆矩阵 P 称 为把 A 变成 B 的相似变换矩阵.
上页 下页
可. 推论 A与 阶方阵 A 与对角矩阵 由于 若 n B 相似, 所以, 必有可逆矩阵 P
由相似的定义和定理3,有下列 结论:
1. 若矩阵 A 与 矩阵 B 相似, 若矩阵 A
可逆, 则矩阵 B 也可逆, 且 A-1 与 B-1 相似.
2.若矩阵 A 与 B 相似, k 是常数, m 是
1 , 2 , · , n 的特征向量. · ·
同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组

0 0 0
1 0 0
1 0 0
1 2 0
0 6 0
B4
2020/12/12
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
x4 3
令 x3 c
x1 c 4
x2 x3
c c
3
x4 3
3x2 3x3 4x4 3, ④
2020/12/12
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2x3 x4 4, ①
④ 12③
x2 x3 x4 0, ② 2x4 6, ③
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
3x1 6x2 9x3 7 x4 9, ④
x1 x2 2x3 x4 4, ①
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
1
1
01
第i行
1
E(i, j)
1 10
第
j
行
1
1
2020/12/12
17
1
1
E(i(k))
k
第i 行
1
《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
《线性代数》教学课件—矩阵的相似、对角化

若A PB P 1 , 则
k
1
A PB P 1 PB P
PB P 1 PB P 1 P B k P 1 .
A的多项式
( A) a0 An a1 An1 an1 A an E
a 0 P B n P 1 a 1 P B n 1 P 1
判断下列实矩阵能否对角化?
1 2 2
(1) A 2 2 4
2
4
2
解
2 1 2
( 2) A 5 3 3
1 0 2
1
(1)由 E A
2
2
2
2
2 4
4
2
2 7
为对角阵,称矩阵A可对角化或相似于对角阵。
定理(重要结论)n阶方阵A与对角阵相似(即A能对角化)
的充要条件是A 有n个线性无关的特征向量。
1
假设存在可逆阵
P
,
使
P
AP 为对角阵,
定理证明:
把 P 用其列向量表示为 P p1 , p2 ,, pn .
由 P 1 AP , 得AP P ,
1
2
即 A p1 , p2 ,, pn p1 , p2 ,, pn
1 p1 , 2 p2 ,, n pn .
n
A p1 , p2 ,, pn Ap1 , Ap2 ,, Apn 1 p1 , 2 p2 ,
2
同济大学线性代数课件__第五章相似矩阵及二次型

p3
0 4
30
设
1 0 1
P ( p1, p2 , p3 ) 0 1 0
1 1 4
则
1
P 1AP 2
2
31
性质:若l 是 A 的特征值, 即 Ax = lx (x≠0),则
(1) kl 是 kA 的特征值(k是常数),且 kAx = klx (2) lm 是 Am 的特征值(m是正整数),且 Amx = lmx (3) 若 A可逆,则l-1是 A-1的特征值, 且 A-1x = l-1x
16
定义4 若 n 阶矩阵 A 满足 A A E 则称 A 为正交矩阵, 且 A1 A
令 A (1,2 , ,n )
A
A
1
2
(1
,
2
,
n
,n
)
11
21
n1
故
[i , j ] i j
ij
1, 0,
i i
j j
1 2 2 2
n 2
1 n 2 n
nn
17
特征值及二次型问题是线性代数的重要问题。
[ x ty, x ty] 0, t [ x, x] 2[ x, y]t [ y, y]t 2 0
(1) [ x, y ] = [ y, x ]; [ x, y]2 [x, x][ y, y]
(2) [lx, y] = l[ x, y ];
(3) [ x + y, z ] = [ x, z ] + [ y, z ];
解: (1) A2 2A 3E 有特征值 l 2 2l 3
(2) 3阶阵 A有特征值 1, -1, 2,故 | A | 2,A可逆。 A 3A 2E 有特征值 -1,-3,3
线性代数ppt课件同济

05
向量空间及其性质
向量空间的定义与性质
向量空间的定义
向量空间是一个由向量构成的集合, 其中每个向量都可以表示为一组基向 量的线性组合。
向量空间的性质
向量空间具有一些重要的性质,例如 封闭性、加法和数量乘法封闭性、加 法和数量乘法的结合律和分配律等。
向量空间的基底与维数
向量空间的基底
一个向量空间可以由一组不相关的基向量构成,这些 基向量是线性无关的,并且可以生成整个空间。
行列式的计算方法
要点一
总结词
行列式的计算方法包括高斯消元法、拉普拉斯展开式和递 推法等。
要点二
详细描述
高斯消元法是一种常用的计算行列式的方法,它通过初等 行变换将矩阵化为阶梯形矩阵,然后求解出阶梯形矩阵的 行列式即可。拉普拉斯展开式是一种基于二阶子式和代数 余子式的展开式,它可以用来计算高阶行列式。递推法是 一种利用低阶行列式的值递推高阶行列式的方法,它适用 于计算n阶行列式。
线性代数的背景
线性代数起源于17世纪,随着科学技术的不断发展和进步,线性代数的应用领域越来越广泛。它不仅 在数学、物理、工程等领域有着广泛的应用,还在计算机科学、经济学、生物医学等领域发挥着重要 的作用。
线性代数的应应用,例如求解线性方程组、 计算矩阵的秩和特征值等。
现代发展
随着科学技术的发展,线性代数的应用领域越来越广泛,同时它也得到了不断的发展和完善。现代线性代数已经 形成了一套完整的理论体系,为解决实际问题提供了更加有效的工具。
02
矩阵及其运算
矩阵的定义与性质
矩阵的定义
矩阵是一个由数值组成的矩形阵列,通 常表示为二维表格。矩阵的行数和列数 可以分别为m和n。每个元素用a(i,j)表示 ,其中i表示行号,j表示列号。
《线性代数》教学课件—第5章 二次型 第三节 相似矩阵

定理 若定矩阵理A 与若矩矩阵阵 AB与相似矩,阵且B矩相阵似A, 且矩阵
可逆, 则矩可阵逆B, 也则可矩逆阵, B且也A可-1 逆与,B且-1A相-1似与. B-1 相似.
三、矩阵对角化的步骤
设 n 阶方阵 A 可对角化,则把 A对角化的 步骤如下:
步骤 1 :求出矩阵 A 的所有特征值,设 A
有 s 个不同的特征值 1 , 2 , ···, s ,它们的重
数分别为 n1, n2 , ···, ns , 有 n1 + n2 + ···+ ns = n.
步骤 2 : 对 A 的每个特征值 i ,求(A - iE)x = 0
证毕
在矩阵的运算中, 对角矩阵的运算很简便, 如
果一个矩阵能够相似于对角矩阵, 则可能简化某
些运算. 例如, 如果令
P 11
32
,
A
7 9
86
.
不难验算,
P
1
AP
1 0
02 记为
.
如果我们要计算 A10 或 An , 直接计算, 运算 量很大也不易找出规律. 利用 A 相似于对角矩阵 的性质,可得
相似矩阵具有下列性质:下设 A,B 是同阶 矩阵.
定理 3 若矩阵 A 与矩阵 B 相似, 则
|A - E| = |B - E| ,
因而 A 与 B 有相同的特征值、相同的行列式.
证明 只需证证明A 与只需B 证有相A 同与的B特有征相多同项的式特即征多项 可. 推由论于 A可若与. nB由阶相于方似A阵,与所AB以与相, 对必似角有, 所矩可以阵逆,矩必阵有可P,使逆得矩阵 P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
4 6
A E 3 5
0
0 12 2
3 6 1
所以A的全部特征值为1 2 1, 3 2.
将1 2 1代入A E x 0得方程组
3 x1 6 x2 0 3 x1 6 x2 0
可逆矩阵P 称 为 把 A 变 成 B的相似变换矩阵.
二、相似矩阵与相似变换的性质
若A与B相似, 则Am与B m 相似m为正整数.
定理3 若 n 阶矩阵 A 与 B 相似,则 A 与 B 的特征 多项式相同, 从而 A 与 B 的特征值亦相同. 证明 A与B相似 ,
存在可逆阵P,使得P1AP B,
201
由于
0 1 2 0,
112
所以 1,2 ,3线性无关.
即A有3个线性无关的特征向量,因而A可对角
化.
2 1 2
(2) A 5 3 3
1 0 2
2 1
2
A E 5 3 3 13
1
0 2
所以A的特征值为1 2 3 1.
把 1代入A E x 0, 解之得基础解系
(1,1,1)T ,
故A 不能化为对角矩阵.
例2
设A
4 3
6 5
0 0
3 6 1
A能否对角化?若能对角 化,则求出可逆矩阵P,
使P 1 AP为对角阵.
P(a0 Bn a1 Bn1 an1 B an E) P1
P(B) P1.
特别地,若可逆矩阵P使 P1 AP 为对角矩阵,
则 Ak P k P1, ( A) P () P1.
对于对角矩阵 ,有
k 1
k
0
0
0
所以 x 1
B E P1AP P1EP P1A EP
P1 A E P
A E .
推论 若 n 阶方阵A与对角阵
1
ቤተ መጻሕፍቲ ባይዱ
2
n
相似 , 则1,2, ,n 即是 A的 n 个特征值 .
利用对角矩阵计算矩阵多项式
2 0 1
令
P
1
,
2
,
3
1
0
1
0 1 1
1 0 0
则有
P 1 AP
0
1
0.
0 0 2
注意
1 2 0
若令P
3 ,1 ,2
1
1
0
,
1 0 1
则有
P 1 AP
2 0
0 1
0 0 .
0 0 1
即矩阵 P的列向量和对角矩阵中特征值的位置 要相互对应.
例3 设
0 0 1
A 1 1 x
1
0
0
问x为何值时,矩阵A能对角化?
解:
0 1
1
A E 1 1 x (1 )
1
1 0
1 (1) A 2
2
2 2 4
2 4 2
2 (2)A 5
1
1 3 0
2 3 2
解
1 2
2
(1)由 A E 2 2 4
2
4 2
22 7 0
得 1 2 2, 3 7.
将 1 2 2代入A 1Ex 0,得方程组
2xx1124xx2224xx33
0 0
2x1 4x2 4x3 0
解之得基础解系
2
0
1 0 , 2 1.
1
1
同理, 对3 7,由A E x 0, 求得基础解系 3 1,2,2T
( 1)2( 1)
得 1 1, 2 1
由于A可对角化所以二重根1 2 1有两个
线性无关的特征向量于是R( A E) 1
所以
1 AE 1
0 0
1 1 0 x ~ 0 0
1 x 1
1
0 1
3 x1 6 x2 0
解之得基础解系
2
1 1 ,
0
0
2 0.
1
将3 2代入A E x 0,得方程组的基础
解系
3 1,1,1T .
由于 1,2 ,3 线性无关. 所以 A 可对角化.
若A PB P1, 则
k个
Ak PB P1 PB P1 PB P1PB P1 P Bk P1.
A的多项式
( A) a0 An a1 An1 an1 A an E
a0 P Bn P1 a1 P Bn1 P1 an1 PB P1 an PE P1
k 2
,
k n
(1)
(
)
(1)
,
(1)
利用上述结论可以很方便地计算矩阵A
的多项式 ( A) .
定理 设 f ( ) 是矩阵 A的特征多项式,则 f ( A) O.
三、利用相似变换将方阵对角化
对 n 阶方阵 A ,若可找到可逆矩阵P ,使 P 1 AP 为对角阵,这就称为把方阵A对角化 . 定理4 n阶矩阵A与对角矩阵相似(即A能对角化) 的充分必要条件是A有n个线性无关的特征向量.
推论 如果 n 阶矩阵 A 的 n个特征值互不相等, 则 A与对角阵相似.
(A与对角阵相似的充分条件)
说明 如果 A的特征方程有重根,此时不一定有 n个线性无关的特征向量,从而矩阵 A不一定能 对角化,但如果能找到 n个线性无关的特征向量, A 还是能对角化.
例1 判断下列实矩阵能否化为对角阵?
§3 相似矩阵
一、相似矩阵与相似变换的概念 二、相似矩阵与相似变换的性质 三、利用相似变换将方阵对角化
一、相似矩阵与相似变换的概念
定义1 设 A , B 都是 n 阶矩阵,若有可逆矩阵P ,
使
P 1 AP B ,
则 称 B 是 A的相似矩阵, 或说矩阵A 与 B 相 似.
对 A 进 行 运算P 1 AP 称 为 对 A进 行 相似 变 换,