2018-2019年江苏省徐州市(苏北三市(徐州、淮安、连云港))高三数学第一次质量检测 卷 2 参考答案 五稿.

合集下载

2018年江苏省连云港市、徐州市、宿迁市高考数学三模试卷

2018年江苏省连云港市、徐州市、宿迁市高考数学三模试卷

2018年江苏省连云港市、徐州市、宿迁市高考数学三模试卷一、填空题(每题5分,满分70分,江答案填在答题纸上)1.已知集合A={﹣1,1,2},B={0,1,2,7},则集合A∪B中元素的个数为.2.设a,b∈R,=a+bi(i为虚数单位),则b的值为.3.在平面直角坐标系xOy中,双曲线﹣=1的离心率是.4.现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是.5.如图是一个算法的流程图,则输出的k的值为.6.已知一组数据3,6,9,8,4,则该组数据的方差是.7.已知实数x,y满足,则的取值范围是.8.若函数f(x)=2sin(2x+φ)(0<φ<)的图象过点(0,),则函数f(x)在[0,π]上的单调减区间是.9.在公比为q且各项均为正数的等比数列{a n}中,S n为{a n}的前n项和.若a1=,且S5=S2+2,则q的值为.10.如图,在正三棱柱ABC﹣A1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥P﹣ABA1的体积为.11.如图,已知正方形ABCD的边长为2,BC平行于x轴,顶点A,B和C分别在函数y1=3log a x,y2=2log a x和y3=log a x(a>1)的图象上,则实数a的值为.12.已知对于任意的x∈(﹣∞,1)∪(5,+∞),都有x2﹣2(a﹣2)x+a>0,则实数a的取值范围是.13.在平面直角坐标系xOy中,圆C:(x+2)2+(y﹣m)2=3,若圆C存在以G 为中点的弦AB,且AB=2GO,则实数m的取值范围是.14.已知△ABC三个内角A,B,C的对应边分别为α,b,c,且C=,c=2.当取得最大值时,的值为.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且≥,设∠EOF=θ,透光区域的面积为S.(1)求S关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n . (1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.20.已知函数f (x )=+xlnx (m >0),g (x )=lnx ﹣2. (1)当m=1时,求函数f (x )的单调区间;(2)设函数h (x )=f (x )﹣xg (x )﹣,x >0.若函数y=h (h (x ))的最小值是,求m 的值;(3)若函数f (x ),g (x )的定义域都是[1,e ],对于函数f (x )的图象上的任意一点A ,在函数g (x )的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,O 为坐标原点,求m 的取值范围.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O 的弦AB ,MN 交于点C ,且A 为弧MN 的中点,点D 在弧BM 上,若∠ACN=3∠ADB ,求∠ADB 的度数.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).2018年江苏省连云港市、徐州市、宿迁市高考数学三模试卷参考答案与试题解析一、填空题(每题5分,满分70分,江答案填在答题纸上)1.已知集合A={﹣1,1,2},B={0,1,2,7},则集合A∪B中元素的个数为5.【考点】1D:并集及其运算.【分析】利用并集定义直接求解.【解答】解:∵集合A={﹣1,1,2},B={0,1,2,7},∴A∪B={﹣1,0,1,2,7},集合A∪B中元素的个数为5.故答案为:5.2.设a,b∈R,=a+bi(i为虚数单位),则b的值为1.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a,b∈R,=a+bi(i为虚数单位),∴a+bi===i.∴b=1.故答案为:1.3.在平面直角坐标系xOy中,双曲线﹣=1的离心率是.【考点】KC:双曲线的简单性质.【分析】根据题意,由双曲线的方程可得a2、b2的值,由双曲线的几何性质可得c的值,进而由双曲线的离心率公式计算可得答案.【解答】解:根据题意,双曲线的方程为﹣=1,则a2=4,b2=3,则c==,则其离心率e==;故答案为:.4.现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】将这三张卡片随机排序,基本事件总数为:n==6,能组成“中国梦”包含的基本事件个数m=1,由此能求出能组成“中国梦”的概率.【解答】解:现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,基本事件总数为:n==6,能组成“中国梦”包含的基本事件个数m=1,∴能组成“中国梦”的概率p=.故答案为:.5.如图是一个算法的流程图,则输出的k的值为6.【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【解答】解:分析流程图所示的顺序知:k=2,22﹣14+10=0,不满足条件k2﹣7k+10>0,执行循环体;k=3,32﹣21+10=﹣2,不满足条件k2﹣7k+10>0,执行循环体;k=4,42﹣28+10=﹣2,不满足条件k2﹣7k+10>0,执行循环体;k=5,52﹣35+10=0,不满足条件k2﹣7k+10>0,执行循环体;k=6,62﹣42+10=4,满足条件k2﹣7k+10>0,退出循环,输出k=6.故答案为:6.6.已知一组数据3,6,9,8,4,则该组数据的方差是 5.2.【考点】BC:极差、方差与标准差.【分析】利用定义求这组数据的平均数和方差即可.【解答】解:数据3,6,9,8,4的平均数为:=×(3+6+9+8+4)=6,方差为:s2=×[(3﹣6)2+(6﹣6)2+(9﹣6)2+(8﹣6)2+(4﹣6)2]==5.2.故答案为:5.2.7.已知实数x,y满足,则的取值范围是[,] .【考点】7C:简单线性规划.【分析】由约束条件作出可行域,再由的几何意义,即可行域内的动点与定点O(0,0)连线的斜率求解.【解答】解:由约束条件作出可行域如图,的几何意义为可行域内的动点与定点O(0,0)连线的斜率,联立方程组求得A(3,﹣1),B(3,2),又,.∴的取值范围是[,].故答案为:[,].8.若函数f(x)=2sin(2x+φ)(0<φ<)的图象过点(0,),则函数f(x)在[0,π]上的单调减区间是[,]【或(,)也正确】.【考点】H2:正弦函数的图象.【分析】根据函数f(x)图象过点(0,)求出φ的值,写出f(x)解析式,再根据正弦函数的图象与性质求出f(x)在[0,π]上的单调减区间.【解答】解:函数f(x)=2sin(2x+φ)(0<φ<)的图象过点(0,),∴f(0)=2sinφ=,∴sinφ=;又∵0<φ<,∴φ=,∴f(x)=2sin(2x+);令+2kπ≤2x+≤+2kπ,k∈Z,∴+2kπ≤2x≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z;令k=0,得函数f(x)在[0,π]上的单调减区间是[,].故答案为:[,]【或(,)也正确】.9.在公比为q且各项均为正数的等比数列{a n}中,S n为{a n}的前n项和.若a1=,且S5=S2+2,则q的值为.【考点】89:等比数列的前n项和.【分析】由a1=,且S5=S2+2,q>0.可得a3+a4+a5=(1+q+q2)=2,代入化简解出即可得出.【解答】解:∵a1=,且S5=S2+2,q>0.∴a3+a4+a5=(1+q+q2)=2,∴q2+q﹣1=0,解得q=.故答案为:.10.如图,在正三棱柱ABC﹣A1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥P﹣ABA1的体积为.【考点】LF:棱柱、棱锥、棱台的体积.【分析】点P到平面ABA1的距离即为△ABC的高,由此能求出三棱锥P﹣ABA1的体积.【解答】解:∵在正三棱柱ABC﹣A1B1C1中,AB=AA1=3,点P在棱CC1上,∴点P到平面ABA1的距离即为△ABC的高,即为h==,==,三棱锥P﹣ABA1的体积为:V===.故答案为:.11.如图,已知正方形ABCD的边长为2,BC平行于x轴,顶点A,B和C分别在函数y1=3log a x,y2=2log a x和y3=log a x(a>1)的图象上,则实数a的值为.【考点】4N:对数函数的图象与性质.【分析】设B(x,2log a x),利用BC平行于x轴得出C(x2,2log a x),利用AB 垂直于x轴得出A(x,3log a x),则正方形ABCD 的边长从横纵两个角度表示为log a x=x2﹣x=2,求出x,再求a 即可..【解答】解:设B(x,2log a x),∵BC平行于x轴,∴C(x′,2log a x)即log a x′=2log a x,∴x′=x2,∴正方形ABCD边长=|BC|=x2﹣x=2,解得x=2.由已知,AB垂直于x轴,∴A(x,3log a x),正方形ABCD边长=|AB|=3log a x﹣2log a x=log a x=2,即log a2=2,∴a=,故答案为:.12.已知对于任意的x∈(﹣∞,1)∪(5,+∞),都有x2﹣2(a﹣2)x+a>0,则实数a的取值范围是(1,5] .【考点】3W:二次函数的性质.【分析】对△进行讨论,利用二次函数的性质列不等式解出.【解答】解:△=4(a﹣2)2﹣4a=4a2﹣20a+16=4(a﹣1)(a﹣4).(1)若△<0,即1<a<4时,x2﹣2(a﹣2)x+a>0在R上恒成立,符合题意;(2)若△=0,即a=1或a=4时,方程x2﹣2(a﹣2)x+a>0的解为x≠a﹣2,显然当a=1时,不符合题意,当a=4时,符合题意;(3)当△>0,即a<1或a>4时,∵x2﹣2(a﹣2)x+a>0在(﹣∞,1)∪(5,+∞)恒成立,∴,解得3<a≤5,又a<1或a>4,∴4<a≤5.综上,a的范围是(1,5].故答案为(1,5].13.在平面直角坐标系xOy中,圆C:(x+2)2+(y﹣m)2=3,若圆C存在以G 为中点的弦AB,且AB=2GO,则实数m的取值范围是∅.【考点】J9:直线与圆的位置关系.【分析】求出G的轨迹方程,得两圆公共弦,由题意,圆心(﹣2,m)到直线的距离d=<,即可求出实数m的取值范围.【解答】解:设G(x,y),则∵AB=2GO,∴2=2,化简可得x2+y2+2x﹣my+m2+=0,两圆方程相减可得2x﹣my+m2+=0由题意,圆心(﹣2,m)到直线的距离d=<,无解,故答案为∅.14.已知△ABC三个内角A,B,C的对应边分别为α,b,c,且C=,c=2.当取得最大值时,的值为2+.【考点】9V:向量在几何中的应用.【分析】根据正弦定理用A表示出b,代入=2bcosA,根据三角恒等变换化简得出当取最大值时A的值,再计算sinA,sinB得出答案.【解答】解:∵C=,∴B=﹣A,由正弦定理得=,∴b=sin(﹣A)=2cosA+sinA,∴=bccosA=2bcosA=4cos2A+sin2A=2+2cos2A+sin2A=(sin2A+cos2A)+2=sin(2A+)+2,∵A+B=,∴0<A<,∴当2A+=即A=时,取得最大值,此时,B=﹣=∴sinA=sin=sin()=﹣=,sinB=sin()==.∴==2+.故答案为2+.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.【考点】HT:三角形中的几何计算.【分析】(1)在△ABC中,求出sinA==.,sin∠ACB=.可得cosB=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcosB;(2)在△ABC中,由正弦定理得,AB=sin∠ACB.在△BCD中,由余弦定理得,CD=.【解答】解:(1)在△ABC中,cosA=,A∈(0,π),所以sinA==.同理可得,sin∠ACB=.所以cosB=cos[π﹣(A+∠ACB)]=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcos∠ACB=;(2)在△ABC中,由正弦定理得,AB=sin∠ACB=.又AD=3DB,所以DB=.在△BCD中,由余弦定理得,CD===9.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.【考点】LZ:平面与平面垂直的性质.【分析】(1)推导出AB∥CD,从而AB∥平面PDC,由此能证明AB∥EF.(2)推导出AB⊥AD,从而AB⊥平面PAD,进而AB⊥AF,由AB∥EF,能证明AF⊥EF.【解答】证明:(1)因为ABCD是矩形,所以AB∥CD.又因为AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.又因为AB⊂平面ABEF,平面ABEF∩平面PDC=EF,所以AB∥EF.(2)因为ABCD是矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面PAD.又AF⊂平面PAD,所以AB⊥AF.又由(1)知AB∥EF,所以AF⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.【考点】KL:直线与椭圆的位置关系.【分析】(1)由椭圆方程求出a,b,c,可得F的坐标,设P(x1,y1),Q(x2,y2),直线l的方程为x=my+1,代入椭圆方程,求得P,Q的纵坐标,再由向量共线的坐标表示,可得m的方程,解方程可得m,进而得到直线l的方程;(2)运用韦达定理可得y1+y2,y1y2,my1y2,由A(﹣2,0),B(2,0),P(x1,y1),Q(x2,y2),x1=my1+1,x2=my2+1,运用直线的斜率公式,化简整理计算可得常数λ的值,即可判断存在.【解答】解:(1)因为a2=4,b2=3,所以c==1,所以F的坐标为(1,0),设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为x=my +1,代入椭圆方程+=1,得(4+3m 2)y 2+6my ﹣9=0,则y 1=,y 2=.若QF=2FP ,即=2,则+2•=0,解得m=,故直线l 的方程为x ﹣2y ﹣=0.(2)由(1)知,y 1+y 2=﹣,y 1y 2=﹣,所以my 1y 2=﹣=(y 1+y 2),由A (﹣2,0),B (2,0),P (x 1,y 1),Q (x 2,y 2),x 1=my 1+1,x 2=my 2+1,所以=•===,故存在常数λ=,使得k 1=k 2.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m 且≥,设∠EOF=θ,透光区域的面积为S .(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.【考点】HN :在实际问题中建立三角函数模型.【分析】(1)过点O 作OH ⊥FG 于H ,写出透光面积S 关于θ的解析式S ,并求出θ的取值范围;(2)计算透光区域与矩形窗面的面积比值,构造函数,利用导数判断函数的单调性,求出比值最大时对应边AB 的长度.【解答】解:(1)过点O 作OH ⊥FG 于H ,∴∠OFH=∠EOF=θ; 又OH=OFsinθ=sinθ, FH=OFcosθ=cosθ,∴S=4S △OFH +4S 阴影OEF =2sinθcosθ+4×θ=sin2θ+2θ;∵≥,∴sinθ≥,∴θ∈[,);∴S 关于θ的函数关系式为S=sin2θ+2θ,θ∈[,);(2)由S 矩形=AD•AB=2×2sinθ=4sinθ,∴=+,设f (θ)=+,θ∈[,),则f′(θ)=﹣sinθ+===;∵≤θ<,∴sin2θ≤,∴sin2θ﹣θ<0, ∴f′(θ)<0,∴f (θ)在θ∈[,)上是单调减函数;∴当θ=时f (θ)取得最大值为+,此时AB=2sinθ=1(m );∴S 关于θ的函数为S=sin2θ+2θ,θ∈[,);所求AB 的长度为1m .19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n . (1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.【考点】8E :数列的求和;8H :数列递推式.【分析】(1)运用数列的递推式和等差数列的定义和通项公式,即可得到所求;(2)方法一、设数列{b n }的公差为d ,求出S n ,T n .由恒成立思想可得b 1<1,求出a n ﹣b n ,判断符号即可得证;方法二、运用反证法证明,设{b n }的公差为d ,假设存在自然数n 0≥2,使得a≤b,推理可得d >2,作差T n ﹣S n ,推出大于0,即可得证;(3)运用等差数列和等比数列的求和公式,求得S n,T n,化简,推出小于3,结合等差数列的通项公式和数列的单调性,即可得到所求值.【解答】解:(1)由3S n+1=2S n+S n+2+a n,得2(S n+1﹣S n)=S n+2﹣S n+1+a n,即2a n+1=a n+2+a n,所以a n+2﹣a n+1=a n+1﹣a n.由a1=1,S2=4,可知a2=3.所以数列{a n}是以1为首项,2为公差的等差数列.故{a n}的通项公式为a n=1+2(n﹣1)=2n﹣1,n∈N*.(2)证法一:设数列{b n}的公差为d,则T n=nb1+n(n﹣1)d,由(1)知,S n=n(1+2n﹣1)=n2.因为S n>T n,所以n2>nb1+n(n﹣1)d,即(2﹣d)n+d﹣2b1>0恒成立,所以,即,又由S1>T1,得b1<1,所以a n﹣b n=2n﹣1﹣b1﹣(n﹣1)d=(2﹣d)n+d﹣1﹣b1≥2﹣d+d﹣1﹣b1=1﹣b1>0.所以a n>b n,得证.证法二:设{b n}的公差为d,假设存在自然数n0≥2,使得a≤b,则a1+2(n0﹣1)≤b1+(n0﹣1)d,即a1﹣b1≤(n0﹣1)(d﹣2),因为a1>b1,所以d>2.所以T n﹣S n=nb1+n(n﹣1)d﹣n2=(d﹣1)n2+(b1﹣d)n,因为d﹣1>0,所以存在N∈N*,当n>N时,T n﹣S n>0恒成立.这与“对任意的n∈N*,都有S n>T n”矛盾!所以a n>b n,得证.(3)由(1)知,S n=n2.因为{b n}为等比数列,且b1=1,b2=3,所以{b n}是以1为首项,3为公比的等比数列.所以b n=3n﹣1,T n=(3n﹣1).则===3﹣,因为n∈N*,所以6n2﹣2n+2>0,所以<3.而a k=2k﹣1,所以=1,即3n﹣1﹣n2+n﹣1=0(*).当n=1,2时,(*)式成立;当n≥2时,设f(n)=3n﹣1﹣n2+n﹣1,则f(n+1)﹣f(n)=3n﹣(n+1)2+n﹣(3n﹣1﹣n2+n﹣1)=2(3n﹣1﹣n)>0,所以0=f(2)<f(3)<…<f(n)<…,故满足条件的n的值为1和2.20.已知函数f(x)=+xlnx(m>0),g(x)=lnx﹣2.(1)当m=1时,求函数f(x)的单调区间;(2)设函数h(x)=f(x)﹣xg(x)﹣,x>0.若函数y=h(h(x))的最小值是,求m的值;(3)若函数f(x),g(x)的定义域都是[1,e],对于函数f(x)的图象上的任意一点A,在函数g(x)的图象上都存在一点B,使得OA⊥OB,其中e是自然对数的底数,O为坐标原点,求m的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出h(x)的导数,解关于导函数的不等式,求出函数的单调区间,求出h(x)的最小值,从而求出m的值即可;(3)根据OA 和OB 的关系,问题转化为﹣x 2lnx ≤m ≤x 2(e ﹣lnx )在[1,e ]上恒成立,设p (x )=﹣x 2lnx ,根据函数的单调性求出m ≥p (1)=,设q(x )=x 2(e ﹣lnx ),根据函数的单调性求出m ≤q (1),从而求出m 的范围即可.【解答】解:(1)当m=1时,f (x )=+xlnx ,f′(x )=+lnx +1,因为f′(x )在(0,+∞)上单调增,且f′(1)=0,所以当x >1时,f′(x )>0;当0<x <1时,f′(x )<0, 所以函数f (x )的单调增区间是(1,+∞).(2)h (x )=+2x ﹣,则h′(x )=,令h′(x )=0,得x=,当0<x <时,h′(x )<0,函数h (x )在(0,)上单调减;当x >时,h′(x )>0,函数h (x )在(,+∞)上单调增.所以[h (x )]min =h ()=2m ﹣,①当(2m ﹣1)≥,即m ≥时,函数y=h (h (x ))的最小值h(2m ﹣)=[+2(2﹣1)﹣1]=,即17m ﹣26+9=0,解得=1或=(舍),所以m=1;②当0<(2﹣1)<,即<m <时,函数y=h (h (x ))的最小值h ()=(2﹣1)=,解得=(舍),综上所述,m 的值为1.(3)由题意知,K OA =+lnx ,K OB =,考虑函数y=,因为y′=在[1,e ]上恒成立,所以函数y=在[1,e ]上单调增,故K OB ∈[﹣2,﹣],所以K OA ∈[,e ],即≤+lnx ≤e 在[1,e ]上恒成立,即﹣x 2lnx ≤m ≤x 2(e ﹣lnx )在[1,e ]上恒成立,设p (x )=﹣x 2lnx ,则p′(x )=﹣2lnx ≤0在[1,e ]上恒成立,所以p(x)在[1,e]上单调减,所以m≥p(1)=,设q(x)=x2(e﹣lnx),则q′(x)=x(2e﹣1﹣2lnx)≥x(2e﹣1﹣2lne)>0在[1,e]上恒成立,所以q(x)在[1,e]上单调增,所以m≤q(1)=e,综上所述,m的取值范围为[,e].【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O的弦AB,MN交于点C,且A为弧MN的中点,点D在弧BM 上,若∠ACN=3∠ADB,求∠ADB的度数.【考点】NB:弦切角.【分析】连结AN,DN.利用圆周角定理,结合∠ACN=3∠ADB,求∠ADB的度数.【解答】解:连结AN,DN.因为A为弧MN的中点,所以∠ANM=∠ADN.而∠NAB=∠NDB,所以∠ANM+∠NAB=∠ADN+∠NDB,即∠BCN=∠ADB.又因为∠ACN=3∠ADB,所以∠ACN+∠BCN=3∠ADB+∠ADB=180°,故∠ADB=45°.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.【考点】OV:特征值与特征向量的计算.【分析】利用矩阵的乘法,求出a,d,利用矩阵A的特征多项式为0,求出矩阵A的特征值.【解答】解:因为A==,所以,解得a=2,d=1.所以矩阵A的特征多项式为f(λ)==(λ﹣2)(λ﹣1)﹣6=(λ﹣4)(λ+1),令f(λ)=0,解得矩阵A的特征值为λ=4或﹣1.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.【考点】Q4:简单曲线的极坐标方程.【分析】点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB 最短时,点B为直线x﹣y+2=0与直线l的交点,求出交点,进而得出.【解答】解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,则点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB最短时,点B为直线x﹣y+2=0与直线l的交点,联立,得,所以点B的直角坐标为(﹣1,1).所以点B的极坐标为.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.【考点】R6:不等式的证明.【分析】利用基本不等式的性质进行证明.【解答】证明:∵a3+b3+c3=a2b2c2,a3+b3+c3≥3abc,∴a2b2c2≥3abc,∴abc≥3,∴a+b+c≥3≥3.当且仅当a=b=c=时,取“=”.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.【考点】K8:抛物线的简单性质.【分析】(Ⅰ)连接PF,运用中垂线的性质可得|MP|=|PF|,再由抛物线的定义可得点P的轨迹方程;(Ⅱ)求得M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y ﹣n=k(x+1),联立抛物线的方程,消去y,运用相切的条件:判别式为0,再由韦达定理,结合两直线垂直的条件:斜率之积为﹣1,即可得证.【解答】解:(Ⅰ)据题意,MP⊥直线x=﹣1,∴|MP|为点P到直线x=﹣1的距离,连接PF,∵P为线段MF的中垂线与直线y=n的交点,∴|MP|=|PF|,∴P点的轨迹是抛物线,焦点为F(1,0),准线为直线x=﹣1,∴曲线Г的方程为y2=4x;(Ⅱ)证明:据题意,M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y﹣n=k(x+1),联立抛物线方程可得ky2﹣4y+4k+4n=0,由直线和抛物线相切,可得△=16﹣4k(4k+4n)=0,即k2+kn﹣1=0,(*)∵△=n2+4>0,∴方程(*)存在两个不等实根,设为k1,k2,∵k1=k AM,k2=k BM,由方程(*)可知,k AM•k BM=k1•k2=﹣1,∴切线AM⊥BM,∴∠AMB=90°,结论得证.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).【考点】1H:交、并、补集的混合运算.【分析】(1)直接由“互斥子集”的概念求得f(2),f(3),f(4)的值;(2)由题意,任意一个元素只能在集合A,B,C=C U(A∪B)之一中,求出这n个元素在集合A,B,C中的个数,再求出A、B分别为空集的种数,则f(n)可求.【解答】解:(1)f(2)=1,f(3)=6,f(4)=25;(2)任意一个元素只能在集合A,B,C=C U(A∪B)之一中,则这n个元素在集合A,B,C中,共有3n种;其中A为空集的种数为2n,B为空集的种数为2n,∴A,B均为非空子集的种数为3n﹣2n+1+1,又(A,B)与(B,A)为一组“互斥子集”,∴f(n)=.2018年5月24日。

江苏省苏北四市(徐州、连云港、宿迁、淮安)2018届高三第一次模拟考试 数学试卷(含答案)

江苏省苏北四市(徐州、连云港、宿迁、淮安)2018届高三第一次模拟考试 数学试卷(含答案)

苏北四市2018届高三一模数学试卷2.圆锥的侧面积公式:12S cl =,其中c 是圆锥底面的周长,l 是母线长. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.已知集合2{0}A x x x =-=,{1,0}B =-,则A B = ▲ .2.已知复数2iz +=(i 为虚数单位),则z 的模为 ▲ . 3.函数y 的定义域为 ▲ .4.如图是一个算法的伪代码,运行后输出b的值为 ▲ .5.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有 ▲ 人.6.在平面直角坐标系xOy 中,已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为20x y -=,则该双曲线的离心率为 ▲ .7.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为 ▲ .(第5题) (第17题) 012While 62End While Pr int a b I I a a b b a b I I b ←←← ←+ ←+ ←+ … (第4题)8.已知正四棱柱的底面边长为3cm,侧面的对角线长是,则这个正四棱柱的体积是 ▲ 3cm .9.若函数()sin()(0,0)f x A x A ωϕω=+>>的图象与直线y m =的三个相邻交点的横坐标分别是6π,3π,23π,则实数ω的值为 ▲ . 10.在平面直角坐标系xOy 中,曲线:C xy =P到直线:0l x =的距离的最小值为 ▲ .11.已知等差数列{}n a 满足13579+10a a a a a +++=,228236a a -=,则11a 的值为 ▲ . 12.在平面直角坐标系xOy 中,若圆1C :222(1)(0)x y r r +-=>上存在点P ,且点P 关于直线0x y -=的对称点Q 在圆2C :22(2)(1)1x y -+-=上,则r 的取值范围是 ▲ .13.已知函数2211()(1)1x x f x x x ⎧-+ ⎪=⎨- > ⎪⎩,≤,,,函数()()()g x f x f x =+-,则不等式()2g x ≤的解集为 ▲ .14.如图,在ABC △中,已知32120AB AC BAC = = ∠=︒,,,D 为边BC 的中点.若CE AD ⊥,垂足为E ,则EB ·EC 的值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且3cos 5A =,1tan()3B A -=.⑴求tan B 的值;⑵若13c =,求ABC △的面积.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,90ABC ∠=,1=AB AA ,M ,N 分别是AC ,11B C 的中点.求证:⑴//MN 平面11ABB A ;⑵1AN A B ⊥.17.(本小题满分14分)B (第14题) A DC E (第16题)1A 1B NM1C CBA某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O 及其内接等腰三角形ABC 绕底边BC 上的高所在直线AO 旋转180°而成,如图2.已知圆O 的半径为10 cm ,设∠BAO=θ,π02θ<<,圆锥的侧面积为S cm 2. ⑴求S 关于θ的函数关系式;⑵为了达到最佳观赏效果,要求圆锥的侧面积S 最大.求S 取得最大值时腰AB 的长度.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为12,且过点312(,).F 为椭圆的右焦点,,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点. ⑴求椭圆的标准方程;⑵若AF FC =,求BFFD的值;⑶设直线AB ,CD 的斜率分别为1k ,2k求出m 的值;若不存在,请说明理由.图1 图2(第17题)(第18题)19.(本小题满分16分)已知函数2()1()ln ()f x x ax g x x a a =++ =-∈R ,. ⑴当1a =时,求函数()()()h x f x g x =-的极值;⑵若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 20.(本小题满分16分)已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n …,n *∈N ,λ,μ∈R .⑴若0λ=,4μ=,12n n n b a a +=-(n *∈N ),求证:数列{}n b 是等比数列; ⑵若数列{}n a 是等比数列,求λ,μ的值; ⑶若23a =,且32λμ+=,求证:数列{}n a 是等差数列.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域.........内作答...,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修41:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F .求证:2AB BE BD AE AC =⋅-⋅A C D E F(第21-A 题) O .B .[选修:矩阵与变换](本小题满分10分) 已知矩阵1001⎡⎤=⎢⎥-⎣⎦A ,4123⎡⎤=⎢⎥⎣⎦B ,若矩阵=M BA ,求矩阵M 的逆矩阵1-M .C .[选修:坐标系与参数方程](本小题满分10分)以坐标原点为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线12:12x tl y t=+⎧⎨=-⎩(t 为参数)与圆2:2cos 2sin 0C ρρθρθ+-=的位置关系.D .[选修:不等式选讲](本小题满分10分)已知,,,a b c d 都是正实数,且1a b c d +++=,求证: 2222111115a b c d a b c d +++++++….【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在正三棱柱111ABC A B C -中,已知1AB =,12AA =,E ,F ,G 分别是1AA ,AC 和11AC 的中点.以{,,}FA FB FG 为正交基底,建立如图所示的空间直角坐标系F xyz -. ⑴求异面直线AC 与BE 所成角的余弦值;⑵求二面角1F BC C --的余弦值.23.(本小题满分10分)在平面直角坐标系xOy 中,已知平行于x 轴的动直线l 交抛物线2:4C y x =于点P ,点F 为C 的焦点.圆心不在y 轴上的圆M 与直线l ,PF ,x 轴都相切,设M 的轨迹为曲线E .⑴求曲线E 的方程;⑵若直线1l 与曲线E 相切于点(,)Q s t ,过Q 且垂直于1l 的直线为2l ,直线1l ,2l 分别与y 轴相交于点A ,B .当线段AB 的长度最小时,求s 的值.数学参考答案与评分标准一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.{1,0,1}- 2.1 3.(0,1] 4.13 5.750 67.598.54 9.4 1011.11 12.1] 13.[2,2]- 14.277-二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(1)在ABC △中,由3cos 5A =,得A为锐角,所以4sin 5A ==,所以sin 4tan cos 3A A A ==,………………………………………………………………2分 所以tan()tan tan tan[()]1tan()tan B A AB B A A B A A-+=-+=--⋅. ………………………………4分1433314133+==-⨯ …………………………………………………………6分 (2)在三角形ABC 中,由tan 3B =,所以sin B B ==, ………………………………………………8分由sin sin()sin cos cos sin C A B A B A B =+=+=,…………………………10分由正弦定理sin sin b c B C =,得13sin sin c B b C =,………………………12分 所以ABC △的面积114sin 151378225S bc A ==⨯⨯⨯=. …………………………14分16.(1)证明:取AB 的中点P ,连结1,.PM PB因为,M P 分别是,AB AC 的中点,所以//,PM BC 且1.2PM BC =在直三棱柱111ABC A B C -中,11//BC B C ,11BC B C =, 又因为N 是11B C 的中点,所以1//,PM B N 且1PM B N =. …………………………………………2分 所以四边形1PMNB 是平行四边形,所以1//MN PB , ………………………………………………………………4分 而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,所以//MN 平面11ABB A . ……………………………………………………6分(2)证明:因为三棱柱111ABC A B C -为直三棱柱,所以1BB ⊥面111A B C , 又因为1BB ⊂面11ABB A ,所以面11ABB A ⊥面111A B C , …………………8分 又因为90ABC ∠=,所以1111B C B A ⊥, 面11ABB A 面11111=A B C B A ,11111B C A B C ⊂平面,所以11B C ⊥面11ABB A , ………………………10分 又因为1A B ⊂面11ABB A , 所以111B C A B ⊥,即11NB A B ⊥,连结1AB ,因为在平行四边形11ABB A 中,1=AB AA , 所以11AB A B ⊥, 又因为111=NB AB B ,且1AB ,1NB ⊂面1AB N ,所以1A B ⊥面1AB N ,……………………………………………………………………12分 而AN ⊂面1AB N ,所以1A B AN ⊥.……………………………………………………………………………14分 17.(1)设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E ,在AOE ∆中,10cos AE θ=,220cos AB AE θ==, …………………………………………………………2分在ABD ∆中,sin 20cos sin BD AB θθθ=⋅=⋅,…………………………………………………………4分所以1220sin cos 20cos 2S θθθ=⋅π⋅⋅2400sin cos θθ=π,(0)2πθ<<……………………6分(2)要使侧面积最大,由(1)得:23400sin cos 400(sin sin )S πθθπθθ==-…………8分 设3(),(01)f x x x x =-<< 则2()13f x x '=-,由2()130f x x '=-=得:x =当x ∈时,()0f x '>,当x ∈时,()0f x '< 所以()f x在区间上单调递增,在区间上单调递减, 所以()f x在x =所以当sin θ=时,侧面积S 取得最大值, …………………………11分此时等腰三角形的腰长20cos AB θ===答:侧面积S 取得最大值时,等腰三角形的腰AB.…………14分(第16题)1A 1B NM1C CB AP18.(1)设椭圆方程为22221(0)x y a b a b +=>>,由题意知:22121914c a a b ⎧=⎪⎪⎨⎪+=⎪⎩……………2分解之得:2a b =⎧⎪⎨=⎪⎩,所以椭圆方程为:22143x y += ……………………………4分 (2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --,此时直线BF 方程为3430x y --=, ……………………………………………6分 由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去),…………8分故1(1)713317BF FD --==-.…………………………………………………………………10分(3)设00,)A x y (,则00(,)B x y --, 直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 2220000(156)815240x x y x x ---+=,因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,…………………12分又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 同理,D 点坐标为0085(52x x ++,3)52y x +, ……………………………………………14分 所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,即存在53m =,使得2153k k =. ………………………………………………………16分19.(1)函数()h x 的定义域为(0,)+∞当1a =时,2()()()ln 2h x f x g x x x x =-=+-+,所以1(21)(1)()21x x h x x x x -+'=+-=………………………………………………2分 所以当102x <<时,()0h x '<,当12x >时,()0h x '>,所以函数()h x 在区间1(0,)2单调递减,在区间1(,)2+∞单调递增,所以当12x =时,函数()h x 取得极小值为11+ln24,无极大值;…………………4分 (2)设函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同,则121212()()()()f x g x f x g x x x -''==-所以211212121(ln )12x ax x a x a x x x ++--+==- ……………………………………6分 所以12122ax x =-,代入21211221(ln )x x x ax x a x -=++--得:222221ln 20(*)424a a x a x x -++--= ………………………………………………8分 设221()ln 2424a a F x x a x x =-++--,则23231121()222a x ax F x x x x x +-'=-++= 不妨设2000210(0)x ax x +-=>则当00x x <<时,()0F x '<,当0x x >时,()0F x '> 所以()F x 在区间0(0,)x 上单调递减,在区间0(,)x +∞上单调递增,……………10分代入20000121=2x a x x x -=-可得:2min 000001()()2ln 2F x F x x x x x ==+-+-设21()2ln 2G x x x x x =+-+-,则211()220G x x x x'=+++>对0x >恒成立, 所以()G x 在区间(0,)+∞上单调递增,又(1)=0G所以当01x <≤时()0G x ≤,即当001x <≤时0()0F x ≤, ……………12分又当2a x e+=时222421()ln 2424a a a a a F x e a e e +++=-++-- 2211()04a a e+=-≥ ……………………………………14分 因此当001x <≤时,函数()F x 必有零点;即当001x <≤时,必存在2x 使得(*)成立; 即存在12,x x 使得函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同.又由12y x x =-得:2120y x'=--<所以12(0,1)y x x =-在单调递减,因此20000121=2[1+)x a x x x -=-∈-∞, 所以实数a 的取值范围是[1,)-+∞.…………………………………………………16分 20.(1)证明:若=0,4 =λμ,则当14n n S a -=(2n ≥),所以1114()n n n n n a S S a a ++-=-=-, 即1122(2)n n n n a a a a +--=-,所以12n n b b -=, ……………………………………………………………2分 又由12a =,1214a a a +=,得2136a a ==,21220a a -=≠,即0n b ≠,所以12nn b b -=, 故数列{}n b 是等比数列.……………………………………………………………4分 (2)若{}n a 是等比数列,设其公比为q (0q ≠ ),当2n =时,2212S a a =+λμ,即12212a a a a +=+λμ,得12q q +=+λμ, ① 当3n =时,3323S a a =+λμ,即123323a a a a a ++=+λμ,得2213q q q q ++=+λμ, ② 当4n =时,4434S a a =+λμ,即1234434a a a a a a +++=+λμ,得 233214+q q q q q ++=+λμ, ③②①q ,得21q =λ ,③②q ,得31q =λ , 解得1,1 q ==λ.代入①式,得0=μ.…………………………………………………………………8分此时n n S na =(2n ≥),所以12n a a ==,{}n a 是公比为1的等比数列,故10 ==,λμ. ……………………………………………………………………10分 (3)证明:若23a =,由12212a a a a +=+λμ,得562=+λμ, 又32+=λμ,解得112==,λμ.…………………………………………………12分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+,两式相减得:111122n n n n n n na a a a a ++-+=-+-即11(1)(2)20n n n n a n a a +-----= 所以21(1)20n n n na n a a ++---=相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+= 所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+=所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-, ……………………………………14分因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………………………………………………………………16分数学Ⅱ(附加题)参考答案与评分标准21.A .证明:连接AD ,因为AB 为圆的直径,所以AD BD ⊥,又EF AB ⊥,则,,,A D E F 四点共圆,所以BD BE BA BF ⋅=⋅. …………………………………………………………5分 又△ABC ∽△AEF , 所以AB AC AE AF=,即AB AF AE AC ⋅=⋅, ∴2()BE BD AE AC BA BF AB AF AB BF AF AB ⋅-⋅=⋅-⋅=⋅-=. …………10分B .因为411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, ………………………………………5分 所以131********M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. ………………………………………………………10分 C .把直线方程12:12x t l y t =+⎧⎨=-⎩化为普通方程为2x y +=. ……………………………3分 将圆:C 22cos 2sin 0ρρθρθ+-=化为普通方程为22220x x y y ++-=,即22(1)(1)2x y ++-=. ………………………………………………………………6分圆心C 到直线l的距离d == 所以直线l 与圆C 相切.…………………………………………………………………10分D .证明:因为2222[(1)(1)(1)(1)]()1111a b c d a b c d a b c d++++++++++++++2≥ 2()1a b c d =+++=, …………………………………………5分又(1)(1)(1)(1)5a b c d +++++++=, 所以2222111115a b c d a b c d +++≥++++.…………………………………………10分 22.(1)因为11,2AB AA ==,则111(0,0,0),(,0,0),(,0,0),(,0,1)222F A C B E -, 所以(1,0,0)=-AC,1(,2=BE , ………………………………………2分 记直线AC 和BE 所成角为α,则11cos |cos ,|4α-⨯=<>==AC BE , 所以直线AC 和BE………………………………………4分 (2)设平面1BFC 的法向量为111(,,)x y z =m ,因为(0,FB =,11(,0,2)2FC =-, 则1111301202FB y FC x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩m m ,取14x =得:(4,0,1)=m ……………………………6分 设平面1BCC 的一个法向量为222(,,)x y z =n , 因为1(2CB =,1(0,0,2)CC=, 则221210220CB x y CC z ⎧⋅==⎪⎨⎪⋅==⎩n n ,取2x =1,0)=-n ………………………8分cos ,∴<m n 根据图形可知二面角1F BC C --为锐二面角,所以二面角1F BC C -- ……………………………………10分 23.(1)因为抛物线C 的方程为24y x =,所以F 的坐标为(1,0),设(,)M m n ,因为圆M 与x 轴、直线l 都相切,l 平行于x 轴, 所以圆M 的半径为n,点P 2(,2)n n ,则直线PF 的方程为2121y x n n -=-,即22(1)(1)0n x y n ---=,………………………2分n =,又,0m n ≠, 所以22211m n n --=+,即210n m -+=, 所以E 的方程为2=1y x -(0)y ≠ ………………………………………………4分(2)设2(1,)+Q t t , 1(0,)A y ,2(0,)B y , 由(1)知,点Q处的切线1l 的斜率存在,由对称性不妨设0>t ,由'=y 121AQ t y k t -==+,221BQ t y k t -==-+ 所以1122=-t y t,3223=+y t t , ……………………………………………………6分 所以33151|23|2(0)2222t AB t t t t t t t=+-+=++>.……………………………………8分 令351()222f t t t t=++,0t >, 则42222511251()6222t t f t t t t +-'=+-=,由()0f t'<得0t<<,f t'>得t>()0所以()f t在区间单调递减,在)+∞单调递增,所以当t=时,()f t取得极小值也是最小值,即AB取得最小值s t=+=.……………………………………………………………10分此时21。

【精品】江苏省近两年(2018,2019)高考数学试卷以及答案(word解析版)

【精品】江苏省近两年(2018,2019)高考数学试卷以及答案(word解析版)

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:锥体的体积13V Sh=,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲ .2.若复数满足i12iz⋅=+,其中i是虚数单位,则的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数2()log 1f x x =-的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为32c ,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为 ▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面. 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,(1,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.2,+∞) 6.310 7.π6-8.2 9.2210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为5cos()5αβ+=-,所以225sin()1cos ()5αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为267,所以21 267AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)22.综上,直线l 的方程为532y x =-+.学*19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*)得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即11,1d 3,32d 5,73d 9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+,即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为(1,2]m q ∈,则112n m q q -<≤≤, 从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>. 因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为m q m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的..............答题区域内作答........若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长. B .选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点. (1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC . 又因为PC =23,OC =2, 所以OP =22PC OC +=4.又因为OB =2,从而B 为Rt △OCP 斜边的中点,所以BC =2. B .选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分. 解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆, 从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2, 所以π4cos236AB ==. 因此,直线l 被曲线C 截得的弦长为23. D .选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz . 因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,,2)22P -, 从而131(,,2)(0,2,222),BP AC ==--, 故111|||14|310|cos ,|20||||522BP AC BP AC BP AC ⋅-+===⋅⨯.因此,异面直线BP 与AC 1所成角的余弦值为31020. (2)因为Q 为BC 的中点,所以31(,,0)22Q , 因此33(,,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即330,22220.x y y z ⎧+=⎪⎨⎪+=⎩ 不妨取(3,1,1)=-n ,设直线CC 1与平面AQC 1所成角为, 则111||25sin |cos |,|||552CC CC CC |θ==⋅⨯⋅==n n n , 所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-. 为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f (x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C 交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin(θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学答案解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【分析】直接利用交集运算得答案.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.【点评】本题考查交集及其运算,是基础题.2.【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].【点评】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.6.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题.8.【分析】设等差数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.9.【分析】推导出=AB×BC×DD1=120,三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1,由此能求出结果.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD 1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.【点评】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题.10.【分析】利用导数求平行于x+y=0的直线与曲线y=x+(x>0)的切点,再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x 0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题.11.【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).【点评】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题.12.【分析】首先算出=,然后用、表示出、,结合•=6•得=,进一步可得结果.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:【点评】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力.13.【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2α+)的值.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.【点评】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.14.【分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).【点评】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【分析】(1)由余弦定理得:cos B===,由此能求出c的值.(2)由=,利用正弦定理得2sin B=cos B,再由sin2B+cos2B=1,能求出sin B=,cos B =,由此利用诱导公式能求出sin(B+)的值.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.【点评】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题.16.【分析】(1)推导出DE∥AB,AB∥A1B1,从而DE∥A1B1,由此能证明A1B1∥平面DEC1.(2)推导出BE⊥AA1,BE⊥AC,从而BE⊥平面ACC1A1,由此能证明BE⊥C1E.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.【分析】(1)由题意得到F1D∥BF2,然后求AD,再由AD=DF1=求得a,则椭圆方程可求;(2)求出D的坐标,得到=,写出BF 2的方程,与椭圆方程联立即可求得点E的坐标.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF 2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).【点评】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明DF1∥BF2是解答该题的关键,是中档题.18.【分析】(1)设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)设点P(x1,0),PB⊥AB,运用两直线垂直的条件:斜率之积为﹣1,求得P的坐标,可得所求值;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为﹣1,求得Q的坐标,即可得到结论;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,结合条件,可得b的最小值,由两点的距离公式,计算可得PQ.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.【点评】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为﹣1,以及两点的距离公式,分析问题和解决问题的能力,考查运算能力,属于中档题.19.【分析】(1)由a=b=c,可得f(x)=(x﹣a)3,根据f(4)=8,可得(4﹣a)3=8,解得a.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x =b.f′(x)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.根据f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,通过分类讨论可得:只有a=3,b=﹣3,可得==1∈A,可得:f(x)=(x﹣3)(x+3)2.利用导数研究其单调性可得x=1时,函数f(x)取得极小值.(3)a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=3x2﹣(2b+2)x+b.△>0.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,可得x=x1时,f(x)取得极大值为M,通过计算化简即可证明结论.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,。

2018届江苏省徐州、连云港、宿迁三市高三第三次模拟数学试题及答案 精品

2018届江苏省徐州、连云港、宿迁三市高三第三次模拟数学试题及答案 精品

徐州、连云港、宿迁三市2018届高三第三次模拟数学Ⅰ参考公式:棱柱的体积公式:错误!未找到引用源。

其中错误!未找到引用源。

是棱柱的底面积,错误!未找到引用源。

是高. 一、填空题:本大题共14题,每小题5分,共70分.请把答案填写在答题纸相应位置上......... 1.已知复数错误!未找到引用源。

是虚数单位),则错误!未找到引用源。

的模为 ▲ .2.已知集合错误!未找到引用源。

则错误!未找到引用源。

▲ .3.如图是某市2018年11月份30天的空气污染指数的频率分布直注 意 事 项考生在答题前认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分。

本试卷满分160分,考试时间为120分钟。

考试结束后,请将本试卷和答题纸一并交回。

2.答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在试卷及答题纸上。

3.作答时必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。

4.如有作图需要,可用错误!未找到引用源。

铅笔作答,并请加黑加粗,描写清楚。

方图. 根据国家标准,污染指数在区间错误!未找到引用源。

内,空气质量为优;在区间错误!未找到引用源。

内,空气质量为良;在区间错误!未找到引用源。

内,空气质量为轻微污染;错误!未找到引用源。

由此可知该市11月份空气质量为优或良的天数有▲天.4.执行如图所示的算法流程图,则输出错误!未找到引用源。

的值是▲ .5.已知集合错误!未找到引用源。

若从错误!未找到引用源。

中各取一个数,则这两个数之和不小于4的概率为▲ .6.设等差数列错误!未找到引用源。

的前错误!未找到引用源。

项为错误!未找到引用源。

则错误!未找到引用源。

的值为▲ .7.设函数错误!未找到引用源。

,则错误!未找到引用源。

的值为▲ .8.已知双曲线错误!未找到引用源。

的离心率为2,它的一个焦点是抛物线错误!未找到引用源。

2019年江苏省苏北三市(徐州市、淮安市、连云港市)高考数学一模试卷-含详细解析

2019年江苏省苏北三市(徐州市、淮安市、连云港市)高考数学一模试卷-含详细解析

2019年江苏省苏北三市(徐州市、淮安市、连云港市)高考数学一模试卷副标题一、填空题(本大题共14小题,共70.0分)1.已知集合A={0,1,2,3},B={x|0<x≤2},则A∩B=______.2.已知复数z=(2-i)2(i是虚数单位),则z的模为______.3.已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为______.4.运行如图所示的伪代码,则输出的结果S为______.5.若从2,3,6三个数中任取一个数记为a,再从剩余的两个数中任取一个数记为b,则“是整数”的概率为______.6.若抛物线y2=2px(p>0)的焦点与双曲线x2-=1的右焦点重合,则实数p的值为______.7.在等差数列{a n}中,若a5=,8a6+2a4=a2,则{a n}的前6项和S6的值为______.8.已知正四棱锥的底面边长为2,高为1,则该正四棱锥的侧面积为______.9.已知a,b∈R,函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)上是减函数,则关于x的不等式f(2-x)>0的解集为______.10.知a>0,b>0,且a+3b=,则b的最大值为______.11.将函数f(x)=sin2x的图象向右平移个单位得到函数g(x)的图象,则以函数f(x)与g(x)的图象的相邻三个交点为顶点的三角形的面积为______.12.在△ABC中,AB=2,AC=3,∠BAC=60°,P为△ABC所在平面内一点,满足=+2,则的值为______.13.在平面直角坐标系xOy中,已知圆C1:x2+y2+2mx-(4m+6)y-4=0(m∈R)与C2(-2,3)为圆心的圆相交于A(x1,y1),B(x2,y2)两点,且满足x12-x22=y22-y12,则实数m的值为______.14.已知x>0,y>0,z>0,且x+y+z=6,则x3+y2+3z的最小值为______.二、解答题(本大题共11小题,共142.0分)15.在△ABC中,sin A=,A∈(,).(2)若sin B=,求cos C的值.16.如图,在直三棱柱ABC-A1B1C1中,D,E,F分别是B1C1,AB,AA1的中点.(1)求证:EF∥平面A1BD;(2)若A1B1=A1C1,求证:平面A1BD⊥平面BB1C1C.17.如图,某公园内有两条道路AB,AP,现计划在AP上选择一点C,新建道路BC,并把△ABC所在的区域改造成绿化区域.已知∠BAC=,AB=2km.(1)若绿化区域△ABC的面积为1km2,求道路BC的长度;(2)若绿化区域△ABC改造成本为10万元/km2,新建道路BC成本为10万元/km.设∠ABC=θ(0<θ≤),当θ为何值时,该计划所需总费用最小?18.如图,在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且右焦点到右准线l的距离为1.过x轴上一点M(m,0)(m为常数,且m∈(0,2)的直线与椭圆C交于A,B两点,与l交于点P,D是弦AB的中点,直线OD 与l交于点Q.(2)试判断以PQ为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.19.已知函数f(x)=(x-a)ln x(a∈R).(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若对于任意的正数x,f(x)≥0恒成立,求实数a的值;(3)若函数f(x)存在两个极值点(极值点是指函数取极值时对应的自变量的值),求实数a的取值范围.20.已知数列{a n}满足对任意的n∈N*,都有a n(q n a n-1)+2q n a n a n+1=a n+1(1-q n a n+1),且a n+1+a n≠0,其中a1=2,q≠0.记T n=a1+qa2+q2a3+…+q n-1a n.(1)若q=1,求T2019的值.(2)设数列{b n}满足b n=(1+q)T n-q n a n.①求数列{b n}的通项公式;②若数列{c n}满足c1=1,且当n>2时,c n=2-1,是否存在正整数k,t,使c t,c k-c t,c t-c k成等比数列?若存在,求出所有k,t的值;若不存在,说明理由.21.已知矩阵A=,B=,求A-1B22.在极坐标系中,曲线C:ρ=2cosθ,以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系xOy,设过点A(3,0)的直线l与曲线C有且只有一个公共点,求直线l的斜率.23.已知函数f(x)=|x-1|.(1)解不等式f(x-1)+f(x+3)≥6;(2)若|a|<1,|b|<1,且a≠0,求证:>.24.如图,在三棱锥D-ABC中,DA⊥平面ABC,∠CAB=90°,且AC=AD=1,AB=2,E为BD的中点.(1)求异面直线AE与BC所成角的余弦值;(2)求二面角A-CE-B的余弦值.25.已知数列{a n}满足a1=,a n+1=-2a n2+2a n,n∈N*.(1)用数学归纳法证明:a n∈(0,);(2)令b n=-a n,证明:≥3n+1-3.答案和解析1.【答案】{1,2}【解析】解:∵A={0,1,2,3},B={x|0<x≤2};∴A∩B={1,2}.故答案为:{1,2}.进行交集的运算即可.考查描述法、列举法的定义,以及交集的运算.2.【答案】5【解析】解:z=(2-i)2=4-4i+i2=3-4i,则|z|==5,故答案为:5.根据复数的运算法则进行计算,结合复数的模长公式进行求解即可.本题主要考查复数的模长计算,结合复数的运算法则进行化简是解决本题的关键.3.【答案】2【解析】解:一组样本数据5,4,x,3,6的平均数为5,∴(5+4+x+3+6)=5,解得x=7,∴该组数据的方差为:S2=[(5-5)2+(4-5)2+(7-5)2+(3-5)2+(6-5)2]=2.故答案为:2.由一组样本数据5,4,x,3,6的平均数为5,求出x=7,由此能求出该组数据的方差.本题考查方差的求法,考查平均数、方差的性质等基础知识,考查运算求解能力,是基础题.解:当I=1时,满足进行循环的条件,I=3,S=9;当I=3时,满足进行循环的条件,I=5,S=13;当I=5时,满足进行循环的条件,I=7,S=17;当I=7时,满足进行循环的条件,I=9,S=21;当i=9时,不满足进行循环的条件,故输出的S值为21.故答案为:21.由已知中的程序代码可得:程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查的知识点是伪代码(算法语句),当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.【答案】【解析】解:在2,3,6三个数中随机地抽取一个数记为a,再在剩余的两个数中随机地抽取一个数记为b,有:(2,3),(2,6),(3,2),(3,6),(6,2),(6,3)共6种情况,其中“是整数”的有:(6,2),(6,3)共2种,故“是整数”的概率P==.故答案为:.分别计算从2,3,6,三个数中随机地抽取一个数记为a,再在剩余的2个数中随机地抽取一个数记为b的所有情况,及满足““是整数””的情况,进而利用古典概型公式,可得答案.本题考查了古典概型概率公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.6.【答案】4解:∵双曲线的标准形式为:x2-=1,∴c=2,双曲线的右焦点为F(2,0),∵抛物线y2=2px(p>0)的焦点与双曲线x2-=1的右焦点重合,∴=2,可得p=4.故答案为:4.求出双曲线的右焦点为F(2,0),该点也是抛物线的焦点,可得=2,即可得到结果.本题给出抛物线与双曲线右焦点重合,求抛物线的焦参数的值,着重考查了双曲线的标准方程和抛物线简单几何性质等知识点,属于基础题.7.【答案】【解析】解:∵在等差数列{a n}中,a5=,8a6+2a4=a2,∴,解得a1=,d=-,∴{a n}的前6项和S6的值:=6×+15×(-)=.故答案为:.利用等差数列{a n}通项公式列方程组求出a1=,d=-,由此能求出{a n}的前6项和S6的值.本题考查等差数列的前6项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.8.【答案】8【解析】解:正四棱锥底面边长为2,高为1,正四棱锥的侧面积为S=4××2×2=8.故答案为:8.根据题意求出正四棱锥侧面的高,再计算正四棱锥的侧面积.本题考查了正四棱锥的结构特征应用问题,是基础题.9.【答案】(0,4)【解析】解:∵f(x)=(x-2)(ax+b)为偶函数,∴f(2)=f(-2),即-4(-2a+b)=0,则-2a+b=0,得b=2a,即f(x)=(x-2)(ax+2a)=a(x-2)(x+2)=a(x2-4),∵在(0,+∞)上f(x)是减函数,则a<0,则不等式f(2-x)>0等价为a[(2-x)2-4]>0,即x2-4x<0,得0<x<4,即不等式的解集为(0,4),故答案为:(0,4)根据函数奇偶性的定义,利用特殊值法求出b=2a,结合单调性判断a的符号,将不等式进行转化求解即可.本题主要考查不等式的求解以及函数奇偶性和单调性的应用,根据函数性质求出a,b的关系和符号是解决本题的关键.10.【答案】【解析】解:由已知条件可得,由基本不等式可得,当且仅当,即当a=1时,等号成立.所以,,由于b>0,所以,3b2+2b-1≤0,解得.故答案为:.由已知条件得出,由基本不等式得出,解出该不等式并结合b>0,可得出b的取值范围,于是可得出b的最大值.本题考查基本不等式的应用,解决本题的关键就是利用基本不等式求出代数式的取值范围,并求出参数的取值范围,考查计算能力,属于中等题.11.【答案】【解析】解:将函数f(x)=sin2x的图象向右平移个单位得到函数g(x)的图象,则g(x)=sin2(x-)=sin(2x-),由sin2x=sin(2x-),得sin2x=sin2x-cos2x,即sin2x=cos2x,得tan2x=,则2x=+kπ,即x=+,k∈Z,当k=0,1,2时,连续三个点的横坐标为,,,对应三点的纵坐标为sin(2×)=,sin(2×)=-,sin(2×)=,即连续三个点的坐标为A(,),B(,-),C(,),则三角形ABC的面积S=(-)×[-(-)]=×=,故答案为:根据三角函数的图象平移关系求出g(x)的解析式,由f(x)=g(x),求出相邻的三个交点的坐标,结合三角形的面积公式进行计算即可.本题主要考查三角函数的图象和性质,根据三角函数的平移关系求出函数g (x)的解析式,以及利用f(x)=g(x)求出交点坐标是解决本题的关键.12.【答案】-1【解析】解:∵=+2,∴=(-)+2(,∴=-,∴•=2-•=-×2×3×=-1.故答案为-1将表示成,后与相乘可得.本题考查了平面向量数量积的性质及其运算,属基础题.13.【答案】-6【解析】解:设以C2(-2,3)为圆心的圆的方程为(x+2)2+(y-3)2=R2,即x2+y2+4x-6y=R2+13,∵两圆相交于A(x1,y1),B(x2,y2)两点,∴A(x1,y1),B(x2,y2)两点的坐标满足两圆的方程,即x12+y12+4x1-6y1=R2+13,①x22+y22+4x2-6y2=R2+13,②,①-②得x12-x22+y12-y22+4(x1-x2)-6(y1-y2)=0,∵x12-x22=y22-y12,∴x12-x22+y12-y22=0则4(x1-x2)-6(y1-y2)=0,即x1-x2=(y1-y2)③又x12+y12+2mx1-(4m+6)y1-4=0,④x22+y22+2mx2-(4m+6)y2-4=0,⑤④-⑤得x12-x22+y12-y22+2m(x1-x2)-(4m+6)(y1-y2)=0,∵x12-x22=y22-y12,∴x12-x22+y12-y22=0则2m(x1-x2)-(4m+6)(y1-y2)=0∵x1-x2=(y1-y2),∴2m×(y1-y2)-(4m+6)(y1-y2)=0,即3m-(4m+6)=-m-6=0,得m=-6,故答案为:-6设出圆C2的方程,利用两圆相交于A(x1,y1),B(x2,y2)两点,则A(x1,y1),B(x2,y2)两点的坐标满足两圆的方程,利用作差法进行求解即可.本题主要考查两圆位置关系的应用,利用交点坐标同时在两圆上,利用作差法是解决本题的关键.综合性较强,考查学生的计算能力.14.【答案】【解析】解:设T=x3+y2+3z,因为x+y+z=6,所以z=6-x-y,∴T=x3+y2+18-3x-3y,可得T-y2+3y=x3+18-3x,设f(x)=x3+18-3x,f′(x)=3x2-3,令f′(x)=0,可得x=±1,f″(x)=6x,f″(1)>0,方(1)=16,∵0<x<1时,f(x)是单调减函数,f(x)≥16,当x>1时,f(x)单调增函数,∴f(x)≥16,即T-y2+3y≥16,T≥y2-3y+16,当y=时,函数取得最小值.此时3z>0.故答案为:.利用换元法以及函数的导数判断函数的单调性,求解函数的最小值,然后利用二次函数的性质求解即可.本题考查函数的导数的应用,考查的最值的求法,考查换元法以及转化思想的应用,是难题.15.【答案】解:(1)△ABC中,sin A=,A∈(,),∴cos A=-=-,故sin2A=2sin A cosA=2••(-)=-.(2)若sin B=,则cos B==,∴cos C=-cos(A+B)=-cos A cos B+sin A sin B=•+•=.【解析】(1)由题意利用同角三角函数的基本关系求得cosA的值,再利用二倍角公式求得sin2A的值.(2)由题意利用诱导公式,两角和差的三角公式,求得cosC=-cos(A+B)的值.本题主要考查同角三角函数的基本关系,二倍角公式的应用,还考查了诱导公式,两角和差的三角公式的应用,属于中档题.16.【答案】证明:(1)∵在直三棱柱ABC-A1B1C1中,E,F分别是AB,AA1的中点.∴EF∥A1B,∵EF⊄平面A1BD,A1B⊂平面A1BD,∴EF∥平面A1BD;(2)∵A1B1=A1C1,D是B1C1的中点.∴A1D⊥B1C1,∵在直三棱柱ABC-A1B1C1中,BB1⊥底面A1B1C1,∴A1D⊥BB1,∵B1C1∩BB1=B1,∴A1D⊥平面BB1C1C.∵A1D⊂平面A1BD,∴平面A1BD⊥平面BB1C1C.【解析】(1)由E,F分别是AB,AA1的中点,得EF∥A1B,由此能证明EF∥平面A1BD.(2)推导出A1D⊥B1C1,A1D⊥BB1,从而A1D⊥平面BB1C1C,由此能证明平面A1BD⊥平面BB1C1C.本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.【答案】解:(1)∵在△ABC中,∠BAC=,AB=2km,∴S=AB•AC•sin=1,解得AC=2,在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB×AC×cos=22+22-2×2×2×cos=8-4,∴BC==-,(2)由∠ABC=θ,则∠ACB=π-(θ+),0<θ≤,在△ABC中,∠BAC=,AB=2km,由正弦定理得==,∴BC=,AC=,记该计划所费用为F(θ),则F(θ)=××2××10+×10=,0<θ<,令f(θ)=,则f′(θ)=,由f′(θ)=0,解得θ=,∴当θ∈(0,)时,f′(θ)<0,f(θ)单调递减,当θ∈(,)时,f′(θ)>0,f(θ)单调递增,∴θ=时,该计划所需费用最小.【解析】(1)根据三角形的面积公式,和余弦定理即可求出,(2)先根据正弦定理结合三角形的面积可得F(θ)=,0<θ<,令f(θ)=,利用导数求出函数的最值.本题考查了正余弦定理,三角函数的化简,三角形的面积,导数和函数最值的关系,属于中档题18.【答案】解:(1)设椭圆C的焦距为2c(c>0),则,∴,由于椭圆C的右焦点到右准线l的距离为1,则,所以,,,因此,椭圆C的标准方程为;(2)由题意可知,直线l的斜率存在且不为零,设直线l的方程为x=ty+m(t≠0),其中0<m<2,直线l的斜率为,设点A(x1,y1)、B(x2,y2),则线段AB的中点为,,直线AB的斜率为,直线OD的斜率为.将点A、B的坐标代入椭圆C的方程得,将上述两式相减得,则.所以,直线AB与直线OD的斜率之积为,则直线OD的斜率为.所以,直线OD的方程为,椭圆C的右准线l的方程为x=2,直线OD交直线l于点Q(2,-t),直线AB交直线l于点,,由对称性可知,以PQ为直径的圆经过x轴上定点R(r,0),则PR⊥QR.,,,.∴,解得.因此,以PQ为直径的圆经过定点,和,.【解析】(1)先由椭圆C的离心率得到,再由已知条件可求出a和c的值,可得出b的值,即可得出椭圆C的标准方程;(2)设点A(x1,y1)、B(x2,y2),并设直线AB的方程为x=ty+m,利用点差法可得出直线OD的斜率,从而得出直线OD的方程,将直线AB、OD的方程分别与直线l的方程联立,可求出点P、Q的坐标,根据对称性得知以PQ为直径的圆过x轴上的定点R(r,0),利用∠PRQ=90°,转化为可计算出点R 的坐标.本题考查直线与椭圆的综合,考查椭圆的方程以及点差法,解决本题的关键在于将一些关键的点或直线等几何要素利用代数形式表示出来,考查计算能力,属于中等题.19.【答案】解:(1)a=1时,函数f(x)=(x-1)ln x(>0).∴,f(1)=0,f′(1)=0.曲线y=f(x)在点(1,f(1))处的切线方程为:y=0;(2)∵x≥1时,ln x≥0,0<x≤1时,ln x≤0,对于任意的正数x,f(x)≥0恒成立,必有.∵y=x-a时单调函数,∴x=1时y=x-a的零点,∴a=1.(3),要使函数f(x)存在两个极值点,则方程ln x+1-=0有两个变号零点,∴方程a=x lnx+x有两个不等正实根.令h(x)=x lnx+x,(x>0).h′(x)=ln x+2,令h(x)=0,可得x=e-2.x∈(0,e-2)时,h′(x)<0,x∈(e-2,+∞),h′(x)>0.∴h(x)在(0,e-2)递减,在(e-2,+∞)递增,∴函数h(x)的草图如下:h(e-2)=-e-2.∴实数a的取值范围为(-e-2,0)【解析】(1)求得f(x)的导数,可得切线的斜率,即可求解;(2)可得x≥1时,lnx≥0,0<x≤1时,lnx≤0,必有.可得a=1.(3)要使函数f(x)存在两个极值点,则方程lnx+1-=0有两个变号零点,方程a=xlnx+x有两个不等正实根.令h(x)=xlnx+x,(x>0).利用导数求解.本题考查导数的运用:求切线的斜率、单调区间和极值、最值,考查不等式恒成立问题的解法,属于难题.20.【答案】解:(1)a n(q n a n-1)+2q n a n a n+1=a n+1(1-q n a n+1),即为q n(a n2+2a n a n+1+a n+12)=q n(a n+1+a n)2=a n+a n+1(a n+1+a n≠0),可得a n+a n+1=q-n,若q=1,可得a n+a n+1=1,T2019=a1+(a2+a3)+…+(a2018+a2019)=2+1×1009=1011;(2)①b n=(1+q)T n-q n a n=a1+qa2+q2a3+…+q n-1a n+qa1+q2a2+q3a3+…+q n-1a n-1+q n a n-q n a n =a1+q(a1+a2)+q2(a2+a3)+…+q n-1(a n+a n-1)=2+1+…+1=2+n-1=n+1;②若数列{c n}满足c1=1,且当n≥2时,c n=2-1=2n-1,假设存在正整数k,t,使c t,c k-c t,c t-c k成等比数列,即有c t(c t-c k)=(c k-c t)2,即为c t=c t-c k,或c t-c k=0,可得ck=0或c k=c t,即2k=1,即k=0,或k=t,不成立,故不存在正整数k,t,使c t,c k-c t,c t-c k成等比数列.【解析】(1)由已知条件,结合完全平方式化为a n+a n+1=q-n,由q=1,计算可得所求和;(2)①由(1)的结论,并项求和可得所求通项公式;②求得c n,假设存在正整数k,t,使c t,c k-c t,c t-c k成等比数列,运用等比数列中项性质,解方程即可判断存在性.本题考查数列的通项和求和的关系,考查等比数列和等差数列的通项公式,考查整体思想和存在性问题解法,考查运算能力和推理能力,属于中档题.21.【答案】解:设A-1=,∵AA-1=,∴ ,即,∴A-1=,∴A-1B=.【解析】根据矩阵乘法法则计算.本题考查了矩阵乘法计算,属于基础题.22.【答案】解:∵曲线C:ρ=2cosθ,∴ρ2=2ρcosθ,∴曲线C的直角坐标方程为x2+y2-2x=0,即(x-1)2+y2=1,过点A(3,0)的直线l与曲线C有且只有一个公共点,当直线l的斜率不存在时,直线l的方程为x=3,与圆C无交点,不成立;当直线l的斜率存在时,设直线的斜率为k,则直线l的方程为:y=k(x-3),即kx-y-3k=0,则圆心C(1,0)到直线l的距离d==1,解得直线l的斜率k=±.【解析】求出曲线C的直角坐标方程为(x-1)2+y2=1,设直线的斜率为k,则直线l的方程为kx-y-3k=0,圆心C(1,0)到直线l的距离d==1,由此能求出直线l的斜率.本题考查直线的斜率的求法,考查直角坐标方程、极坐标方程的互化、圆的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.23.【答案】解:(1)由f(x-1)+f(x+3)≥6得|x-2|+|x+2|≥6,若x≥2,则不等式等价为x-2+x+2≥6,即2x≥6,x≥3,若-2<x<2,则不等式等价为-x+2+x+2≥6,即4≥6,此时不等式无解,若x≤-2,则不等式等价为-(x-2)-(x+2)≥6,即-2x≥6,x≤-3,综上x≥3或x≤-3,即不等式解集为(-∞,-3]∪[3,+∞);…(5分)(2)∵f(ab)>|b|f().等价为|ab-1|>|b||-1|=|a-b|,∴要证:|ab-1|>|b|||成立,只需证:|ab-1|>|a-b|成立,只需证(ab-1)2>(b-a)2,而(ab-1)2-(b-a)2=a2b2-a2-b2+1=(a2-1)(b2-1)>0显然成立,从而原不等式成立.【解析】(1)利用绝对值的应用将函数表示成分段函数形式,即可求f(x-1)+f(x+3)≥6的解集;(2)利用分析法,要证f(ab)>|a|f(),只需证证(ab-1)2>(b-a)2,再作差证明即可.本题考查绝对值不等式的解法,通过对x范围的分析讨论,去掉绝对值符号,利用一次函数的单调性求最值是关键,考查运算与推理证明的能力,属于中档题.24.【答案】解:如图,以A为坐标原点,分别以AC,AB,AD所在直线为x,y,z轴建立空间直角坐标系,∵AC=AD=1,AB=2,E为BD的中点,∴A(0,0,0),B(0,2,0),C(1,0,0),E(0,1,),(1),,,,,,∵cos<,>==,∴异面直线AE与BC所成角的余弦值为;(2),,,,,.设平面AEC与平面BEC的一个法向量分别为,,,,,.由,取z1=-2,可得,,;由,取z2=-2,可得,,.∴cos<,>==.由图可知,二面角A-CE-B为钝二面角,∴二面角A-CE-B的余弦值为-.【解析】以A为坐标原点,分别以AC,AB,AD所在直线为x,y,z轴建立空间直角坐标系,(1)分别求出,的坐标,由两向量所成角的余弦值可得异面直线AE与BC所成角的余弦值;(2)分别求出平面AEC与平面BEC的一个法向量,由两法向量所成角的余弦值可得二面角A-CE-B的余弦值.本题考查空间角的求法,训练了利用空间向量求解空间角,是中档题.25.【答案】证明:(1)当n=1时,a1=∈(0,);假设n=k时,a k∈(0,),当n=k+1时,a k+1=-2a k2+2a k=-2(a k-)2+,在a k∈(0,)时递增,可得a k+1∈(0,),综上可得,a n∈(0,);(2)由(1)可得a n∈(0,),b n=-a n∈(0,),a n+1=-2a n2+2a n,可得-a n+1=-(-2a n2+2a n)=2(-a n)2,即b n+1=2b n2,可得log2b n+1=1+2log2b n,即为log2b n+1+1=2(log2b n+1),可得{log2b n+1}为首项为log2,2为公比的等比数列,可得log2b n+1=log2•2n-1,即log2(2b n)=log2(),可得2b n=(),即b n=即有=2•3,由i=1,2时,2i-1=i,当i≥3时,2i-1=(1+1)i-1=C+C+…+C>C+C=i,所以对任意i∈N*,2i-1≥i,即3≥3i,即=2•3≥2•3i,则=++…+≥2(3+32+…+3n)=2•=3n+1-3.【解析】(1)运用数学归纳法证明,检验n=1成立,假设n=k成立,证明n=k+1也成立,注意运用二次函数的值域;(2)运用(1)的结论,化简变形,取对数,结合等比数列的定义和通项公式,可得b n的通项公式,变形,结合等比数列的求和公式,即可得证.本题考查不等式的证明,注意运用数学归纳法和放缩法证明,考查化简运算能力和推理能力,属于中档题.。

江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三数学第三次调研考试试题(含解析)

江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三数学第三次调研考试试题(含解析)

江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三数学第三次调研考试试题(含解析)一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,,则____.【答案】【解析】【分析】直接由补集运算得解。

【详解】因为,所以【点睛】本题主要考查了补集的运算,属于基础题。

2.已知复数(i是虚数单位)是纯虚数,则实数的值为___.【答案】-3【解析】【分析】整理为,利用它是纯虚数列方程,问题得解。

【详解】因为因为复数是纯虚数,所以解得:【点睛】本题主要考查了复数的除法运算及复数的有关概念,考查计算能力,属于基础题。

3.下图是一个算法流程图.若输出的值为4,则输入x的值为____.【答案】-1【解析】【分析】对的范围分类,利用流程图列方程即可得解。

【详解】当时,由流程图得:令,解得:,满足题意。

当时,由流程图得:令,解得:,不满足题意。

故输入的值为:【点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题。

4.已知一组数据6,6,9,,的平均数是,且,则该组数据的方差为____.【答案】【解析】【分析】由这组数据6,6,9,,的平均数是可求得,结合可求得,再利用方差公式计算即可得解。

【详解】因为数据6,6,9,,的平均数是所以,整理得:又,解得:或此时都等于所以该组数据的方差为【点睛】本题主要考查了平均数的计算公式及方差计算公式,还考查了方程思想,属于基础题。

5.一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为____.【答案】【解析】【分析】计算出“从中1次随机摸出2只球”共有种不同的结果,“2只球都是白球”有种不同的结果,再利用古典概型概率计算公式得解。

【详解】由题可得:“从中1次随机摸出2只球”共有种不同的结果,“摸出的2只球都是白球”有种不同的结果.所以“从中1次随机摸出2只球,则2只球都是白球”的概率为【点睛】本题主要考查了组合知识,还考查了古典概型概率计算公式,属于基础题。

2018-2019学年江苏省高三(下)第二次调研数学试卷(含答案)

2018-2019学年江苏省高三(下)第二次调研数学试卷(含答案)

2018-2019学年江苏省南通市、泰州市、扬州市、徐州市、淮安市、宿迁市、连云港市高三(下)第二次调研数学试卷(3月份)一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3,a},B={4,5}.若A∩B={4},则实数a的值为.2.(5分)复数(i为虚数单位)的实部为.3.(5分)某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为.4.(5分)从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为.5.(5分)执行如图所示的伪代码,则输出的S的值为.6.(5分)函数y=的定义域为.7.(5分)将函数y=2sin3x的图象向左平移个单位长度得到y=f(x)的图象,则的值为.8.(5分)在平面直角坐标系xOy中,已知双曲线=1(a>0,b>0)的右顶点A (2,0)到渐近线的距离为,则b的值为.9.(5分)在△ABC中,已知C=120°,sin B=2sin A,且△ABC的面积为,则AB的长为.10.(5分)设P,A,B,C为球O表面上的四个点,P A,PB,PC两两垂直,且P A=2m,PB=3m,PC=4m,则球O的表面积为m2.11.(5分)定义在R上的奇函数f(x)满足f(x+4)=f(x),且在区间[2,4)上,f(x)=则函数y=f(x)﹣log5|x|的零点的个数为.12.(5分)已知关于x的不等式ax2+bx+c>0(a,b,c∈R)的解集为{x|3<x<4},则的最小值为.13.(5分)在平面直角坐标系xOy中,已知点A,B在圆x2+y2=4上,且AB=2,点P (3,﹣1),•(+)=16,设AB的中点M的横坐标为x0,则x0的所有值为.14.(5分)已知集合A={x|x=2k﹣1,k∈N*},B={x|x=8k﹣8,k∈N*},从集合A中取出m 个不同元素,其和记为S;从集合B中取出n个不同元素,其和记为T.若S+T≤967,则m+2n的最大值为.二、解答题:本大题共6小题,共计90分.15.(14分)在平面直角坐标系中,设向量=(cosα,sinα),=,其中.(1)若∥,求α的值;(2)若,求•的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.17.(14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM=5m,BC=10m,梯形ABFE的面积是△FBC面积的 2.2倍.设∠FMH=θ.(1)求屋顶面积S关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6m的别墅,试问:当θ为何值时,总造价最低?18.(16分)如图,在平面直角坐标系xOy中,已知椭圆C1:=1,椭圆C2:=1(a>b>0),C2与C1的长轴长之比为:1,离心率相同.(1)求椭圆C2的标准方程;(2)设点P为椭圆C2上一点.①射线PO与椭圆C1依次交于点A,B,求证:为定值;②过点P作两条斜率分别为k1,k2的直线l1,l2,且直线l1,l2与椭圆C1均有且只有一个公共点,求证:k1•k2为定值.19.(16分)已知函数f(x)=2lnx+﹣ax,a∈R.(1)当a=3时,求函数f(x)的极值;(2)设函数f(x)在x=x0处的切线方程为y=g(x),若函数y=f(x)﹣g(x)是(0,+∞)上的单调增函数,求x0的值;(3)是否存在一条直线与函数y=f(x)的图象相切于两个不同的点?并说明理由.20.(16分)已知数列{a n}的各项均不为零.设数列{a n}的前n项和为S n,数列{a n2}的前n项和为T n,且3S n2﹣4S n+T n=0,n∈N*(1)求a1,a2的值;(2)证明:数列{a n}是等比数列;(3)若(λ﹣na n)(λ﹣na n+1)<0对任意的n∈N*恒成立,求实数λ的所有值.【选做题】A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知m,n∈R,向量=是矩阵的属于特征值3的一个特征向量,求矩阵M及另一个特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C交于A,B两点,求线段AB的长.C.[选修4-5:不等式选讲](本小题满分0分)23.已知x,y,z均是正实数,且x2+4y2+z2=16,求证:x+y+z≤6.【必做题】第24题、第25题,每小题10分,共计20分.24.(10分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AB=1,AP=AD=2.(1)求直线PB与平面PCD所成角的正弦值;(2)若点M,N分别在AB,PC上,且MN⊥平面PCD,试确定点M,N的位置.25.(10分)已知a1,a2,…,a n(n∈N*,n≥4)均为非负实数,且a1+a2+…+a n=2.证明:(1)当n=4时,a1a2+a2a3+a3a4+a4a1≤1;(2)对于任意的n∈N*,n≥4,a1a2+a2a3+…+a n﹣1a n+a n a1≤1.2018-2019学年江苏省南通市、泰州市、扬州市、徐州市、淮安市、宿迁市、连云港市高三(下)第二次调研数学试卷(3月份)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.【解答】解:∵集合A={1,3,a},B={4,5}.A∩B={4},∴由交集宝定义得实数a的值为4.故答案为:4.2.【解答】解:∵=,∴z的实部为.故答案为:3.【解答】解:设该单位行政人员的人数为n,由分层抽样方法有:,解得:n=35,故答案为:354.【解答】解:从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,基本事件总数n==6,甲、乙两人中恰有1人被选中包含的基本事件个数m==4,∴甲、乙两人中恰有1人被选中的概率为p==.故答案为:.5.【解答】解:模拟执行程序代码,可得i=1,S=2满足条件i<7,执行循环体,S=2,i=3满足条件i<7,执行循环体,S=6,i=5满足条件i<7,执行循环体,S=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为:30.6.【解答】解:∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为:[2,+∞).7.【解答】解:将函数y=2sin3x的图象向左平移个单位长度得到y=f(x)=2sin(3x+)的图象,则=2sin(π+)=﹣2sin=﹣,故答案为:﹣.8.【解答】解:双曲线=1(a>0,b>0)的渐近线方程为y=±x,则右顶点A(2,0)到渐近线的距离为d===,解得b=2,故答案为:29.【解答】解:∵sin B=2sin A,由正弦定理可得,b=2a,∴s△ABC===2,∴a=2,b=4,由余弦定理可得,c2=a2+b2﹣2ab cos C==28,∴c=2,故答案为:2.10.【解答】解:∵P A,PB,PC两两垂直,∴可构建长方体,并利用长方体外接球直径为其体对角线长得:2R=,∴.故答案为:29π.11.【解答】解:∵奇函数f(x)满足f(x+4)=f(x),∴函数是周期为4的周期函数,∵在区间[2,4)上,f(x)=∴作出函数f(x)的图象如图:由y=f(x)﹣log5|x|=0得f(x)=log5|x|,则函数f(x)与h(x)=log5|x|的图象如图:则f(5)=h(5)=1,f(﹣3)=1>h(﹣3),由图象知两个函数图象有5个交点,即函数y=f(x)﹣log5|x|的零点的个数为5个,故答案为:5.12.【解答】解:∵关于x的不等式ax2+bx+c>0(a,b,c∈R)的解集为{x|3<x<4},∴3,4是方程ax2+bx+c=0的两个根,且a<0,∴3+4=﹣,3×4=,∴b=﹣7a,c=12a,∴===[﹣24a+(﹣)]≥2=4,当且仅当﹣24a=﹣,即a=﹣,故的最小值为4,故答案为:4.13.【解答】解:设M(x0,y0),∵点A,B在圆x2+y2=4上,且AB=2,∴∠AOB=90°,∴OM=,∴,…①又=16,∴=16,∴,∴(﹣3,1)•(x0﹣3,y0+1)=8,…②由①②联立可得,故答案为:1,.14.【解答】解:要使m+2n的值最大,即使S+T≤967时,加在一起的项数最多,应使相加的项最小.将集合A,B元素分别按从小到大顺序排列,则集合A为以1为首相,以2为公差的等差数列,故S==m2,同理,T==4n2﹣4,∴967≥S+T=m2+4n2﹣4n,∴968>m2+(2n﹣1)2≥2,∴m+2n﹣1<44,∴m+2n<45.故填:44.二、解答题:本大题共6小题,共计90分.15.【解答】解:(1)∵;∴;∴;∵,∴;∴;∴;(2)∵,∴0<2α<π,又,故;∵,∴cos2α=﹣7sin2α<0;又sin22α+cos22α=1;解得;∴===.16.【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB⊂平面ABB1A1,DE⊄平面ABB1A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1,又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1=B1,所以A1B1⊥平面BCC1B1,又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1,又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C=B1,A1B1,B1C⊂平面A1B1C,所以BC1⊥平面A1B1C.17.【解答】解:(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM⊂平面ABCD,得FH⊥HM.在Rt△FHM中,HM=5,∠FMH=θ,所以.因此△FBC的面积为.从而屋顶面积S=2S△FBC+2S梯形ABFE=.所以S关于θ的函数关系式为S=(0<θ<).(2)在Rt△FHM中,FH=5tanθ,所以主体高度为h=6﹣5tanθ.所以别墅总造价为y=kS+h•16k==﹣+96k=,记,,所以,令f'(θ)=0,得,又,所以.列表:所以当时,f(θ)有最小值.答:当θ为时该别墅总造价最低.18.【解答】解:(1)设椭圆C2的焦距为2c,由题意知,a=2,,a2=b2+c2,解得b=,因此椭圆C2的标准方程为=1;……………………………3分(2)①1°当直线OP斜率不存在时,P A=﹣1,PB=+1,则;……………………………4分2°当直线OP斜率存在时,设直线OP的方程为y=kx,代入椭圆C1的方程,消去y,得(4k2+1)x2=4,所以x A2=,同理x P2=;………6分所以x P2=2x A2,由题意,x P与x A同号,所以x P=,从而,所以为定值;……………………………………8分②设P(x0,y0),所以直线l1的方程为y﹣y0=k1(x﹣x0),即y=k1x+k1y0﹣x0,记t=k1y0﹣x0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k12+1)x2+8k1tx+4t2﹣4=0,因为直线l1与椭圆C1有且只有一个公共点,所以△=(8k1t)2﹣4(4k12+1)(4t2﹣4)=0,即4k12﹣t2+1=0,将t=k1y0﹣x0代入上式,整理得,(x02﹣4)k12﹣2x0y0k1+y02﹣1=0,……………12分同理可得,(x02﹣4)k22﹣2x0y0k2+y02﹣1=0,所以k1,k2为关于k的方程(x02﹣4)k2﹣2x0y0k+y02﹣1=0的两根,从而k1•k2=;……………………………………………14分又点在P(x0,y0)椭圆C2:=1上,所以y02=2﹣2,所以k1•k2=为定值.………………………………………16分19.【解答】解:(1)当a=3时,函数f(x)=2lnx+﹣3x的定义域为(0,+∞).则f'(x)=,令f′(x)=0得,x=1或x=2.……………………2分列表:∴函数f(x)的极大值为;极小值为f(2)=2ln2﹣4. (4)分(2)依题意,切线方程为y=f'(x0)(x﹣x0)+f(x0)(x0>0),从而g(x)=f'(x0)(x﹣x0)+f(x0)(x0>0),记p(x)=f(x)﹣g(x),则p(x)=f(x)﹣f(x0)﹣f'(x0)(x﹣x0)在(0,+∞)上为单调增函数,∴p'(x)=f'(x)﹣f'(x0)≥0在(0,+∞)上恒成立,即≥0在(0,+∞)上恒成立.……………………8分变形得在(0,+∞)上恒成立,∴,又x0>0,∴x0=.……………………10分(3)假设存在一条直线与函数f(x)的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨0<x1<x2,则T1处切线l1的方程为:y﹣f(x1)=f'(x1)(x﹣x1),T2处切线l2的方程为:y﹣f(x2)=f'(x2)(x﹣x2).∵l1,l2为同一直线,∴……………………12分即整理得,……………………14分消去x2得,2ln=0.①令t=,由0<x1<x2与x1x2=2,得t∈(0,1),记p(t)=2lnt+﹣t,则p'(t)=<0,∴p(t)为(0,1)上的单调减函数,则p(t)>p(1)=0.从而①式不可能成立,∴假设不成立,从而不存在一条直线与函数f(x)的图象有两个不同的切点.……………………16分20.【解答】(1)解:∵3S n2﹣4S n+T n=0,令n=1,得,∵a1≠0,∴a1=1.令n=2,得,即,∵a2≠0,∴;(2)证明:∵3S n2﹣4S n+T n=0,①∴3S n+12﹣4S n+1+T n+1=0,②②﹣①得:,∵a n+1≠0,∴3(S n+1+S n)﹣4+a n+1=0,③3(S n+S n﹣1)﹣4+a n=0,④当n≥2时,③﹣④得:3(a n+1+a n)+a n+1﹣a n=0,即,∵a n≠0,∴.又由(1)知,a1=1,,∴.∴数列{a n}是以1为首项,以﹣为公比的等比数列;(3)解:由(2)知,,对于任意n∈N*,(λ﹣na n)(λ﹣na n+1)<0恒成立,∴λ介于与之间,∵•<0恒成立,∴λ=0成立;若λ>0,当n为奇数时,<λ<恒成立,从而λ<恒成立,记p(n)=(n≥4),∵p(n+1)﹣p(n)=<0.∴p(n)≤p(4)=1,即≤1.∴,从而当n≥5且n时,有λ≥,∴λ>0不符;若λ<0,当n为奇数时,<λ<恒成立,从而有λ<恒成立,由可知,当n≥5且n时,有,∴λ<0不符.综上,实数λ的所有值为0.【选做题】A.[选修4-2:矩阵与变换](本小题满分10分)21.【解答】解:由题意,根据特征值和特征向量的定义,可知:Mα=3α,即:,∴m=2,n=1.即矩阵.∵矩阵M的特征多项式,即:f(λ)=λ2﹣2λ﹣3=0.解得:λ=3,或λ=﹣1.∴矩阵M的另一个特征值为λ=﹣1.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.【解答】解:由题意得,直线l的普通方程为x﹣y﹣1=0.①椭圆C的普通方程为.②由①②联立,解得A(0,﹣1),B,所以.C.[选修4-5:不等式选讲](本小题满分0分)23.【解答】证明:由柯西不等式得,……………5分因为x2+4y2+z2=16,所以,所以,x+y+z≤6,当且仅当“x=2y=z”时取等号.…………………………10分【必做题】第24题、第25题,每小题10分,共计20分.24.【解答】解:(1)由题意知,AB,AD,AP两两垂直.建立如图所示的空间直角坐标系,则B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2).从而,设平面PCD的法向量=(x,y,z),则,即不妨取y=1,则x=0,z=1,所以平面PCD的一个法向量为=(0,1,1),设直线PB与平面PCD所成角为θ,∴sinθ==||=,即直线PB与平面PCD所成角的正弦值为;(2)设M(a,0,0),则,设,则,而,∴,由(1)知,平面PCD的一个法向量为=(0,1,1),∵MN⊥平面PCD,所以∥.∴解得.故M为AB的中点,N为PC的中点.25.【解答】证明:(1)当n=4时,∵a1,a2,…,a4均为非负实数,且a1+a2+a3+a4=2,∴a1a2+a2a3+a3a4+a4a1=a2(a1+a3)+a4(a3+a1)=(a3+a1)(a2+a4).(2)①当n=4时,由(1)可知,命题成立;②假设当n=k(k≥4)时,命题成立,即对于任意的k≥4,若x1,x2,…,x k均为非负实数,且x1+x2+…+x k=2,则x1x2+x2x3+…+x k﹣1x k+x k x1≤1.则当n=k+1时,设a1+a2+…+a k+a k+1=2,并不妨设a k+1=max{a1,a2,…,a k,a k+1}.令x1=(a1+a2),x2=a3,x k﹣1=a k,x k=a k+1,则x1+x2+…+x k=2.由归纳假设,知x1x2+x2x3+…+x k﹣1x k+x k x1≤1.∵a1,a2,a3均为非负实数,且a k+1≥a1,∴x1x2+x k x1=(a1+a2)a3+a k+1(a1+a2)=a2a3+a k+1a1+a1a3+a k+1a2≥a1a2+a2a3+a k+1a1.∴1≥(x1x2+x k x1)+(x2x3+…+x k﹣1x k)≥(a1a2+a2a3+a k+1a1)+(a3a4+…+a k a k+1),即a1a2+a2a3+…+a k a k+1+a k+1a1≤1,也就是说,当n=k+1时命题也成立.∴由①②可知,对于任意的n≥4,a1a2+a2a3+…+a n﹣1a n+a n a1≤1.。

徐州市2018~2019学年度高三年级考前模拟检测数学试题与答案

徐州市2018~2019学年度高三年级考前模拟检测数学试题与答案

从而四边形 BEFG 为平行四边形, ………4 分
高三数学 第 1 页 共 6 页
于是 EF // BG ,
又因为 BG 面 ABB1A1 , EF 面 ABB1A1 , 所以 EF // 平面 ABB1A1 ;……………………7 分 (2)证明:在△ABC 中,因为 AB AC , E 为 BC 的中点,
所以 AE BC ,
又因为侧面 BCC1B1 底面 ABC ,侧面 BCC1B1 底面 ABC=BC ,且 AE 面 ABC , 所以 AE 平面 BCC1B1 , ………………………………………………………12 分 又 AE 面 AEF , 所以平面 AEF 平面 BCC1B1 . ……………………………………………………14 分

0

则实数 k 的值为 ▲ .
9.
已知函数
f
(x)

2 sin(2 x

) 6
,若实数
x1,
x2
满足
f (x1)
f (x2 ) 0 ,则
x1 x2
的最小值
为▲.
10.已知数列{an} 的前 n 项积为 Tn ,若对 n 2 , n N ,都有 Tn1 Tn1 2Tn2 成立,且
(2)若函数在区间1, 2 上存在极小值,求实数 a 的取值范围;
(3)如果 f (x) 0 的解集中只有一个整数,求实数 a 的取值范围.
(第 18 题)
20.(本小题满分 16 分) 在数列 {an} 中, a1 0 ,且对任意 k N , a2k1, a2k , a2k1 成等差数列,其公差为 dk . (1)若 d1=2 ,求 a2 , a3 的值; (2)若 dk =2k ,证明 a2k , a2k1, a2k+2 成等比数列( k N ); (3)若对任意 k N , a2k , a2k1, a2k+2 成等比数列,其公比为 qk .设 q1 1,证明数列 1 { } 是等差数列. qk 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
苏北三市高三年级第一次质量检测
数学Ⅱ(附加题)参考答案与评分标准
21.
A . ……………………………………………5分 5422
0⎤-⎥
⎥⎥⎦

………………………………10分 B . 曲线C :2cos ρθ=
的普通方程为()2
211x y -+=, …………………………4分
设过点
()3 B 0,的直线l 的普通方程为3x my =+,
因为直线l 与曲线C 有且只有一个公共点, 1=,解得m = ……………………………………………8分
从而直线l 的斜率为 ……………………………………………………10分
C . (1)不等式的解集是(,3][3,)-∞-+∞; ……………………………………4分
(2)要证()||()b
f ab a f a
>,
只要证|1|||ab b a ->-,
只需证22(1)()ab b a ->-,
而22222222(1)()1(1)(1)0ab b a a b a b a b ---=--+=-->,
从而原不等式成立. ………………………………………………………………… 10分 22.因为DA ⊥平面ABC ,90CAB ∠=︒,所以
可以以A 为坐标原点,建立如图所示的空间
直角坐标系A xyz -.
因为1AC AD ==,2AB =,
所以(0,0,
0)A ,(1,0,0)C ,(0,2,0)B ,(0,0,1)D ,
因为点E 为线段BD 的中点,
所以1
(0,1,)2
E .
(1)1
(0,1,)2
AE =,(1,2,0)BC =-,
所以4cos ,5
||||
5
AE BC
AE BC AE BC 〈〉=
=
=-,
所以异面直线AE 与BC 所成角的余弦值为
4
5
.……………………………………5分 (2)设平面ACE 的法向量为1(,,)x y z =n , 因为(1,0,0)AC =,1(0,1,)2
AE =, 所以10AC =n ,10AE =n ,即0x =且1
02
y z +
=,取1y =,得0x =,2z =-, 所以1(0,1,2)=-n 是平面ACE 的一个法向量. 设平面BCE 的法向量为2(,,)x y z =n , 因为(1,2,0)BC =-,1(0,1,)2
BE =-, 所以20BC =n ,20BE =n , 即20x y -=且1
02
y z -+
=,取1y =,得2x =,2z
=, 所以2(2,1,2)
=n 是平面BCE 的一个法向量. 所以121212cos ,||||⋅〈〉=
=n
n n n n n . ……………………………………8分 所以二面角A CE B --的余弦值为………………………………………10分 23.(1)证明:当1n =时,11
1(0,)32
a =∈,结论显然成立;
假设当,2,n k k k *=∈N …
时,1
(0,)2
k a ∈, 则当+1n k =时,221111222()(0,)222
k k k k a a a a +=-+=--+∈,
综上,1(0,)2
n a ∈.……………………………………………………………………4分 (2)由(1)知,1(0,)2n a ∈,所以11(0,)22
n n b a =-∈. 因为2122n n n a a a +=-+,
所以
22211111
(22)222()2222
n n n n n n a a a a a a +-=--+=-+=-, 即2
+12n n b b =,
于是212log 2log 1n n b b +=+,
所以212(log 1)2(log 1)n n b b ++=+,
故2{log 1}n b +构成以2为公比的等比数列,其首项为212
211log 1=log 1log 63
b ++=.
于是1221log 1=(log )23n n b -+⋅,从而1
1222211log (2)=(log )2log ()33
n n n b --⋅=,
所以1
212=()3
n n b -,即121()3=2n n b -,于是121=23n n b -⋅,………………………………8分
因为当1,2i =时,12i i -=,
当3i …
时,1101101
111112(11)i i i i i i i i C C C C C i --------=+=+++>+=, 所以对i *∀∈N ,有12i i -…,所以1233i i -…,所以121
2323i i i
b -=⋅⋅…
, 从而121112111
1
3(13)
=2(333)23313
n n
n
n i i
n
b b b b +=-++
++++=⨯=--∑….………10分。

相关文档
最新文档