冷热轧辊
轧辊失效方式及其原因分析

轧辊失效方式及其原因分析轧机在轧制生产过程中,轧辊处于复杂的应力状态。
热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。
如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。
轧辊失效主要有剥落、断裂、裂纹等形式。
任何一种失效形式都会直接导致轧辊使用寿命缩短。
因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。
1 、轧辊剥落(掉肉)轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。
轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。
1.1 支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽度上呈块状或大块片状剥落,剥落坑表面较平整。
支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力。
在离接触表面深度为 0.786b 处 ( b 为接触面宽度之半 ) 剪切应力最大,随着表层摩擦力的增大而移向表层。
疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在 Z 为 0.5b 的交变剪应力层处。
该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。
此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。
周期交变的剪切应力是轧辊损坏最常见的致因。
在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。
另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。
若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。
支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。
轧辊材质选择及特性

合金冷硬铸铁轧辊合金冷硬铸铁轧辊(辊环)是利用铁水自身的过冷度和模具表面激冷,同时添加Ni、Cr、Mo合金元素的办法制造的一种铸铁轧辊,辊身工作层基体组织内基本上没有游离态石墨,因而其硬度高,具有优良的耐磨损性能。
此类材质可用静态复合浇注工艺生产大型规格轧辊,使辊身具有高的硬度而辊颈具有高的强韧性,表现出良好的热稳定性和抗事故性。
102 合金无界冷硬铸铁轧辊合金无界冷硬铸铁轧辊(辊环),以其工作层中有细小的石墨析出物为特征而区别于冷硬铸铁轧辊。
石墨均匀分散在整个辊身截面,其数量和尺寸随深度而增加。
本公司提供的合金无界冷硬铸铁轧辊,由于添加了锰、铬、镍、钼等合金元素,加上少量细小石墨的存在,不仅提高了轧辊的抗剥落性、抗热裂性和抗磨损等性能,而且辊身工作层具有较小的硬度落差。
表面的微细石墨孔隙还能改善轧辊的咬入能力。
用途103 合金球铁轧辊合金球墨铸铁轧辊(辊环),以基体组织中的石墨呈球状为特征,通过调整镍、铬、钼合金元素和特定的热处理制度,可以制成普通球墨铸铁、大型合金球墨铸铁、珠光体球墨铸铁和针状球墨铸铁不同系列的轧辊(辊环)。
这些产品具有良好的强度、高温性能和抗事故性能,工作层硬度落差极小。
化学成分(%)物理性能SGP-3 大型初轧机。
SGP-4 型钢连轧机粗轧、中轧机架,棒、线材轧机粗轧、中轧机及钢管轧机张减径辊环。
SGAC 型钢连轧机中轧、精轧机架,无缝钢管轧机轧辊及辊环,棒、线材,螺纹钢轧机中轧、预精轧、精轧机架轧辊及辊环类别辊身直径(mm)辊身长度(mm)轧辊适用于各种规格轧辊的制造辊环Φ190-1500 900(max.)高镍铬无界冷硬复合铸铁轧辊是采用离心或全冲洗方法制造的高性能轧辊,通过提高镍、铬、钼等合金元素的含量,获得高的组织、碳化物显微硬度;配合特殊热处理得到组织均匀、致密及硬度落差小的工作层;同时含有少量游离石墨,从而具有良好的耐磨损性、抗热裂、抗剥落及抗压痕性能。
外层厚度可适应需要而调整,芯部采用韧性灰口铸铁或高强度球墨铸铁,使芯部及辊颈具有满意的强韧性。
第二章 轧 辊

式中:F1 、 F2——辊身与辊颈断面积。
f2
P
GD2
[a
-
b 2
2c
D d
2
1)]
辊身中间总弯曲挠度为:
f
f1
f2
P 18.8ED4
[8a3
- 4ab2
b2
64c(3
D 4 d
1)]
P
GD2
[a -
b 2
2c
D 2 d
[12ab2
7b3 ]
Pb
2GD2
作业3
推导轧辊辊身中间和辊身边部挠度差值计算
f1
P 384EI
1
[12ab
2
7b 3 ]
切力引起的挠度差值f2′ :
Qx
dMx dx
P 2
R Px , b
Qx 1 R
f
2
1 GF1
b 2 0
P 2
Px b
dx
P GF1
b 8
Pb
2GD2
辊身中间和钢板边部挠度差值为
f1
P 18.8ED4
MD=P/2(L/4-b/8) =1950/2 × (0.83/4-0.5/8)=282.8KNm
支撑辊辊身最大弯曲应力: σD=282.8/0.1×0.43=44.20MPa工作 辊颈危险断面应力: σd=(1950/2×0.165)/0.1×0.223
=15100MPa τd=(23/2)/0.2×0.223=510MPa
轧辊工艺及如何修复轧辊问题的总结

轧辊工艺及如何修复轧辊问题的总结一、轧辊是如何分类的?轧辊是使(轧材)金属产生塑性变形的工具,是决定轧机效率和轧材质量的重要消耗部件。
轧辊是轧钢厂轧钢机上的重要零件,利用一对或一组轧辊滚动时产生的压力来轧碾钢材。
它主要承受轧制时的动静载荷,磨损和温度变化的影响。
轧辊种类很多,常用的轧辊材料分类有铸钢轧辊,铸铁轧辊和锻造轧辊三种。
其中铸钢轧辊和铸铁轧辊均属于铸造轧辊,都是铸造成型,只是铸造材料不同罢了。
铸造轧辊:是指将冶炼钢水或熔炼铁水直接浇注成型这一生产方式制造的轧辊种类。
锻造轧辊:是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的轧辊的加工方法。
二、轧辊都用于哪些机器?轧辊根据辊身不同的硬度,所用场合也不同:(1)轧辊辊身硬度约为HRC30-40,用于开胚机、大型型钢轧机的粗轧机等;(2)轧辊辊身硬度约在HRC60-85,用于薄板、中板、中型型钢和小型型钢轧机的粗轧机及四辊轧机的支撑辊;(3)轧辊辊身硬度约在HRC85-100,就用于冷轧机。
三、各种材料的轧辊的加工工艺是什么?(1)铸铁轧辊的加工工艺:冶炼—铸造—软化处理—粗加工—热处理(提高硬度)—精加工—探伤检验—成品。
(2)铸钢轧辊的加工工艺:以合金铸钢轧辊为例:冶炼—铸造—粗加工—热处理—精加工—性能、探伤等检测—成品。
(3)锻钢轧辊的加工工艺:以冷轧工工作辊为例:精选原材料→EBT初炼→LF精炼→真空脱气→浇注成型→电渣重熔→锻造→球化退火→粗加工→调质(淬火+高温回火)→半精加工→探伤检测→预热处理→双频淬火→冷处理→低温回火→精加工→硬度、超声波及金相→包装出厂。
四、加工轧辊时常出现的问题?目前,轧辊企业为了获得轧机的工作效率和降低轧辊的消耗,多采用高硬度的轧辊,也正是由于轧辊的硬度提高,给加工轧辊的机械厂带来难度。
大型企业均采用数控机床加工高硬度轧辊,但小型企业还是采用普通车床加工轧辊,加工过程中常出现机床振动大,车削困难和表面光洁度不好等问题,影响加工效率和加工质量。
各类轧辊成分

电话:+86-10-58236807/05 传真:+86-10-58236823E-mail: ********************************URL: www.bnmme.ru 101合金冷硬铸铁轧辊合金冷硬铸铁轧辊(辊环)是利用铁水自身的过冷度和模具表面激冷,同时添加Ni、Cr、Mo合金元素的办法制造的一种铸铁轧辊,辊身工作层基体组织内基本上没有游离态石墨,因而其硬度高,具有优良的耐磨损性能。
此类材质可用静态复合浇注工艺生产大型规格轧辊,使辊身具有高的硬度而辊颈具有高的强韧性,表现出良好的热稳定性和抗事故性。
化学成分(%)物理性能电话:+86-10-58236807/05 传真:+86-10-58236823E-mail: ********************************URL: www.bnmme.ru(300)CC-4 60-70 35-48 ﹥300 8-35 8-45 金相组织CC-1 CC-2 CC-4 辊身500X CC-3 辊身500X细珠光体+碳化物珠光体+少量贝氏体+碳化物CC-4 辊颈100X 珠光体+碳化物用途CC-1 小型棒、线材轧机及窄带钢轧机精轧机架。
CC-2小型棒、线材轧机及窄带钢轧机精轧机架、无缝钢管轧机张减径辊环。
CC-3CC-4 三辊中板轧机、热轧叠轧薄板轧机。
电话:+86-10-58236807/05 传真:+86-10-58236823E-mail: ********************************URL: www.bnmme.ru 承制范围102 合金无界冷硬铸铁轧辊合金无界冷硬铸铁轧辊(辊环),以其工作层中有细小的石墨析出物为特征而区别于冷硬铸铁轧辊。
石墨均匀分散在整个辊身截面,其数量和尺寸随深度而增加。
本公司提供的合金无界冷硬铸铁轧辊,由于添加了锰、铬、镍、钼等合金元素,加上少量细小石墨的存在,不仅提高了轧辊的抗剥落性、抗热裂性和抗磨损等性能,而且辊身工作层具有较小的硬度落差。
轧辊的材料及热处理

轧辊的寿命主要取决于轧辊的内在性能和工作受力,内在性能包括强度和硬度等方面。
要使轧辊具有足够的强度,主要从轧辊材料方面来考虑;硬度通常是指轧辊工作表面的硬度,它决定轧辊的耐磨性,在一定程度上也决定轧辊的使用寿命,通过合理的材料选用和热处理方式可以满足轧辊的硬度要求。
轧辊按工作状态可分为热轧辊和冷轧辊,按所起的作用可分为工作辊、中间辊、支承辊,按材质可分为锻辊和铸辊(冷硬铸铁)。
通常轧辊的服役条件极其苛刻,工作过程中承受高的交变应力、弯曲应力、接触应力、剪切应力和摩擦力。
容易产生磨损和剥落等多种失效形式。
不同的用途、不同类型的轧辊处在各自特定的工况条件,其大致的性能要求如下:冷轧辊在工作过程中要承受很大的轧制压力,加上轧件的焊缝、夹杂、边裂等问题,容易导致瞬间高温,使工作辊受到强烈热冲击造成裂纹、粘辊甚至剥落而报废。
因此,冷轧辊要有抵抗因弯曲、扭转、剪切应力引起的开裂和剥落的能力,同时也要有高的耐磨性、接触疲劳强度、断裂韧性和热冲击强度等。
国内外冷轧工作辊一般使用的材质有GCr5、9Cr2、9Cr、9CrV、9Cr2W、9Cr2Mo、60CrMoV、80CrNi3W、8CrMoV、86CrMoV7、Mo3A等。
20世纪50~60年代,这一时期的轧件多为碳素结构钢,强度和硬度不高,所以轧辊一般采用 1.5%~2%Cr锻钢。
此类钢的最终热处理通常采用淬火加低温回火,常见的淬火方式有感应表面淬火和整体加热淬火。
其主要任务是考虑如何提高轧辊的耐磨性能、抗剥落性能,并提高淬硬层深度,尽量保证轧辊表面组织均匀,改善轧辊表层金属组织的稳定性。
从20世纪70年代开始,随着轧件合金化程度的提高,高强度低合金结构钢(HSLA)的广泛应用,轧件的强度和硬度也随之增加,对轧辊材料的强度和硬度也提出了更高的要求,国际上普遍开始采用铬含量约2%的Cr-Mo型或Cr-Mo-V 型钢工作辊,如我国一直使用的9Cr2Mo、9Cr2MoV和86CrMoV7、俄罗斯的9X2MΦ、西德的86CrMoV7、日本的MC2等。
立辊介绍材料

EC立辊介绍材料热轧立辊的主要作用是设定带宽和保证板材侧边的平整。
立辊轧制温度高、轧制速度慢,对轧辊的抗热裂性和耐磨性要求比较高。
目前国内外热轧板带轧机立辊普遍使用合金铸钢、半钢和锻钢材质,这三种轧辊硬度普遍偏低,一般只有40-50HSD左右。
受轧辊本身材质性能和轧制工况条件影响,普遍存在辊面起瘤、结疤、掉块和磨损严重等问题。
1、立辊轧制存在的问题(1)常规合金钢、半钢立辊轧辊耐磨性差,抗热疲劳性不足,辊面质量差,轧材边部毛刺、边裂、翘皮、划伤、黑边极大降低板材边部质量。
图1:常规立辊下机辊面图2 常见板材边部质量问题(2)立辊的换辊、拆装工作量大,占用人员多、耗费时间长,严重影响了现场的作业效率。
随着钢厂去产能、调结构工作深入开展,热轧品种钢、不锈钢、汽车高强钢和集装箱板等高附加值产品持续增加,对板材边部质量要求也将越来越高。
为满足轧钢生产发展需求,中钢邢机将立辊材质升级为综合性能更好的EC 立辊,不仅顺应了轧钢生产发展的需要,更关键的是对实现热连轧全线用辊高材质化具有重要意义。
2、EC立辊的组织、性能特点与传统半钢、合金钢等立辊材质相比,EC立辊外层合金总量最高可达20%,宏观硬度可控制在70-90HSD之间,具有红硬性好、耐磨性及抗热裂性优异的特点,远远高于传统立辊。
基体组织控制为马氏体,基体中弥散分布的大量高显微硬度MC、M2C、M7C3型碳化物颗粒,在使用中作为耐磨质点承担磨损,能够明显降低轧辊在机磨损量,实现轧制周期的成倍延长。
图3 宏观硬度对比图4 EC立辊组织500×在同等条件下,选用相同陪试样,测试耐磨性。
EC100材质和EC200材质相对耐磨性是传统材质的8倍和23倍,耐磨性显著提高。
在600℃下对试样进行2000次冷热疲劳试验,检测不同材质试样的疲劳裂纹深度、宽度和面积,其中EC100、EC200试样疲劳裂纹深度很浅,裂纹深度分别较传统材质降低65%和86%,抗冷热疲劳性能大幅提升。
轧辊深冷技术工艺

轧辊深冷技术工艺
轧辊深冷技术工艺
轧辊深冷技术工艺是指给轧辊表面进行冷却处理,以改善其硬度及耐
磨性能的一种技术工艺。
通过轧辊深冷技术工艺,可以更有效的提升
轧辊的硬度,延长其使用寿命,进而提升轧制成品的质量。
轧辊表面冷却技术采用质子束材料表面深度冷热处理(PID)工艺,质
子束材料表面深度冷热处理(PID)是一种利用电子束聚焦加热后,冷
却技术对轧辊表面进行快速冷却,从而获得深冷处理效果。
轧辊深冷技术工艺的优势:
1、可以有效提高轧辊的硬度,让轧制工艺更加稳定,延长轧辊的使用
寿命;
2、可以提高轧制的精度,降低工件的表面粗糙度,满足轧制后制件的
要求;
3、可以提高设备的耐用性和可靠性,加强轧制工艺的稳定性。
轧辊深冷技术工艺广泛应用于冶金、矿山、化工、农业等行业,可以
有效满足不同行业的生产需求。
综上所述,轧辊深冷技术工艺是轧制行业发展的一个重要分支,具有
广泛的应用前景。
它不仅可以提高轧辊的硬度,延长其使用寿命,而
且可以提高轧制的精度、提高工件表面粗糙度,提升轧制成品的质量。
为此,轧辊深冷技术工艺应该得到广泛应用,深入发展,以提高轧制工艺的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轧辊热处理轧辊按工作状态可分为热轧辊和冷轧辊,按所起的作用可分为工作辊、中间辊、支承辊,按材质可分为锻辊和铸辊(冷硬铸铁)。
通常轧辊的服役条件极其苛刻,工作过程中承受高的交变应力、弯曲应力、接触应力、剪切应力和摩擦力。
容易产生磨损和剥落等多种失效形式。
不同的用途、不同类型的轧辊处在各自特定的工况条件,其大致的性能要求如下:轧辊类型主要性能要求辊身硬度工作温度℃热轧工作辊抗热疲劳裂纹性能,抗表面粗糙性能 HB:196~302 室温~850冷轧工作辊高硬度,耐磨性,抗疲劳剥落性能HS:90~105 室温~180对热轧辊来说,辊面不允许出现裂纹,表面裂纹缺陷容易造成应力集中,加速扩展而使轧辊失效。
热疲劳裂纹主要起因于周期性交变热应力,严重情况下,裂纹扩展可能造成辊面剥落,甚至断辊。
冷轧辊主要失效形式包括划伤、粘辊和剥落等。
冷轧辊辊身表面应有高而均匀的硬度,其优劣表现在辊身工作层的耐磨性,即耐粗糙性。
大型热轧锻钢工作辊用钢的化学成分、临界点以及工艺参数如下。
热轧锻钢工作辊用钢化学成分(%)钢号 C Si Mn P S Cr Ni Mo V Cu55Cr 0.50~0.60 0.17~0.37 0.35~0.65 ≤0.025≤0.025 1.00~1.30 ≤0.30 - - ≤0.2550CrMnMo 0.45~0.55 0.20~0.60 1.30~1.70 1.40~1.80 - 0.20~0.60 -60CrMnMo 0.55~0.65 0.25~0.40 0.70~1.00 0.80~1.20 - 0.20~0.30 -50CrNiMo 0.45~0.55 0.20~0.60 0.50~0.80 1.40~1.80 - 0.20~0.60 -60CrNiMo 0.55~0.65 0.20~0.40 0.60~1.00 0.70~1.00 1.50~2.00 0.10~0.30 -60SiMnMo 0.55~0.65 0.70~1.10 1.10~1.50 - - 0.30~0.40 -60CrMo 0.55~0.65 0.17~0.30 0.50~0.80 0.50~0.80 ≤0.25 0.30~0.4060CrMoV 0.55~0.65 0.17~0.37 0.50~0.80 0.90~1.20 - 0.30`0.40 0.15~0.3570Cr3Mo 0.60~0.80 0.40~0.70 0.50~0.90 2.00~3.00 0.40~0.60 0.25~0.60 -常用热轧锻钢工作辊的临界点及工艺参数钢号临界点热处理Ac1 Ac3 Ar1 Ms 正火温度(℃)淬火温度(℃)回火温度(℃)55Cr 735 755 - - 840~850 820~840 590~63060CrMo 676 805 685 - 840~860 860~870 600~66060CrMoV 765 798 - 265 890~910 860~880 600~68060CrMnMo 700 805 655 - 820~840 860~870 650~68060SiMnMo 700 760 - - 810~830 830~850 570~65070Cr3Mo 800 - 700 195 810~880 860~880 -热轧工作辊进行的热处理一般有锻后热处理和调质。
1)锻后热处理锻后热处理的主要目的是消除锻后应力,细化晶粒,改善切削性能。
锻后热处理还有扩氢作用。
扩氢时间视钢锭氢含量而定,一般认为[H]≤2×10-4%时,可取消扩氢处理。
2)调质热轧工作辊的最终热处理是调质。
调质的目的是保证轧辊表面获得规定的硬度和力学性能,并保证心部具有足够的韧性。
大型冷轧锻钢工作辊用钢的化学成分、临界点以及工艺参数冷轧锻钢工作辊用钢化学成分(%)钢号 C Si Mn P S Cr Ni Mo W V Cu8CrMoV 0.75~0.85 0.20~0.40 0.20~0.40 ≤0.025 ≤0.025 0.80~1.10 ≤0.25 0.55~0.70 - 0.08~0.12 ≤0.2586Cr2MoV 0.83~0.90 0.18~0.35 0.30~0.45 1.60~1.90 0.20~0.35 - 0.05~0.159Cr 0.85~0.95 0.25~0.45 0.20~0.35 1.40~1.70 - - -9Cr2 0.85~0.95 0.25~0.45 0.20~0.35 1.70~2.10 - - -9Cr2Mo 0.85~0.95 0.25~0.45 0.20~0.35 1.70~2.10 0.20~0.40 - -9Cr2W 0.85~0.95 0.25~0.45 0.20~0.35 1.70~2.10 - 0.30~0.60 -9Cr3Mo 0.85~0.95 0.50~0.70 0.20~0.40 2.50~3.50 0.20~0.40 - -60CrMoV 0.55~0.65 0.17~0.37 0.50~0.85 0.90~1.20 0.30~0.40 - 0.15~0.35常用冷轧锻钢工作辊的临界点及工艺参数钢号临界点热处理Ac1 Ac3 Ar1 Ms 正火温度(℃)淬火温度(℃)回火温度(℃)9Cr 746 860 700 270 880~910 880~890 660~7109Cr2 740 840 680 270 860~890 880~890 660~7109Cr2Mo 760 850 - 190 830~860 880~890 700~7609Cr2W 750 850 680 240 870~900 880~890 700~760冷轧工作辊次热处理一般有锻后热处理,调质和表面淬火。
锻后热处理锻后热处理的目的是降低硬度,消除残余应力,同时还改善组织,得到细粒珠光体,消除网状碳化物。
锻后热处理还有扩氢作用。
扩氢时间视钢锭氢含量而定,一般认为[H]≤2×10-4%时,可取消扩氢处理。
调质调质的目的是为表面淬火提供组织准备,使辊颈和辊心得到强韧性配合良好的粒状珠光体组织,获得良好的综合力学性能,以承受激烈的表面淬火。
表面淬火表面淬火使工作辊获得高硬化层。
表面淬火方法按加热方法可分整体快速加热淬火法和连续感应加热淬火法,目前后者在生产实践中应用更广。
在连续式感应加热淬火工艺方法中双频感应淬火很有特色,它使用两种不同频率的感应器匹配进行感应加热,在辊面温度控制和加热层温度分布方面的具有明显的优势。
典型的双频淬火装备以电流透入深度较大的工频感应器作为主感应器,实现深层加热,均热一段时间后,再使用一个中频感应器来得到较深的经过等温的奥氏体化层,淬后获得所需的淬硬层深度。
中频电源以250 Hz为佳,也有使用500、1000、1200和2500Hz。
中频感应器的功率一般为工频感应器的1/2~1/4。
中频感应器和工频感应器之间的间距为90~120mm。
感应器上升速度为0.5~0.6mm/s感应器与工件之间的间隙一般为 mm。
轧辊要在加热炉内整体预热,心部要预热透。
提高预热温度,有利于提高加热深度和缩短奥氏体化时间。
根据轧辊淬硬层深的要求,可预热至220℃~500℃,整体预热后装卡到淬火机床上进行感应淬火[1]。
感应淬火过程时将整体预热的轧辊预热到指定温度后,将轧辊装卡到活动框架上,辊身下端面与工频感应器下平面保持在一个水平面上,两个感应器从送电到全部进入辊身正常淬火,其功率逐渐增加,直到淬火全功率。
同样,当感应器离开辊身上端面时,功率也有大到小逐渐减小,直至全部离开辊身。
感应加热完成后,为减小淬火应力,应进行适当预冷后再喷淬。
由于奥氏体在高温阶段比较稳定,喷水器与下感应器之间有40mm的空隙,辊面温度下降到850℃左右,不会影响淬火硬度。
辊身下降进入喷水器位置后,低压大水量连续喷射冷却7~10min,使淬硬层深度范围内的冷却速度超过贝氏体临界冷却速度直至冷却到Ms以下,再浸水冷却。
浸水冷却时间按辊身直径每100mm冷却15min计算,终冷温度≤50℃。
冷轧工作辊淬火后应及时回火。
回火温度根据要求的辊身表面硬度而定。
一般来说,硬度大于90HS的轧辊的回火温度为140℃~150℃,硬度为70~85HS的轧辊的回火温度为310℃~330℃。
辊身硬度大于95H S的轧辊,在精车和粗磨后应进行第二次回火,回火温度比第一次低10℃目前铸铁轧辊的生产中,普遍采用消除内应力退火、石墨化退火、正火和回火等工艺消除内应力退火铸铁轧辊在浇注后的冷却过程中,各部位通过塑性到弹性变形温度的时间不同;在冷却过程中轧辊发生石墨化和各种相变时其体积变化,这两个因素使轧辊由表面至中心产生很大的应力。
低温退火,可在短时间内有效的消除轧辊内应力。
根据轧辊的材质、尺寸和铸造条件确定低温退火的加热速度、加热温度、保温时间和冷却速度等工艺参数。
石墨化退火球墨铸铁轧辊的组织中往往存在着过多的自由渗碳体,具有形成白口的倾向性。
为了获得较高的综合力学性能,可采取石墨化退火工艺。
石墨化退火分为高温石墨化退火和低温石墨化退火。
为了消除球墨铸铁铸态组织中出现的大量的共晶渗碳体或自由渗碳体,需要采取高温石墨化退火的热处理工艺。
当原始组织中的自由渗碳体少于8%,其组织为铁素体+珠光体+石墨或珠光体+石墨,欲获得铁素体基体的球墨铸铁,则采用低温石墨化退火的热处理工艺。
对于冷硬或无限冷硬球墨铸铁轧辊,多采取高温石墨化退火工艺。
正火铸铁轧辊正火的目的是增加基体中的珠光体或索氏体组织的数目和弥散度,从而提高铸铁轧辊的强度、硬度、耐磨性,并保持一定的塑性与韧性。
正火按加热温度可分为高温奥氏体化正火和中温部分奥氏体化正火。
高温奥氏体化正火加热温度在Ac3以上某个温度范围;部分奥氏体化正火加热温度在Ac1至Ac3范围内。
(1) 高温完全奥氏体化正火。
球墨无限在冷硬轧辊和球墨半冷硬轧辊可采用高温完全奥氏体化正火。
加热温度一般在900~960℃,经保温基体全部变为奥氏体,然后出炉空冷、风冷或喷雾冷却,从而获得珠光体或索氏体基体的铸铁轧辊。
若辊径较大,正火冷速不足于抑制二次渗碳体的析出,往往需要增加一次正火,以增强正火效果。
(2 ) 中温部分奥氏体化正火。
中温部分奥氏体化正火处理方法是将轧辊在正火温度(约800℃~880℃)保温一段时间,然后空冷,再回火。
由于奥氏体化的温度较低,在金属基体中存在着少量分散分布的铁素体,因此具有较高的综合力学性能。
正火后的轧辊一般要进行回火处理。
回火时的升温速度应≤20℃/小时,若升温速度过快,产生新的热应力与原有应力叠加易使轧辊断裂。
锻钢支承辊经斑竹鼓励,再接再厉:锻钢支承辊材质按Cr含量,一般有:1%Cr:MC1等2%Cr:9Cr2Mo等3%Cr:70Cr3Mo等4%Cr:45Cr4NiMoV等5%Cr:50Cr5MoV等锻钢支承辊的制造流程:备料→电炉粗炼钢水→钢包精炼→真空浇注→锻造→锻后热处理→粗加工→预备热处理→半精加工→性能热处理1. 冶炼早期的支承辊平炉冶炼+大气浇注,支承辊的冶金质量难以保证,常因氢含量超标而发生置裂事故。