新北师大版七年级数学上册第一章丰富的图形世界单元测试题

合集下载

第一章 丰富的图形世界单元测试卷(含答案与解析)

第一章 丰富的图形世界单元测试卷(含答案与解析)

【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(含答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥 C.圆台 D.长方体3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.4.圆锥的截面不可能为().A.三角形B.圆C.椭圆D.矩形5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C. D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个C.3个D.4个8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.611.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2π B.6πC.7πD.8π12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同 B.俯视图相同 C.左视图相同 D.主视图、俯视图、左视图都相同二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有(填编号).14.某几何体的三视图如图所示,则这个几何体的名称是_____.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.16.由几个相同的小正方体搭成一个几何体,从不同的方向看几何体所得到的图形如图所示,则组成这个几何体的小正方体的个数可能是___________个.三.解答题:(共52分)17.仔细观察图所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥18.下面图形是由小正方体木块搭成的几何体的三视图示意图,则该几何体的实物图形是什么模样的?它由多少个小正方体木块搭成.请用小木块实地操作一下吧!正视图左视图俯视图19.如图,是一个几何体的二视图,求该几何体的体积.(π取3.14)20.一间长为8米,宽为5米的房间,用半径为0.2米的圆形磨光机磨地板,不能磨到的部分的面积共多少平方米?(提示:不论房间面积多大,其四个角各有一部分不能磨到.)21. 画出下面几何体的主视图、左视图与俯视图.22.已知n棱柱中的棱长都是15 cm,且该棱柱共有16个顶点.(1)该棱柱的底面是______边形;(2)求该棱柱所有棱长的和;(3)求该棱柱侧面展开图的面积.23.用5个棱长都是1的小正方体木块摆成如图所示的几何体.(1)该几何体的体积为_______;(2)如果在该几何体的基础上,用同样的小正方体木块m块,摆成一个大正方体,则m的最小值为________;(3)如果给该几何体的表面刷漆,那么刷漆部分的面积是多少?【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:A为圆柱体,它的主视图应该为矩形;B为长方体,它的主视图应该为矩形;C为圆台,它的主视图应该为梯形;D为三棱柱,它的主视图应该为矩形.故选C.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱 B.圆锥 C.圆台 D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥.故选B.3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.【分析】根据从上面看得到的视图是俯视图,可得答案.【解答】解:从上边看第一层是一个小正方形,第二层在第一层的上面一个小正方形,右边一个小正方形,故选:B.4.圆锥的截面不可能为().(A)三角形(B)圆(C)椭圆(D)矩形【答案】D【解析】试题分析:从圆锥的顶点沿着高切得到的截面是三角形,平行于底面切得到的截面是圆,斜着切得到的截面是椭圆,所以不可能得到矩形,故选D.5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C.D.【分析】俯视图是从上面看所得到的图形,此几何体从上面看可以看到一个长方形,中间有一个长方形.【解答】解:其俯视图为.故选:D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:A、从正面看第一层三个小正方形,第二层中间一个小正方形;B、从正面看第一层三个小正方形,第二层中间一个小正方形;C、从正面看第一层三个小正方形,第二层右边一个小正方形、中间一个小正方形;D、从正面看第一层三个小正方形,第二层中间一个小正方形;故选:C.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【分析】四个几何体的左视图:球是圆,圆锥是等腰三角形,正方体是正方形,圆柱是矩形,由此可确定答案.【解答】解:由图示可得:球的左视图是圆,圆锥的左视图是等腰三角形,正方体的左视图是正方形,圆柱的左视图是矩形,所以,左视图是四边形的几何体是圆柱和正方体.故选B.8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案.【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.6【分析】根据从上面看得到的图形是俯视图,根据题意画出图形即可求解.【解答】解:由七个棱长为1的正方体组成的一个几何体,其俯视图如图所示;∴其俯视图的面积=5,故选C.11.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π【分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.【解答】解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π;故选D.12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的宽不同,故A错误;B、俯视图是两个相等的圆,故B正确;C、主视图的宽不同,故C错误;D、俯视图是两个相等的圆,故D错误;故选:B.二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有①②③(填编号).【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:①②③.14.某几何体的三视图如图所示,则这个几何体的名称是_____.【答案】圆柱【解析】试题解析:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.【答案】(1). 12(2). 7(3). 4(4). 等边【解析】试题分析:按照如图所示的截法,截面是一个正三角形,有12条棱,顶点比原来少一个变成7个,截去的几何体是三棱锥,有4个面,截面是等边三角形。

新北师大版七年级数学上册章节测试题第一章丰富的图形世界

新北师大版七年级数学上册章节测试题第一章丰富的图形世界

第一章丰富的图形世界测试卷姓名班级成绩一、填空题(每空3分,共30分):1、圆锥是由________个面围成,其中________个平面,________个曲面。

2、在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______。

3、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的边数为_____。

4、面与面相交成______,线与线相交得到_______,点动成______,线动成_________,面动成_______ 。

5、已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条侧棱。

6、圆柱的表面展开图是________________________(用语言描述)。

7、圆柱体的截面的形状可能是________________________。

(至少写出两个,可以多写,但不要写错)8、用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要____个立方块。

9、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____ 和_____ 。

10、写出两个三视图形状都一样的几何体:___ ____、_________。

二、选择题(每题3分,共30分):11、下面几何体的截面图不可能是圆的是()A、圆柱B、圆锥C、球D、棱柱12、棱柱的侧面都是()A、三角形B、长方形C、五边形D、菱形13、圆锥的侧面展开图是()A、长方形B、正方形C、圆D、扇形14、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是()A、长方形、圆、长方形B、长方形、长方形、圆C、圆、长方形、长方形D、长方形、长主形、圆15、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体16、正方体的截面不可能是()A、四边形B、五边形C、六边形D、七边形17、如图,该物体的俯视图是()A、B、 C、 D18、下列平面图形中不能围成正方体的是()A、 B、 C、 D、19、一个正方体盒子的展开图如图2-3所示,如果要把它粘成一个正方体,那么与点A重合的点是_________.20.一个几何体,是由许多规格相同的小正方体堆积而成的,某主视图、左视图如图所示,要摆成这样的图形,至少需用________块正方体,最多需用_________正方体三、解答题(共40分):21、指出下列平面图形是什么几何体的展开图(6分):B22、如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。

北师大版七年级上册数学第一章《丰富的图形世界》单元测试题(附答案)

北师大版七年级上册数学第一章《丰富的图形世界》单元测试题(附答案)

北师大版七年级上册数学第一章《丰富的图形世界》单元测试题第Ⅰ卷客观题第Ⅰ卷的注释阅卷人一、单选题(共10题;共30分)得分1.如图几何体的俯视图是()A. B. C. D.2.如图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图的新几何体,则该新几何体的体积为()cm3.A.48πB.50πC.58πD.60π3.如图的几何体由5个相同的小正方体搭成,从正面看,这个几何体的形状是()A. B. C. D.4.如图所示几何体的左视图为()A. B. C. D.5.长方体的主视图、俯视图如图所示(单位:m),则其左视图的面积是()A.4m 2B.12m 2C.1m 2D.3m 26.桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A. B. C. D.7.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化8.下列图形中不是正方体展开图的是()A. B.C. D.9.若一个圆柱的底面半径是1,高是3,则该圆柱的侧面展开图的面积是()A.6B.3πC.6πD.12π10.将坐标的正方体展开能得到的图形是()A. B. C. D.阅卷人二、填空题(共5题;共15分)得分11.某几何体的三视图如图所示,则这个几何体的名称是________.12.如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为________cm2.13.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是________cm2.14.如图为某几何体的三视图(单位:cm),则该几何体的侧面积等于________cm2.15.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).第Ⅱ卷主观题第Ⅱ卷的注释阅卷人三、解答题(共6题;共45分)得分16.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.17.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图).18.如图所示的圆柱体,它的底面半径为2cm,高为6cm.(1)想一想:该圆柱体的截面有几种不同形状的平面图形?(2)议一议:你能截出截面最大的长方形吗?(3)算一算:截得的长方形面积的最大值为多少?19.如图,由两个立方体拼成了一个长方体,已知这个长方体的体积为1024cm3,求这个长方体的表面积。

北师大版七年级上册 第1章丰富的图形世界单元测试卷(含解析)

北师大版七年级上册 第1章丰富的图形世界单元测试卷(含解析)

北师大版七年级上第1章丰富的图形世界单元测试卷一.选择题(共10小题)1.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个2.如图是由相同的小正方体木块粘在一起的几何体,则该几何体从正面看到的图形是()A.B.C.D.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个4.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个5.如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是()A.祝B.你C.事D.成6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,48.如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数之和都为5,则x+y+z的值为()A.0B.4C.10D.309.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7B.8C.9D.1010.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是()A.3,6B.3,4C.6,3D.4,3二.填空题(共4小题)11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.12.在正方体的六个面分别标上A、B、C、D、E、F,现有完全相同的四个正方体,如图拼成一个长方体,请写出三对对面:.13.如图,将此长方形绕虚线旋转一周,得到的是体,其体积是.(结果保留π)14.如图所示,把底面直径是8厘米,高是20厘米的圆柱切成若干等分,拼成一个近似的长方体,这个近似长方体的表面积是cm2,体积是cm3.三.解答题(共12小题)15.如图所示为8个立体图形.其中,是柱体的序号为;是锥体的序号为;是球的序号为.16.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)17.指出下列平面图形各是什么几何体的展开图.18.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.19.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.20.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?21.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有个面,条棱,个顶点;(2)六棱柱有个面,条棱,个顶点;(3)由此猜想n棱柱有个面,条棱,个顶点.22.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().23.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.24.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.25.探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?26.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转2h,V球体=,一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πrV圆锥=h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?参考答案与试题解析一.选择题(共10小题)1.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个【分析】由平面图形的折叠及正方体的表面展开图的特点进行判断即可.【解答】解:由题可得,是正方体的平面展开图的有:故选:B.2.如图是由相同的小正方体木块粘在一起的几何体,则该几何体从正面看到的图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边两个小正方形,故选:A.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【解答】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选:B.4.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个【分析】根据立体图形的特征,可得答案.【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;故选:B.5.如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是()A.祝B.你C.事D.成【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选:D.6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选:B.7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.8.如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数之和都为5,则x+y+z的值为()A.0B.4C.10D.30【分析】正方体的对面不存在公共部分可确定出对面,然后可得到x、y、z的值.【解答】解:x与10为对面,y与﹣2为对面,z与3为对面,∴x=﹣5,y=7,z=2,∴x+y+z=4.故选:B.9.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7B.8C.9D.10【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选:C.10.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是()A.3,6B.3,4C.6,3D.4,3【分析】本题可从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【解答】解:第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,5对应的底面数字为4.故选:B.二.填空题(共4小题)11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是52.【分析】根据三视图我们可以得出这个几何体应该是个长方体,进而得出其表面积.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的表面积为:2×(2×3+3×4+2×4)=52.故答案为:52.12.在正方体的六个面分别标上A、B、C、D、E、F,现有完全相同的四个正方体,如图拼成一个长方体,请写出三对对面:A对面是F,B对面是E,C对面是D.【分析】如图,以B为突破口,B与C、F、A、D相邻,所以B的对面是E;C与B、F、A、E相邻,所以C的对面是D,则剩余的A与F相对.【解答】解:A对面是F,B对面是E,C对面是D.故答案为:A对面是F,B对面是E,C对面是D.13.如图,将此长方形绕虚线旋转一周,得到的是圆柱体,其体积是16π.(结果保留π)【分析】将长方形旋转可得出圆柱体,根据圆柱体积公式即可求出该圆柱的体积.【解答】解:将此长方形绕虚线旋转一周,得到的是圆柱体,V=πr2h=π×22×4=16π.故答案为:圆柱;16π.14.如图所示,把底面直径是8厘米,高是20厘米的圆柱切成若干等分,拼成一个近似的长方体,这个近似长方体的表面积是176π+160cm2,体积是320πcm3.【分析】根据圆的周长、面积公式、正方体的体积公式计算.【解答】解:长方体的表面积是:8π×20+8π×2+4×20×2=176π+160(cm2),体积是:4×20×4π=320π(cm3),故答案为:176π+160;320π.三.解答题(共12小题)15.如图所示为8个立体图形.其中,是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.【分析】分别根据柱体、锥体、球体的定义得出即可.【解答】解:是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.故答案为:①②⑤⑦⑧,④⑥,③.16.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)【分析】根据正方体的展开图中每个面都有对面,可得答案.【解答】解:如图所示:17.指出下列平面图形各是什么几何体的展开图.【分析】根据几何体的平面展开图的特征可知:(1)是圆柱的展开图;(2)是圆锥的展开图;(3)是三棱柱的展开图;(4)是三棱锥的展开图;(5)是长方体的展开图.【解答】解:(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.18.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.【分析】利用正方体的表面展开图,相对的面之间一定相隔一个正方形,可得x+3x=2+6,y﹣1+5=2+6,解方程求出x与y的值,进而求解即可.【解答】解:由题意,得x+3x=2+6,y﹣1+5=2+6,解得x=2,y=4,所以y﹣x=4﹣2=2.19.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.【分析】主视图有3列,每列小正方形数目分别为3,1,2;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方形数目分别为2,2,1.【解答】解:20.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?【分析】利用立方体的组成特点,分别得出画出即可.【解答】解:如图所示:21.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.【分析】结合已知三棱柱、四棱柱、五棱柱和六棱柱的特点,可知n棱柱一定有(n+2)个面,3n条棱和2n个顶点.【解答】解:(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.故答案为:(1)6,12,8;(2)8,18,12;(3)(n+2),3n,2n.22.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、4、5、6).23.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).24.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.【分析】(1)由三视图的特征,可得这个几何体应该是圆柱柱;(2)这个几何体的表面积应该等于两个圆的面积和一个矩形的面积和.【解答】解:(1)根据题意,这个几何体是圆柱;(2)该圆柱的高为40,底面直径为20,表面积为:2×π×102+20π×40=1000π.25.探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?【分析】(1)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(2)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(3)根据矩形旋转所的几何体的大小比较,可得答案.【解答】解:(1)方案一:π×32×4=36π(cm3),方案二:π×22×6=24π(cm3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×()2×3=π(cm3),方案二:π×()2×5=π(cm3),∵π>π,∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.26.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转2h,V球体=,一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πrV圆锥=h)知识像烛光,能照亮一个人,也能照亮无数的人。

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分)1.如图,是小云同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“动”字相对的面上的字是()A.造B.劳C.幸D.福2.一个棱柱有8个面,这是一个()A.四棱柱B.六棱柱C.七棱柱D.八棱柱3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()A.45厘米B.30厘米C.90厘米D.60厘米4.一个几何体由若干大小相同的小正方体搭成,从左面和上面看到的这个几何体的形状图如图所示,则搭这个几何体需用小正方体的个数不可能是()A.5 B.6 C.7 D.85.如图所示,以直线为轴旋转一周,可以形成圆柱的是()A.B.C.D.6.用一个平面将一个正方体截去一部分,其面数将()A.增加B.减少C.不变D.不能确定7.用平面去截一个几何体,如果截面的形状是长方形,那么该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥8.如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.9.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个B.3个C.4个D.5个10.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A.4种B.5种C.6种D.7种二、填空题(每小题2分,共20分)1.一个正n棱柱有18条棱,一条侧棱为10cm,一条底边为3cm,则它的侧面积是_____2cm.2.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n,则n的最少值为______.3.用一个平面去截三棱柱不可能截出以下图形中的_____(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形.4.若用一个平面去截一个五棱柱,截面的边数最少是_____________;最多是____________.5.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90︒算一次,请问滚动2022次后,正方体贴在桌面一面的数字是___________.6.如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为20,则+__________.x y7.如图,将长方形纸片ABCD沿EF折叠后,若1110∠的度数为______.∠=︒,则28.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.9.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______. 10.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何请从A,B两题中任选一题作答.我选择___________题.A.搭成该几何体的小立方块最少有___________个.B.根据所给的两个形状图,要画出从正面看到的形状图,最多能画出___________种不同的图形.三、解答题(每小题6分,共60分)1.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.2.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.3.已知一个直棱柱,它有21条棱,其中一条侧棱长为10cm,底面各条边长均为4cm.(1)这个直棱柱是几棱柱?(3)求这个棱柱的所有侧面的面积之和.4.用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.5.如图所示,在长方形ABCD中,BC=6cm,CD=8cm.现绕这个长方形的一边所在直线旋转一周得到一个几何体。

北师大版七年级数学上册 第一章 丰富的图形世界 单元测试题含答案

北师大版七年级数学上册 第一章 丰富的图形世界 单元测试题含答案
(1)与棱 BC 平行的棱有 ; (2)与棱 AB 垂直的平面有 ; (3)与平面 ABFE 平行的平面有 .
20.(8 分)已知一个装满水的圆柱形容器底面半径为 4cm 高为 20cm. (1)求圆柱内水的体积.(提示:V 圆柱=πr2h,r 为底面直径,h 是圆柱的高,结果保留 π) (2)若将该圆柱内的水全部倒入一个长为 20cm,宽为 5cm,高为 10cm 的长方体容器内,是否 有溢出?(π 取 3.14)
A.Leabharlann B.C.D.9.如图是由 5 个完全相同的小正方体组成的立体图形,它的俯视图是( )
A.
B.
C.
D.
10.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体(
)块.
A.7
B.8.
C.9
二.填空题(共 8 小题,每小题 3 分,共 24 分)
11.下列图形中,是柱体的有 .(填序号)
共 5 个正方形,面积为 5. 故答案为 5. 三.解答题(共 14 小题) 19.解:(1)与棱 BC 平行的棱有 AD,EH,FG; (2)与棱 AB 垂直的平面有平面 ADHE 和平面 BCGF; (3)与平面 ABFE 平行的平面有平面 DCGH; 故答案为:AD,EH,FG;平面 ADHE 和平面 BCGF;平面 DCGH. 20.解:(1)圆柱内水的体积=42π×20=320π=1004.8 cm3; (2)长方体容器的体积=20×5×10=1000cm3, ∵1004.8>1000, ∴会溢出. 21.解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2; 答:制作这样的包装盒需要 360 平方厘米的硬纸板; (2)360÷10000×5×10=1.8 元, 答:制作 10 个这的包装盒需花费 1.8 元钱. 22.解:(1)如图所示,A 与 F 是对面,所以如果 A 面在长方体的底部,那么 F 面会在上面; 故答案是:F; (2)这个长方体的表面积是:2×(1×3+1×2+2×3)=22(米 2). 这个长方体的体积是:1×2×3=6(米 3).

北师大版七年级上学期 第1章 丰富的图形世界 单元练习卷 含答案解析

北师大版七年级上学期 第1章 丰富的图形世界 单元练习卷  含答案解析

第1章丰富的图形世界一.选择题(共10小题)1.夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,这是因为()A.面对成体B.线动成面C.点动成线D.面面相交成线2.如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个3.如图把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.4.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78B.72C.54D.485.如图,是一个正方体的展开图,这个正方体可能是()A.B.C.D.6.如图,下列图形从正面看是三角形的是()A.B.C.D.7.下面四个几何体中,同一几何体从前往后看和从上往下看,看到的图形形状相同的共有()几何体.A.1个B.2个C.3个D.4个8.如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是()A.B.C.D.9.如图是某几何体的三视图,那么该几何体是()A.球B.正方体C.圆锥D.圆柱10.正方形网格中的图形(1)~(4)如图所示,其中图(1)、图(2)中的阴影三角形都是有一个角是60°的直角三角形,图(3)、图(4)中的阴影三角形都是有一个角是60°的锐角三角形.以上图形能围成正三棱柱的图形是()A.(1)和(2)B.(3)和(4)C.(1)和(4)D.(2)、(3)、(4)二.填空题(共10小题)11.如图所示图形绕图示的虚线旋转一周,(1)能形成,(2)能形成,(3)能形成.12.用一个平面去截长方体,截面是正五边形(填“可能”或“不可能”).13.三棱柱和四棱柱的三种视图中都会有的图形是.14.将一个正方体的表面沿某些棱剪开,展开成一个平面图形(如图),则下列可能的图形有:.15.如图,正方体的六个面上标着六个连续的整数,若相对的两个面上所标之数的和相等,则这6个数的和为.16.如图是一个正方体的表面展开图,则图中“加”字所在面的对面所标的字是.17.如果把骰子看作是一个正方体,点数1的对面是6,点数5的对面是2,点数4的对面是3,则与点数是3的面垂直的所有的面的点数和是.18.一个几何体由若干大小相同的小立方块搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数.若一个小立方块的体积为1,则这个几何体的表面积为.19.如图,在边长为20的大正方形中,剪去四个小正方形,可以折成一个无盖的长方体盒子.如果剪去的小正方形边长按整数值依次变化,即分别取1、2、3、…、9、10时,则小正方形边长为时,所得到的无盖的长方体盒子容积最大.20.十八世纪数学家欧拉证明了简单多面体中顶点数(v),面数(f),棱数(e)之间存在一个有趣的数量关系:v+f﹣e=2,这就是著名的欧拉定理.某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形拼接而成,且有24个顶点,每个顶点都3条棱,设该多面体外表面三角形个数是x个,八边形的个数是y,则x+y=.三.解答题(共5小题)21.王彭做了一个底面积为72cm2,长、宽、高的比为4:3:1的长方体.(1)求这个长方体的长、宽、高;(2)求这个长方体的体积.22.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)23.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?24.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm,宽为3cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的表面积分别是多大?(结果保留π)25.将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a=;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b =;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=.参考答案一.选择题(共10小题)1.解:夜里将点燃的蚊香迅速绕一圈,可划出一个曲线是因为点动成线,故选:C.2.解:过棱BB1和平面CD1垂直的平面有CBB1C1,所以只有1个.故选:A.3.解:A是长方形绕虚线旋转一周,得到的几何体,故错误;B是一个圆绕虚线旋转一周,得到的几何体,故正确;C是一个直角梯形图绕长底边旋转一周,得到的几何体,故错误;D是半圆绕直径旋转一周,得到的几何体,故错误.故选:B.4.解:如图所示,周边的六个挖空的正方体每个面增加4个正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.5.解:把展开图折叠后,只有B选项符合图形,故选:B.6.解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.7.解:正方体从前往后看和从上往下看,看到的图形形状都是正方形,①符合题意;球从前往后看和从上往下看,看到的图形形状都是圆,②符合题意;圆锥从前往后看和从上往下看,看到的图形形状分别是三角形和圆,③不合题意;圆柱从前往后看和从上往下看,看到的图形形状分别是矩形和圆,④不合题意,故选:B.8.解:圆柱的左视图是长方形,长方体的左视图是长方形,所以它们的左视图是:故选:D.9.解:A.球的三视图均为圆,不符合题意;B.正方体的三视图均为正方形,不符合题意;C.圆锥的主视图和左视图是等腰三角形,俯视图是圆,不符合题意;D.圆柱的主视图和左视图是矩形,俯视图是圆,符合题意;故选:D.10.解:∵正三棱柱上、下两底面是全等的两正三角形,∴只有(1)和(4)2个图形符合要求,故选:C.二.填空题(共10小题)11.解:长方形绕它的一边旋转一周可形成圆柱;直角三角形绕它的直角边边旋转一周可形成圆锥;半圆绕它的直径旋转一周可形成球.故答案为圆柱;圆锥;球.12.解:用一个平面去截长方体,截面可能是正五边形.故答案为:可能.13.解:三棱柱的主视图是矩形,左视图是有中间线的矩形、俯视图是三角形;四棱柱的主视图和左视图都是矩形,俯视图是正方形,则三棱柱和四棱柱的三种视图中都会有的图形是矩形.故答案为:矩形.14.解:图(1)(8)(9)折叠后有一行两个面无法折起来,不能折成正方体;而(2),(3),(4),(5),(6),(7)都能折成正方体.故答案为(2),(3),(4),(5),(6),(7).15.解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为11,12,13,14,15,16或10,11,12,13,14,15;且每个相对面上的两个数之和相等,11+16=27,10+15=25,故可能为11,12,13,14,15,16或10,11,12,13,14,15,其和为81和75(11和14必须为对面,在本体图片中,11和14为邻面,故不合题意,应舍去)故答案为:81.16.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“加”字相对的字是“京”.17.解:与点数是3的面垂直的所有的面的点数和是1+6+5+2=14.故填14.18.解:该几何体的表面积为2×(4+8+6)=36;故答案为:36.19.解:四个角都剪去一个边长为acm的小正方形,则V=a(20﹣2a)2;填表如下:由表格可知,当a=3时,即小正方形边长为3时,所得到的无盖的长方体盒子容积最大.故答案为:3.20.解:∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+f﹣36=2,解得f=14,∴x+y=14.故答案为:14.三.解答题(共5小题)21.解:(1)设长方体的高为x,则长为4x,宽为3x,由题意得4x×3x=72解得x=,则4x=4,3x=3.答:这个长方体的长、宽、高分别是4cm、3cm、cm.(2)4×3×=72(cm3)答:体积是72cm3.22.解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.23.解:如图所示:24.解:情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).答:它们的表面积分别是42πcm2或56πcm2.25.解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.。

北师大版七年级上册数学第一章丰富的图形世界单元测试(含答案)

北师大版七年级上册数学第一章丰富的图形世界单元测试(含答案)

七年级上册数学第一章单元测试一、选择题(每题3分,共30分)1.观察下列实物模型,其形状是圆锥的是()2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.如图,把图形绕虚线旋转一周形成一个几何体,与它形状类似的物体是() A.课桌B.灯泡C.篮球D.水桶(第3题)(第4题)4.用一个平面去截下列几何体,其截面可能是长方形的有() A.4个B.3个C.2个D.1个5.如图是由六个小正方体组合而成的一个立体图形,从正面看到的立体图形的形状图是()(第5题)6.若一个棱柱有12个顶点,则下列说法正确的是()A.这个棱柱是十二棱柱B.这个棱柱有4个侧面C.这个棱柱的底面是八边形D.这个棱柱有6条侧棱7.不透明的袋子中装有一个几何体模型,两名同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥8.如图是一个正方体的表面展开图,则这个正方体是()(第8题)(第9题)(第10题)9.用一些大小相同的小正方体搭成一个几何体,从上面看这个几何体时看到的形状图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么从左面看这个几何体时,看到的形状图是()10.由若干个小正方体所搭成的物体,从正面和左面看到的形状图如图所示,则它从上面看到的形状图不可能是()二、填空题(每题3分,共15分)11.折扇最早出现于公元五世纪的中国南北朝时期,是一种用竹木或象牙做扇骨、韧纸或绫绢做扇面的能折叠的扇子,用时需撒开,成半规形,聚头散尾.折扇打开这一现象抽象成数学事实是______________.12.在创建“文明城市”过程中,小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是________.(第12题)13.在一个棱柱中,一共有5个面,则这个棱柱有________条棱,有________个顶点.14.下列图形中,图①能折叠成______________,图②能折叠成______________,图③能折叠成____________.(第14题)15.如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是________.(第15题)三、解答题(第16题10分,第17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.(1)如图所示的这些基本图形你很熟悉吧,请你在括号内写出它们的名称;(第16题)(2)把这些几何体分类,并写出分类的理由.17.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x +y+z的值.(第17题)18.(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看到的这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请画出从正面和左面看到的几何体的形状图.[第18(1)题](2)用小立方块搭一个几何体,使它从正面看、从左面看、从上面看得到的形状图如图所示.请在从上面看到的形状图的小正方形中填入相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数.其中,图①填入的数字表示最多组成该几何体的小立方块的个数,图②填入的数字表示最少组成该几何体的小立方块的个数.[第18(2)题]19.一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:__________;(2)若从上面看该几何体为正方形,根据图中数据计算这个几何体的体积.(第19题)20.一个棱柱有10个面,且所有侧棱长的和为64 cm,它的底面边长都是5 cm.请解答下列问题.(1)这个棱柱是几棱柱?(2)求此棱柱的侧面积.21.如图是由几个相同的小正方体搭成的一个几何体.(1)从正面、左面、上面观察该几何体,分别画出所看到的几何体的形状图;(2)请计算几何体的表面积(小正方体的棱长为1 cm).(第21题)22.用小立方块搭一个几何体,使它从正面、上面看到的形状图如图所示,从上面看到的图形中,小正方形中的字母表示在该位置小立方块的个数.(1)a,b,c各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当d=e=1,f=2时,画出这个几何体从左面看到的形状图.(第22题) 23.把如图①所示的正方体切去一块,可得到如图②~⑤所示的几何体.(第23题)(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若把几何体的面数记为f,棱数记为e,顶点数记为v,则f,e,v满足什么关系式?答案一、1.C 2.B 3.D 4.B 5.B 6.D7.D8.C9.B10.B二、11.线动成面12.城13.9;614.圆柱;五棱柱;圆锥15.5三、16.解:(1)球;圆柱;圆锥;长方体;三棱锥(2)(答案不唯一)组成的面都是平面:长方体,三棱锥;组成的面有曲面:球,圆柱,圆锥.17.解:由题意知x+5=10,y+2=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.18.解:(1)如图.[第18(1)题][第18(2)题](2)如图.19.解:(1)长方体(2)易知长方体的底面是边长为3 cm的正方形,高为4 cm,则这个几何体的体积是3×3×4=36(cm3).20.解:(1)10-2=8(个),所以这个棱柱有8个侧面,为八棱柱.(2)这个棱柱的侧棱长为64÷8=8(cm),所以它的侧面积为5×8×8=320(cm2).21.解:(1)如图.(第21题)(2)[(5+5+3)×2+2]×12=28(cm2).22.解:(1)a=3,b=1,c=1.(2)这个几何体最少由4+2+3=9(个)小立方块搭成,最多由6+2+3=11(个)小立方块搭成.(3)如图.(第22题)(第23题)23.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)答案不唯一,例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(3)f,e,v满足的关系式为f+v-e=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大版七年级数学上册第一章丰富的图形世界单元测试题
班级:_____姓名:______ 评分:________
一、填空题:(每题3分,共30分)
1.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;
2.将下列几何体分类,柱体有:,锥体有(填序号);
3、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那
么1和5的对面数字分别是____ 和_____ 。

4、写出两个三视图形状都一样的几何体:___ ____、_________。

5.棱柱的侧面是,分为棱柱和棱柱;
6.如图1-1中的几何体有个面,面面相交成线;
7.把一块学生使用的三角板以一条直角边为轴旋转成的形状是体形状。

8.薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _____________.
9.六棱柱有个顶点,个面;
10.若要使图中平面展开图按虚线折叠成正方体后,相
对面上两个数之和为6,x=_ ___,y=______
二、选择题(每题4分,共32分)
11、如图,该物体的俯视图是()
A B C D
12.用一个平面去截
①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是 ( )
A.①②④
B.①②③C.②③④
D
.①③④
13.
从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2003个三角形,则这个多边
形的边数为()A、2001 B、2005 C、2004 D、2006
14 列平面图形中不能围成正方体的是()
A、 B、 C、 D、
15.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方平展开图可
能是()
(A)(B)(C)(D)
16如图所示的图形绕虚线旋转一周,所形成的几何体是()
17.如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的体有多少
个小立方块()
(A)4个
(B)5个
(C)6个
(D)7个
18、正方体的截面不可能是()
A、四边形
B、五边形
C、六边形
D、七边形
三、画图题:(15分)
19、下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视
图、左视图和俯视图。

1
2 3
x y
俯视图
左视图
主视图
20、 如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.
请画出这个几何体的主视图和俯视图.
21
、指出下列平面图形是什么几何体的展开图(6分):
B
四、
解答题( 8分)22、用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少小立方块,最少需要多少小立方块,请画出最少和最多时的左视图; 答:最多________________ 块 ; 最少__________________块
最多时的左视图 最少时的左视图
五、解答题(7分)23、 将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?
24、(8分)已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm ,俯视图中三角形的边长为4cm ,求这个几何体的侧面积。

(9分)
主视图 俯视图 2
4
13
2A
C
俯视图:等边三角形
左视图:长方形主视图:长方形。

相关文档
最新文档