遗传算法实验报告
实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。
遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。
本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。
2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。
其基本原理可以概括为:选择、交叉和变异。
(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。
(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。
交叉算子的选择及实现方式会对算法效果产生很大的影响。
(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。
通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。
3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。
(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。
(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。
(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。
b. 计算适应度:根据适应度函数,计算每个个体的适应度值。
c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。
d. 交叉操作:对父代进行交叉操作,生成新的个体。
e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。
人工智能 遗传算法实验报告

人工智能试验陈述学号:姓名:试验名称:遗传算法试验日期: 2016.1.5【试验名称】遗传算法【试验目标】控制遗传算法的基起源基础理,熟习遗传算法的运行机制,学会用遗传算法来求解问题.【试验道理】遗传算法(Genetic Algorithm)是模仿达尔文生物进化论的天然选择和遗传学机理的生物进化进程的盘算模子,是一种经由过程模仿天然进化进程搜刮最优解的办法.遗传算法是从代表问题可能潜在的解集的一个种群开端的,而一个种群则由经由基因编码的必定命目标个别构成.每个个别现实上是染色体带有特点的实体.在一开端须要实现从表示型到基因型的映射即编码工作.因为模仿基因编码的工作很庞杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生计和优越劣汰的道理,逐代演变产生出越来越好的近似解,在每一代,依据问题域中个别的顺应度大小选择个别,并借助于天然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群.这个进程将导致种群像天然进化一样的后生代种群比前代加倍顺应于情况,末代种群中的最优个别经由解码,可以作为问题近似最优解.遗传算法程度流程图为:【试验内容】标题:已知f(x)=x*sin(x)+1,xÎ[0,2p],求f(x)的最大值和最小值.数据构造:struct poptype{double gene[length];//染色体double realnumber;//对应的实数xdouble fitness;//顺应度double rfitness;//相对顺应度double cfitness;//累计顺应度};struct poptype population[popsize+1];//最后一位存放max/minstruct poptype newpopulation[popsize+1];//染色体编码:[0,2]x π∈,变量长度为 2 π,取小数点后6位,因为2262322*102;π<<是以,染色体由23位字节的二进制矢量暗示,则X 与二进制串(<b 22 b 21…… b 0>)2之间的映射如下:()22222102010bb ......b 2'i i i b x =⎛⎫=•= ⎪⎝⎭∑;232'21x x π=- 顺应度函数: 因为请求f(x)的最值,所以顺应度函数即可为f(x).但为了确保在轮赌法选择过中,每个个别都有被选中的可能性,是以须要将所有顺应度调剂为大于0的值.是以,设计求最大值的顺应度函数如下:将最小问题转化为求-f(x)的最大值,同理,设计最小值的顺应度函数如下:种群大小:本试验默以为50,再进行种群初始化.试验参数:重要有迭代数,交叉概率,变异概率这三个参数.一般交叉概率在0.6-0.9规模内,变异概率在0.01-0.1规模内.可以经由过程手动输入进行调试.重要代码如下:void initialize()//种群初始化{srand(time(NULL));int i,j;for(i=0;i<popsize;i++)for(j=0;j<23;j++)population[i].gene[j]=rand()%2;void transform()//染色体转化为实数x{int i,j;for(i=0;i<=popsize+1;i++){population[i].realnumber=0;for(j=0;j<23;j++)population[i].realnumber+=population[i].gene[j]*pow(2 ,j);population[i].realnumber=population[i].realnumber*2*p i/(pow(2,23)-1);}}void cal_fitness()//盘算顺应度{int i;for(i=0;i<popsize;i++)population[i].fitness=population[i].realnumber*sin(po pulation[i].realnumber)+6;}void select()//选择操纵{int mem,i,j,k;double sum=0;double p;for (mem=0;mem<popsize;mem++)sum+=population[mem].fitness;for (mem=0;mem<popsize; mem++)population[mem].rfitness=population[mem].fitness/sum;population[0].cfitness=population[0].rfitness;for (mem=1;mem<popsize;mem++)population[mem].cfitness=population[mem-1].cfitness+population[mem].rfitness;for (i=0;i<popsize;i++){ //轮赌法选择机制p=rand()%1000/1000.0;if (p<population[0].cfitness)newpopulation[i]=population[0];else{for (j=0;j<popsize;j++)if(p>=population[j].cfitness&&p<population[j+1].cfitness)newpopulation[i]=population[j+1];}}for (i=0;i<popsize;i++)//复制给下一代population[i]=newpopulation[i];}void cross()//交叉操纵{int i, mem, one;int first = 0;double x;for(mem=0;mem<popsize;mem++){x = rand()%1000/1000.0;if (x<pcross){++first;if (first%2==0)Xover(one,mem);//个别间染色体进行交叉函数else one=mem;}}}void mutate()//变异操纵{int i, j,t;double x;for (i=0;i<popsize;i++)for(j=0;j<length;j++){x=rand()%1000/1000.0;if (x<pvariation){if(population[i].gene[j])population[i].gene[j]=0; else population[i].gene[j]=1;}}}void cal_max()//盘算最大值{int i;double max,sum=0;int max_m;max=population[0].fitness;for(i=0;i<popsize-1;i++){if(population[i].fitness>population[i+1].fitness)if(population[i].fitness>=max){max=population[i].fitness;max_m=i;}else if(population[i+1].fitness>=max){max=population[i+1].fitness;max_m=i + 1;}}if(max>population[popsize].fitness){iteration=0;for (i=0;i<length;i++)population[popsize].gene[i]=population[max_m].gene[i]; population[popsize].fitness=population[max_m].fitness; }for (i=0;i<length;i++)sum=population[popsize].gene[i]-population[max_m].gene[i];if(sum==0)iteration++;transform();printf("%f,%f,%f,%f\n",population[popsize].fitness,po pulation[popsize+1].fitness,population[popsize].realnumbe r,population[popsize+1].realnumber);}【试验成果】。
遗传算法实验报告

遗传算法实验报告遗传算法实验报告引言:遗传算法是一种模拟生物进化过程的优化算法,通过模拟自然选择、遗传变异和交叉等操作,逐步优化问题的解。
本实验旨在探究遗传算法在解决优化问题中的应用,并通过实验验证其效果。
一、实验背景遗传算法最早由美国科学家约翰·霍兰德于20世纪60年代提出,其灵感来源于达尔文的进化论。
遗传算法通过基因编码、适应度评估、选择、交叉和变异等操作,模拟了进化过程中的遗传和变异,从而找到问题的最优解。
二、实验目的本实验旨在通过遗传算法解决一个经典的优化问题,验证其在解决实际问题中的有效性。
同时,对遗传算法的参数设置和操作过程进行调整和优化,以提高算法的性能。
三、实验步骤1. 问题定义:选择一个经典的优化问题,例如旅行商问题(TSP)或背包问题。
2. 解空间建模:将问题的解表示为染色体,设计基因编码方式。
3. 适应度函数定义:根据问题的特点,设计一个能够评估染色体解的适应度函数。
4. 初始化种群:随机生成一组初始染色体,作为种群。
5. 选择操作:根据适应度函数,选择一部分较优秀的染色体作为父代。
6. 交叉操作:通过交叉操作,生成新的子代染色体。
7. 变异操作:对子代染色体进行变异操作,引入新的基因变异。
8. 适应度评估:计算新的子代染色体的适应度。
9. 父代替换:根据适应度函数,选择一部分较优秀的子代染色体替换掉父代染色体。
10. 终止条件判断:判断是否满足终止条件,若满足则结束算法,否则返回步骤5。
11. 输出结果:输出最优解及其适应度值。
四、实验结果与分析通过实验,我们得到了一组优化问题的最优解,并计算出其适应度值。
通过观察实验结果,我们可以发现遗传算法在解决优化问题中的有效性。
同时,我们还可以通过调整遗传算法的参数和操作过程,进一步提高算法的性能。
五、实验总结通过本次实验,我们深入了解了遗传算法的原理和应用。
遗传算法作为一种优化算法,具有较强的适应性和鲁棒性,在解决实际问题中具有广泛的应用前景。
技术报告_遗传算法

遗传算法1.概述遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
1.1产生与背景生物只有经过许多世代的不断进化(evolution,演化),才能更好地完成生存与繁衍的任务。
遗传算法也遵循同样的方式,需要随着时间的推移不断成长、演化,最后才能收敛,得到针对某类特定问题的一个或多个解。
了解一些有关有生命的机体如何演化的知识,对理解遗传算法的演化机制是是有帮助的。
从本质上说,任何生物机体不过就是一大堆细胞的集合。
每个细胞都包含若干组相同的DNA链,人们一般称之为染色体(chromosome)。
染色体中包含的DNA分为两股,这两股DNA 链以螺旋状绞合在一起,这就是我们所熟悉的DNA双螺旋结构模型。
图 1.1 DNA双螺旋结构单个染色体是由称作基因(gene)的更小结构模块组成,而基因则又由称作核苷酸(nucleotide)的物质组成。
遗传算法实验报告

实验一 二进制编码函数优化一、实验目的根据给出的数学模型,利用遗传算法求解,并用C 语言编程实现。
采用二进制编码方式,通过不断调整种群规模、进化代数、交叉因子和变异因子等参数,对目标函数进行优化求解。
重点:掌握二进制编码的编程过程。
二、实验仪器Acer Aspire V5-472G ,Windows 7 旗舰版,64位操作系统 Intel(R) Core(TM) i5-3337 CPU @1.8GHz 1.80 GHz Microsoft Visual C++ 6.0 Microsoft Office Excel 2016三、实验内容及步骤采用二进制编码方式优化如下测试函数: (1) De Jong 函数F1:极小点f 1(0, 0, 0)=0。
(2) De Jong 函数F2:极小点f 2(1,1) = 0。
(3) De Jong 函数F3:对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值30),,,,(543213-=x x x x x f 。
要求:对每一个测试函数,分析不同的种群规模(20~100)、交叉概率(0.4~0.99)和变异概率(0.0001~0.1)对优化结果的影响,试确定最佳参数组合。
四、实验报告(1) 根据De Jong函数F1:极小点f1(0, 0, 0)=0。
给定Cmax=100,MaxGeneration=100,在此基础上改变A:Popsize(20、60、100)、B:Pc(0.3、0.6、0.9)、C:Pm(0.1、0.05、0.001)等参数,设计一个3因素3水平的正交实验,根据正交实验表进行实验。
将正交实验因素和实验结果整合成一个正交实验表,如表1.1.1所示。
其中M表示best达到0的最小迭代数,N代表Average的收敛性,收敛为1,不收敛为0。
对实验结果M、N两项参数进行分析,得到均值响应表,如表1.1.2所示。
表1.1.1 函数F1正交实验表表1.1.2 函数F1均值响应表通过分析均值响应表,得到较优的组合为A1B1C2和A1B1C1。
用于函数优化的遗传算法的报告

八个常用的测试函数
二维球形函数: f ( x , y ) x y , 5.12 x 5.12 De Jong函数: f ( x , y ) 100( y x ) ( x 1) x , y [ 2.048, 2.048] Goldstein--price函数: f ( x , y ) [1 ( x y 1) (1 9 1 4 x 3 y 1 4 x 6 xy 3 x )]
2 4 6 2 4 5
2 2 6
f 4 ( x , y ) ( x y 11) ( x y 7) x , y [ 6, 6]
2 2 2
5
5
7
i 1
i 1
2
2
8
6 x y 10
2 2
15
2012-7-20
运行结果
函数 最优值 最差值 平均值 实际最优值 0 0 3 f1(x) f2(x) f3(x) -1.2207e-008 2.2631e-006 3 1.2207e-005 1.9232e-004 3.0001 6.6530e-006 8.9500e-005 3
f4(x)
f5(x) f6(x) f7(x) f8(x)
6.8081e-008
-1.0316 -0.1848 -186.7308 -2.1188
2.2219e-005
-1.0309 -0.1848 -186.7012 -2.1188
8.5730e-006
-1.0143 -0.1848 -186.7291 -2.1188
F (1) F ( 2 ) F ( i 1) ada_sum * rand F(1) F ( 2 ) F ( i )
遗传算法求解TSP问题报告

遗传算法求解TSP问题实验报告一、实验要求:以旅行商问题(TSP)为例做模拟进化搜索技术实验,并提交实验研究报告。
二、实验思路:bool fnCreateRandomGene(); //产生随机基因bool fnGeneAberrance(); //基因变异bool fnGeneMix(); //基因交叉产生新的个体测试并淘汰适应度低的个体bool fnEvalAll(); //测试所有基因的适应度int fnEvalOne(T &Gene); //测试某一个基因的适应度void Crossover( int nFatherA, int nFatherB);void fnDispProbability(); //显示每个个体的权值Crossover()——两染色体的交叉实现输入参数:1、nFatherA 父染色体A2、nFatherB 父染色体B3、nMode 交叉方式返回值:空注:现有交叉方式1、常规交叉方式,该方式比《现代计算方法》(邢文训等编著)p178给出的“非常规码的常规交配法”稍复杂些。
书中只随机选择一个交配位,两个后代交配位之前的基因分别继承双亲的交配位之前的基因。
本程序中,是随机选择两个不相同的交配位,后代在这两个交配位之间继承双亲在这两个交配位之间的基因如父A 1 2 3 | 4 5 6 7 | 8 9 10父B 4 7 8 | 3 2 5 9 | 1 6 10子A 8 3 2 | 4 5 6 7 | 9 1 10子B 1 4 6 | 3 2 5 9 | 7 8 102、贪心交叉方式(Greedy Crossover),具体算法可参见谢胜利,等.求解TSP问题的一种改进的遗传算法[J].计算机工程与应用,2002(8):58~245.三、实验代码:#include <fstream>#include<iostream>#include <vector>#include <algorithm>#include<math.h>#include <time.h>#include <stdlib.h>#include "def.h"#include "TSP.h"void main(){ifstream input_file;ofstream output_file;time_t time1,time2;int _GENERATION_AMOUNT;int times;int _CITY_AMOUNT=-1;int ii,j,k;std::vector<double> x;std::vector<double> y;char readfile[50];const char* writefile="tsp.txt";double tempx[10000],tempy[10000];cout<<"打开城市坐标文件:";cin>>readfile;input_file.open(readfile);if(!input_file){cout<<"打开错误!";return;}cout<<"读入城市坐标........"<<endl;while(1){if(!input_file.eof()){_CITY_AMOUNT++;input_file>>tempx[_CITY_AMOUNT]>>tempy[_CITY_AMOUNT];if(tempx[_CITY_AMOUNT]<0||tempy[_CITY_AMOUNT]<0){cout<<"文件格式有误!";return;}}elsebreak;}if( _CITY_AMOUNT==-1){cout<<"文件格式有误!";return;}input_file.close();_CITY_AMOUNT=_CITY_AMOUNT+1;x.reserve(_CITY_AMOUNT);y.reserve(_CITY_AMOUNT);lpCityDistance.reserve(_CITY_AMOUNT*_CITY_AMOUNT);for(k=0;k<_CITY_AMOUNT;k++){x[k]=tempx[k];y[k]=tempy[k];}cout<<"已存入的城市信息为:"<<endl;for(ii=0;ii<_CITY_AMOUNT;ii++)cout<<"第"<<ii+1<<"个城市"<<"("<<x[ii]<<","<<y[ii]<<")"<<endl;lpCityDistance.clear();for(k=0;k<_CITY_AMOUNT;k++){lpCityDistance[k*_CITY_AMOUNT+k]=0;for(j=k+1;j<_CITY_AMOUNT;j++){lpCityDistance[k*_CITY_AMOUNT+j]=lpCityDistance[j*_CITY_AMOUNT+k] =sqrt((x[k]-x[j])*(x[k]-x[j])+(y[k]-y[j])*(y[k]-y[j]));}}cout<<"输入进化代数:"<<endl;cin>>times;cout<<"输入种群大小:(大于城市个数小于10000)"<<endl;cin>> _GENERATION_AMOUNT;while(_GENERATION_AMOUNT>=10000||_GENERATION_AMOUNT<_CITY_AMOUNT){cout<<"种群数输入错误!请重新输入(大于城市个数小于10000)"<<endl;cin>> _GENERATION_AMOUNT;}Csga<_CONTAINER, _CONTAINER_P> CUnit(times,_GENERATION_AMOUNT,_CITY_AMOUNT); //初始化time1=time(NULL);//开始遗传算法if(!CUnit.fnCreateRandomGene()) //产生随机基因//产生随机的基因{exit(0);}//循环基因编译,杂交,淘汰过程CUnit.fnEvalAll(); //测试所有基因的适应度for ( int i = 0; i<times; ++i ){//CUnit.fnDispProbability();//显示每个个体的权值CUnit.fnGeneAberrance(); //基因变异//基因变异//CUnit.fnDispProbability();//显示每个个体的权值CUnit.fnGeneMix();//交叉产生新的个体测试并淘汰适应度低的个体//基因杂交CUnit.fnEvalAll(); //测试所有基因的适应度// 每隔_DISP_INTERV AL显示一次结果if ( (i+1)%_DISP_INTERV AL == 0 || i == 0){cout << "第" << i+1 << "代" <<endl;CUnit.fnDispProbability();CUnit.fnDispHistoryMin();}}CUnit.fnDispHistoryMin();time2=time(NULL);cout<<"\n\n计算用时为:"<<difftime(time2,time1)<<"s"<<endl;}四、实验结果:。
TSP的遗传算法程序实验报告

TSP的遗传算法程序一、实验原理遗传算法的流程如图所示:二、程序的主要思想使用C语言实现TSP的遗传算法根据遗传算法的原理,自定义所需的初始染色体长度、初始群体大小、最大的迭代次数、交叉概率以及变异概率。
初始时生成与染色体长度相同个数的城市,为每个城市随机生成平面坐标,将城市的初始生成的顺序作为初始的路径,即第一条染色体。
计算路径中相邻城市之间的距离,并进行保存。
将生成的城市再进行多次的重新排列,得到多条不同的路径,将这些路径作为初始群体里的染色体,计算每条路径的长度。
通过自定义的适应度函数计算染色体的适应度,通过交叉、变异生成新的种群。
对新种群继续迭代操作,直到达到初始定义的迭代次数,获得最终的路径及路径图。
三、程序的主要步骤①染色体初始化的子函数1)void initialize()2){int k,j,minx,miny,maxx,maxy;3)initdata();4)minx=0;5)miny=0;6)maxx=0;maxy=0;7)for(k=0;k<lchrom;k++)8){x[k]=rand();9)if(x[k]>maxx)maxx=x[k];10)if(x[k]<minx)minx=x[k];11)y[k]=rand();12)if(y[k]>maxy)maxy=y[k];13)if(y[k]<miny)miny=y[k];14)}15)if((maxx-minx)>(maxy-miny))16){maxxy=maxx-minx;}17)else {maxxy=maxy-miny;}18)maxdd=0.0;19)for(k=0;k<lchrom;k++)20)for(j=0;j<lchrom;j++)21){dd[k*lchrom+j]=hypot(x[k]-x[j],y[k]-y[j]);22)if(maxdd<dd[k*lchrom+j])maxdd=dd[k*lchrom+j];23)}24)refpd=dd[lchrom-1];25)for(k=0;k<lchrom;k++)26)refpd=refpd+dd[k*lchrom+k+2];27)for(j=0;j<lchrom;j++)28)dd[j*lchrom+j]=4.0*maxdd;29)ff=(0.765*maxxy*pow(lchrom,0.5));30)minpp=0;31)min=dd[lchrom-1];32)for(j=0;j<lchrom-1;j++)33){if(dd[lchrom*j+lchrom-1]<min)34){min=dd[lchrom*j+lchrom-1];35)minpp=j;36)}37)}38)initpop();39)statistics(oldpop);40)initreport();41)}7) for(k=0;k<lchrom;k++)8) {x[k]=rand();9) if(x[k]>maxx)maxx=x[k];10)if(x[k]<minx)minx=x[k];11)y[k]=rand();12)if(y[k]>maxy)maxy=y[k]13)if(y[k]<miny)miny=y[k];14)}此段程序是初始化多个城市的坐标值(x,y),其中(x[k],y[k])代表第k+1个城市的坐标值,也相当于初始染色体的第k+1个基因值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江南大学物联网工程学院实验报告
课程名称人工智能实验名称遗传算法实验日期2016-4-10
班级计科1305 姓名游思睿学号1030413529
实验报告要求1.实验名称2.实验要求3.实验环境4.实验步骤5.实验体会
一、实验目的:
基本了解遗传算法的原理和具体程序实现。
二、实验内容:
利用遗传算法计算二元函数的最大值
(1) 个体编码
遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。
本题中,用无符号二进制整数来表示。
因x1, x2 为0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可
行解。
例如,基因型X=101110 所对应的表现型是:x=[ 5,6 ]。
个体的表现型x和基因型X之间可通过编码和解码程序相互转换。
(2) 初始群体的产生
遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始
群体数据。
本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。
如:011101,101011,011100,111001
(3) 适应度汁算
遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传
机会的大小。
本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接
利用目标函数值作为个体的适应度。
(4) 选择运算
选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。
一般要求适应度较高的个体将有更多的机会遗传到下一代
群体中。
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中
的数量。
其具体操作过程是:
•先计算出群体中所有个体的适应度的总和 fi( i=1.2,…,M );
•其次计算出每个个体的相对适应度的大小fi / fi ,它即为每个个体被遗传
到下一代群体中的概率,
•每个概率值组成一个区域,全部概率值之和为1;
•最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区
域内来确定各个个体被选中的次数。
(1) 个体编码
遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。
本题中,用无符号二进制整数来表示。
因x1, x2 为0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可
行解。
例如,基因型X=101110 所对应的表现型是:x=[ 5,6 ]。
个体的表现型x和基因型X之间可通过编码和解码程序相互转换。
(2) 初始群体的产生
遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始
群体数据。
本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。
如:011101,101011,011100,111001
(3) 适应度汁算
遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传
机会的大小。
本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接
利用目标函数值作为个体的适应度。
(4) 选择运算
选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。
一般要求适应度较高的个体将有更多的机会遗传到下一代
群体中。
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中
的数量。
其具体操作过程是:
•先计算出群体中所有个体的适应度的总和 fi( i=1.2,…,M );
•其次计算出每个个体的相对适应度的大小fi / fi ,它即为每个个体被遗传到下一代群体中的概率,
•每个概率值组成一个区域,全部概率值之和为1;
•最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。
(6) 变异运算
变异运算是对个体的某一个或某一些基因座上的基因值按某一较小的概率进行改变,它也是产生新个体的一种操作方法。
本例中,我们采用基本位变异的方法来进行变异运算,其具体操作过程是:
• 首先确定出各个个体的基因变异位置,下表所示为随机产生的变异点位置,
其中的数字表示变异点设置在该基因座处;
• 然后依照某一概率将变异点的原有基因值取反。
三、实验环境
VS2010
四、实验步骤(对照截图具体说明,尽量详细)
五、实验体会
教师评价优良中及
格不
及
格
教师
签名
日
期。