九年级垂径定理+圆心角+圆周角
部编数学九年级上册专题08垂径定理、圆心角、圆周角之六大题型(解析版)含答案

专题08垂径定理、圆心角、圆周角之六大题型利用垂径定理求值【答案】2【分析】根据垂径定理和勾股定理列方程求解即可.【详解】解:设OC=△中,由勾股定理得,在Rt COE【变式训练】【答案】45cm/4【分析】连接BO,延长22=,即可求解.BC OB OC-【详解】解:如图,连接=,由折叠得:CD CEQ D是OC的中点,\=,CD OD\==,CE CD OD2\==,4OC OE【答案】310【分析】由题意易得【详解】解:连接OD∵AB 是O e 的直径,AB ∴152OD OB AB ===,∵CD AB ^,6CD =,∴13,2DE CD DEO ==Ð∴22OE OD DE =-=垂径定理的实际应用【点睛】本题考查了勾股定理和垂径定理,灵活运用所学知识,掌握垂直于弦的直径平分弦,且平分弦所对的弧,是解决本题的关键.【变式训练】1.(2023上·福建龙岩·九年级统考期末)筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧.如图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O (O 在水面上方)为圆心的圆,且圆O 被水面截得的弦AB 长为8米.若筒车工作时,盛水桶在水面以下的最大深度为2米,则这个圆的半径为( )A .2米B .3米C .4米D .5米【答案】D 【分析】过圆O 作OD AB ^于E ,如图所示,由垂径定理可知4AE BE ==,设圆的半径为r ,再利用勾股定理列方程求解即可得到答案.【详解】解:过圆O 作OD AB ^于E ,如图所示:Q 弦AB 长为8米,\4AE BE ==,Q 盛水桶在水面以下的最大深度为2米,设圆的半径为r ,在Rt AOE △中,90AEO Ð=°,OA r =,4AE =,2OE OD ED r =-=-,则由勾【答案】26【分析】连接AO ,依题意,得出222AO AC CO =+,解方程即可求解.【详解】解:如图所示,连接∵1CD =,10AB =,AB ∴5AC =,设半径为r ,则AO r =在Rt AOC V 中,2AO =利用弧、弦、圆心角的关系求解A.AB OC=C.12ABC BOC Ð+Ð=【答案】D 【变式训练】【答案】80°/80度【分析】利用等腰三角形的性质和三角形内角和计算出即可求出答案.Ð【详解】解:∵OBC半圆(直径)所对的圆周角是直角A.43【答案】B【分析】如图:连接AQ QB=,最后根据勾股定理即可解答.【点睛】本题主要考查了圆周角定理、等腰三角形的判定与性质、勾股定理等知识点,灵活运用勾股定理成为解答本题的关键.【变式训练】【答案】13【分析】连接BD ,先由三角形内角和定理求出求出30ABD Ð=°,即有【详解】解:连接BD∵在ABC V 中,55B Ð=∴60A Ð=°,∵AB 为O e 的直径,∴90ADB CDB Ð=Ð=°Ð的度数;(1)求BAC(2)若点E为OB中点,CE 【答案】(1)45°(2)3590°的圆周角所对的弦是直径例题:(2023上·广东汕头DA DC =,2AB BC ==【答案】32【分析】连接AC ,过点角三角形,勾股定理求得∵90ADC Ð=°,∴AC 是直径,∴90ABC Ð=°【变式训练】1.(2023上·山东济南·九年级统考期末)如图,正方形ABCD 中,4AB =,E 点沿线段AD 由A 向D【答案】2p【分析】连接BD 交EF 于点1222OB OD BD ===,再由∵四边形ABCD 是正方形,∴4BC AB AD ===,EDO Ð∴242BD AB ==,【答案】90°Ð【分析】(1)由ABP (2)首先证明点P理求出OC即可得到则OP OA OB ==,\点P 在以AB 为直径的O e 在Rt BCO V 中,90OBC Ð=225OC BO BC \=+=,532PC OC OP =-=-=,已知圆内接四边形求角度【答案】102°【分析】根据圆内接四边形的性质得出【详解】解:∵四边形∴180A DCB Ð+Ð=°,又180DCE DCB Ð+Ð=°,∴102DCE A ÐÐ==°,故答案为102°.【点睛】本题主要考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解决此题的关键.【变式训练】【答案】40【分析】根据已知可得»»BCBD =56DAC BAC BAD Ð=Ð+Ð=°,再利用圆内接四边形对角互补以及平角的定义可得56DBE DAC Ð=Ð=°,继而利用角平分线定义及三角形内角和定理即可求解.(1)求证:A AEBÐ=Ð(2)若90Ð=°,点CEDC【答案】(1)见解析e的半径为25 (2)O一、单选题1.(2023上·河北张家口·九年级统考期末)O e 中的一段劣弧»AB 的度数为80o ,则AOB Ð=( )A .10oB .80oC .170oD .180o【答案】B 【分析】根据圆心角、弧、弦之间的关系得出答案即可.【详解】解:Q O e 中的一段劣弧»AB 的度数为80°,80AOB \Ð=°,故选:B .A .32°B .42【答案】A 【分析】先根据同弧所对的圆周角相等得到小即可.【详解】解:∵50A Ð=°,∴50D A Ð=Ð=°,A .10【答案】D∴12AH BH AB===在Rt BOHV中,OH∴线段OP长的最小值为A.105°B.110【答案】D【分析】先根据圆内接四边形的性质和平角的定义求出求解.A .1米B .()35+米C .3米【答案】D 【分析】连接OC 交AB 于D ,根据圆的性质和垂径定理可知理求得OD 的长,由CD OC OD =-即可求解.则OC AB ^,12AD BD AB ==在Rt OAD △中,3OA =,AD ∴225OD AO AD =-=,【点睛】本题考查圆的性质、垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.【答案】120【分析】过O 点作OD AC ^AD CD =,根据三角形中位线定理可得由折叠可得:12OD OE ==∵AB 是直径,∴90ACB Ð=°,12OD BC =【答案】64°/64度【分析】根据在同圆中,Ð=Ð可推出AOC BOD【详解】解:Q»AE=【答案】3【分析】由圆的性质可得OA后根据中位线的性质即可解答.【答案】45【分析】连接AC ,如图所示,由直径所对的圆周角为直角可知及勾股定理求出AC 【详解】解:连接Q OC AB ^,AB =12AD BD AB \==在Rt AOD V 中,OA 420r \=,解得r【答案】4【分析】如图,连接CD直角三角形斜边上的中线等于斜边的一半可得【点睛】本题考查直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,勾股定理.掌握直径所对的圆周角为直角是解题的关键.三、解答题e的直径AB垂直于弦CD,垂足为E,11.(2023上·安徽合肥·九年级统考期末)如图,O,.==28AE CD(1)求O e 的半径长;(2)连接 BC ,作OF BC ^【答案】(1)5(2)5在Rt OCE V 中,2OE ∴()22224R R -+=,解得5R =,∴O e 的半径长为5;(1)若这个输水管道有水部分的水面宽半径;OE AB ^Q ,11168cm 22BD AB \==´=(1)连接AD,求证:(2)若52,==CD AB 【答案】(1)详见解析;(2)6Ð相等吗?为什么?(1)BAFÐ和CAD^,垂足为(2)过圆心O作OH AB【答案】(1)相等,理由见解析(2)10【详解】(1)解:连接BF ,Q AF 是O e 的直径,90F BAF \Ð+Ð=°Q AC BD ^,\90CAD BDA Ð+Ð=°,Q F BDA Ð=Ð,\BAF CAD Ð=Ð.(2)解:OH AB ^Q ,AH BH \=,OA OF =Q ,210BF OH \==,BAF CAD Ð=ÐQ ,10CD BF \==.【点睛】本题考查的是圆周角定理,等角的余角相等,圆心角、弦的关系,三角形的中位线性质,垂径定理,掌握圆心角、弦的关系,三角形的中位线性质以及垂径定理是解题的关键.15.(2023上·山东威海·九年级统考期末)【初识模型】如图1,在ABC V 中,,90AB AC BAC =Ð=°.点D 为BC 边上一点,以AD 为边作ADE V ,使=90DAE а,AE AD =,连接CE ,则CE 与BD 的数量关系是__________;【构建模型】如图2,ABC V 内接于,O BC e 为O e 的直径,AB AC =,点E 为弧AC 上一点,连接,,AE BE CE .若3,9CE BE ==,求AE 的长;【运用模型】如图3,等边ABC V 内接于O e ,点E 为弧AC 上一点,连接,,AE BE CE .若6,10CE BE ==,求AE 的长.【答案】(1)BD CE =;(2)32;(3)4【分析】(1)只需要利用SAS 证明BAD CAE V V ≌,即可证明BD CE =(2)如图所示,过点A 作AD AE ^交BE 于D ,由BC 是直径,得到明BAD CAE Ð=Ð,再证明45ADE AED Ð=Ð=°,得到AD AE =,即可证明2(3)如图所示,在BE 上取一点∵ABC V 是等边三角形,∴60AB AC ACB ==°,∠,∴60AEB ACB Ð=Ð=°,∴ADE V 是等边三角形,∴60AE DE DAE ==°=,∠∠∴BAC CAD DAE Ð-Ð=Ð-Ð【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,圆周角定理,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.。
初三下册数学圆知识点定理总结

1.垂径定理及推论:如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理”“弧径定理”“中垂定理”.几何表达式举例:∵ CD过圆心∵CD⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) ∵∠AOB=∠COD∴ AB = CD(2) ∵ AB = CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1)(2)(3)(4)几何表达式举例:(1)∵∠ACB=∠AOB∴……………(2)∵ AB是直径∴∠ACB=90°(3)∵∠ACB=90°∴ AB是直径(4)∵ CD=AD=BD∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ ABCD是圆内接四边形∴∠CDE =∠ABC∠C+∠A =180°6.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径∵AB是切线∴OC⊥AB(3)……………7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例:∵ PA、PB是切线∴ PA=PB∵PO过圆心∴∠APO =∠BPO8.弦切角定理及其推论: 几何表达式举例:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)(1)∵BD是切线,BC是弦∴∠CBD =∠CAB(2)∵ ED,BC是切线∴∠CBA =∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项. 几何表达式举例:(1)∵PA·PB=PC·PD∴………(2)∵AB是直径∵PC⊥AB∴PC2=PA·PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例:(1)∵PC是切线,PB是割线∴PC2=PA·PB (2)∵PB、PD是割线∴PA·PB=PC·PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上.(1)(2)几何表达式举例:(1)∵O1,O2是圆心∴O1O2垂直平分AB (2)∵⊙1 、⊙2相切∴O1 、A、O2三点一线12.正多边形的有关计算:(1)中心角αn ,半径R N ,边心距r n ,边长a n ,内角βn ,边数n;(2)有关计算在RtΔAOC中进行. 公式举例:(1) αn =;(2)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高三角形的外接圆、三角形的外心、三角形的内切圆、三角形的内心、圆心角、圆周角、弦切角、圆的切线、圆的割线、两圆的内公切线、两圆的外公切线、两圆的内(外)公切线长、正多边形、正多边形的中心、正多边形的半径、正多边形的边心距、正多边形的中心角.二定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR;(2)弧长L=;(3)圆的面积S=πR2.(4)扇形面积S扇形=;(5)弓形面积S弓形=扇形面积S AOB±ΔAOB的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S圆锥侧 =. (L=2πr,R是圆锥母线长;r是底面半径)四常识:1.圆是轴对称和中心对称图形.2.圆心角的度数等于它所对弧的度数.3.三角形的外心⇔两边中垂线的交点⇔三角形的外接圆的圆心;三角形的内心⇔两内角平分线的交点⇔三角形的内切圆的圆心.4.直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)直线与圆相交⇔ d<r ;直线与圆相切⇔ d=r ;直线与圆相离⇔ d>r.5.圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)两圆外离⇔ d>R+r;两圆外切⇔ d=R+r;两圆相交⇔ R-r<d<R+r;两圆内切⇔ d=R-r;两圆内含⇔ d<R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.7.关于圆的常见辅助线:已知弦构造弦心距.已知弦构造RtΔ. 已知直径构造直角.已知切线连半径,出垂直.圆外角转化为圆周角. 圆内角转化为圆周角. 构造垂径定理. 构造相似形.两圆内切,构造外公切线与垂直.两圆内切,构造外公切线与平行.两圆外切,构造内公切线与垂直.两圆外切,构造内公切线与平行.两圆同心,作弦心距,可证得AC=DB.两圆相交构造公共弦,连结圆心构造中垂线. PA、PB是切线,构造双垂图形和全等.相交弦出相似.一切一割出相似, 并且构造弦切角.两割出相似,并且构造圆周角.双垂出相似,并且构造直角.规则图形折叠出一对全等,一对相似.圆的外切四边形对边和相等. 若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.RtΔABC的内切圆半径:r=.补全半圆.AB=. AB=.PC过圆心,PA是切线,构造双垂、RtΔ.O是圆心,等弧出平行和相似. 作AN⊥BC,可证出:.。
垂径定理和圆周角圆心角

一、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 二、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 三、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==DBABA∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 四、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
9 垂径定理 圆心角 圆周角定理(

垂径定理圆心角圆周角定理垂径定理: 垂直于弦的直径平分弦且平分这条弦所对的两条弧1、平分弦所对的两条弧)2、平分弦(不是直径)3、垂直于弦4、过圆心推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等[垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。
]圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。
圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半。
1.在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
2.半圆(直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
3.圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
切线定理(定义)和圆有且只有一个公共点的直线是圆的切线。
(数量法d=r)圆心到直线的距离等于半径的直线是圆的切线。
判定定理:1、经过半径的外端并且垂直于这条半径的直线是圆的切线。
判定性质:圆的切线垂直于过切点的半径。
有交点,连半径,证垂直;无交点,作垂线,证半径(d=r)练习一选择题:1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50° B.55°C.60° D.65°3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110°C.120° D.130°4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是()A.3≤OM≤5B.3≤OM<5C.4≤OM≤5D.4≤OM<55、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A.2个 B.3个 C.4个 D.5个6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28° C.29°D.34°7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB 于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是()A. B.C. D.9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35ºC.20º与40º D.30º与35º10.图中∠BOD的度数是()A.55° B.110°C.125° D.150°11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()(A)140°(B)125°(C)130°(D)110°12.如图,弦AB∥CD,E为弧CBD上一点,AE平分,则图中与相等(不包括)的角共有()A.3个 B.4个C.5个 D.6个13、如图,已知的半径为1,锐角内接于,于点,于点,则的值等于()A.的长 B.的长 C.的长 D.的长14.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分15.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B.C.或D.或或16.如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是()A. B.C. D.17.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.718.如图,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个19.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q。
圆的所有定理初三

圆的所有定理初三
一、圆上三点确定一个圆的定理
在平面内,通过不在同一直线上的三点可以确定一个唯一的圆。
该圆的圆心是三边垂直平分线的交点,半径为该点到任意一点的距离。
二、直径所对的圆周角等于90度的定理
在圆中,直径所对的圆周角等于90度,即直径所对的圆周角是直角。
三、圆内接四边形的对角互补定理
在圆内接四边形中,相对的两角互补,即两个相对的角的角度之和为180度。
四、切线与半径垂直的定理
圆的切线与过切点的半径垂直,即切线与半径之间的角度为90度。
五、圆周角等于圆心角一半的定理
在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半。
六、弧长与半径关系的定理
在圆中,弧长与该弧所对应的中心角的角度和半径有关系,弧长等于该弧所对应的中心角的角度与半径的乘积。
七、圆幂定理(相交弦定理、切割线定理)
相交弦定理:经过圆内一点引两条弦,它们被这点所截得的线段的乘积等于固定常数;切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
八、两圆相切和相交的性质定理
当两圆相切时,切线的性质有:外切时,两圆心距等于两半径之和;内切时,两圆心距等于两半径之差。
当两圆相交时,交弦定理说明了两圆被截得的弦与两圆心连线的线段成比例关系。
此外,还有相交弦定理和切割线定理等性质。
九、垂径定理
在圆中,任何一条直径所在的直线都是圆的对称轴。
这意味着当直径将圆分成两个部分时,它们是轴对称的。
垂径定理是圆的对称性的重要应用之一。
初三数学必考垂径定理

初三数学必考垂径定理
垂径定理是初中数学中非常重要的定理之一。
它是研究圆心角、圆周角、切线、弦、弧等几何概念的基础,也是解决各种几何问题的重要工具。
垂径定理指出:圆上的垂径平分弦,且相交于圆心。
具体来说,如果在圆上任取一条弦AB,以其中点C为圆心画圆,交弦AB于点D、E,则CD、CE分别是弦AB的垂线,且交于圆心O。
利用垂径定理,我们可以解决很多与圆有关的几何问题。
比如,求两条切线的交点,求一条线段在圆上的中点,求直线段是否在圆内或圆外等等。
在考试中,垂径定理也是一个必考的知识点。
因此,同学们一定要掌握好这个定理,多做一些练习题,加深对垂径定理的理解和应用能力,提高数学成绩。
- 1 -。
垂径定理及圆周角和圆心角的关系

垂径定理及圆周角和圆心角的关系垂径定理及圆周角和圆心角的关系垂径定理圆周角和圆心角的关系垂径定理垂径定理的推论圆周角定理圆周角定理的推论知识点1 垂径定理及其推论示意图垂径定理推论垂直于弦的直径平分弦,并且平分弦所对的两条弧.如图,'AA 是⊙O 的弦,CD 是⊙O 的直径,'AA CD ⊥于点M ,则M A AM '=,⌒AD =⌒A `D , ⌒AC =⌒A `C .平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图,'AA 是⊙O 的弦,CD 是⊙O 的直径,CD AA <','AA 与CD 交于点M ,M A AM '=,则'AA CD ⊥,⌒AD =⌒A `D ,⌒AC =⌒A `C .圆是 图形,它有 对称轴,每一条过 的直线都是它的对称轴.例1.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,他的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,锯口深一寸,锯道长一尺.问径几何?”译为:“今有一圆柱形木材埋在墙壁中,不知其大小,用锯去锯木料,锯口深一寸(ED =1寸),锯道长一尺(AB =1尺=10寸).问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径是 ( )A .13寸B . 20寸C .26寸D . 28寸例 2.已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,°.(1)求EBC ∠的度数; (2)求证:BD CD =.例3.如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是( ) A .4cm B .6cm C .8cm D .10cm例4.如图,AB 是⊙的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM =DM B . CB BD = C .∠ACD =∠ADC D .OM =MD例5.如图,A 、B 、C 、D 是⊙O 上的三点,∠BAC =30°,则∠BOC 的大小是( )A 、60°B 、45°C 、30°D 、15°例6.下列命题中正确的有( )①垂直于弦的直径平分这条弦;②与弦垂直的直线必过圆心; ③平分一条弧的直线必平分这条弧所对的弦;④平分弦的直径垂直于弦,并且平分这条弦所对的两条弧. A . 1 个B . 2 个C . 3 个D . 4 个例7.某窗户由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工程师求出弧AB 所在圆O 的半径.例8.如图所示,⊙O 的弦AB ,CD 的延长线相交于点M ,AD 与CB 交于点E .若AC ︵所对的圆心角为72°,BD ︵所对的圆心角为18°,求∠M +∠AEC 的度数.例9. 如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O 的半径为()A.cm B.5cm C.4cm D.cm例10.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm例11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42 °B.28°C.21°D.20°知识点2 圆周角定理及其推论示意图圆周角的定义圆周角定理推论1 推论2ABCO顶点在圆上,并且两边都与圆相交,我们把这样的角叫做圆周角.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧长也相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.同一条弧所对的圆周角有个.如上图,我们可以得到:∠AOB=∠ACB.例1.如图,⊙O的半径OA⊥OB,弦AC⊥BD.求证:AD∥BC.例2.如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.140°B.110°C.90°D.70°例3.一条弦把圆分成1:3两部分,则弦所对的圆周角为.例4.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.例5.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.例6.如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=____.。
九年级数学人教版第二十四章圆整章知识详解图文结合(同步课本结合例题精讲)

【解析】选D.延长AO交BC于点D,连接OB, 根据对称性知AO⊥BC,则BD=DC=3.
又△ABC为等腰直角三角形,∠BAC=90°, 则AD= 1 BC =3,∴OD=3-1=2,
2
∴OB= 22 32 13.
九年级数学第24章圆
4.(毕节·中考)如图,AB为⊙O的弦,⊙O的半径为5, OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是 . 【解析】如图所示,连接OB,则OB=5,OD=4,利用勾股定
(2)若旋转角度不是180°,而是旋转任意角度,则旋转 过后的图形能与原图形重合吗?
B
Oα
A
圆绕圆心旋转任意角度α ,都能够与原来的图形重合. ___圆__具__有__旋__转__不__变__性___.
九年级数学第24章圆
(二) 圆心角、弧、弦、弦心距之间的关系
(1)相关概念
圆__心__角___:顶点在圆心的角
2.如图,一根5m长的绳
子,一端栓在柱子上,
另一端栓着一只羊,请
5
画出羊的活动区域.
九年级数学第24章圆
【解析】
九年级数学第24章圆
1.判断下列说法的正误:
(1)弦是直径;(
)
(2)半圆是弧;(
)
(3)过圆心的线段是直径;( )
(4)长度相等的弧是等弧;( )
(5)半圆是最长的弧;(
)
(6)直径是最长的弦;(
问题:你知道赵州桥吗?它是1300多年前我国隋代建造的 石拱桥,是我国古代人民勤劳与智慧的结晶,它的主桥拱 是圆弧形,它的跨度(弧所对的弦的长)为37.4 m,拱高 (弧的中点到弦的距离)为7.2 m,你能求出赵州桥主桥 拱的半径吗?
九年级数学第24章圆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅导教案
学员姓名 辅导科目 年 级 九年级
授课教师
课 题 垂径定理、圆心角、圆周角 授课时间
教学目标 1、熟练掌握垂径定理、圆心角、圆周角概念推论 2、垂径定理、圆心角、圆周角习题练习 重点、难点
垂径定理的实际运用
教学内容
1.如图,已知ACB ∠是⊙O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )
A .40︒ B. 50︒ C. 80︒ D. 100︒ 2.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于点C 的任意一点,则∠BPC 的度数是( )
A .45°
B .60°
C .75°
D .90°
3.圆的弦长与它的半径相等,那么这条弦所对的圆周角的度数是( ) A .30° B .150° C .30°或150° D .60°
4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样 的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
A .第①块
B .第②块
C .第③块
D .第④块 5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2, 则等边三角形ABC 的边长为( )
A .3
B .5
C .23
D .25
6.下列命题中,正确的是( )
①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90
的圆周角 所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等
A .①②③
B .③④⑤
C .①②⑤
D .②④⑤ 7.如图,AB 是半圆直径,∠BAC=20°
,D 是AC 的中点,则∠DAC 的度数是( ) A . 30° B. 35° C. 45° D . 70° 8.下面每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )
P
O
D C
B
A
A
B
C
O
第7题
E
D C B
A
O 9. 已知AB 是⊙O 的直径,AC, AD 是弦,且AB=2, AC=2,AD=1,则圆周角∠CAD 的度数是 ( ) A. 45°或60° B. 60° C . 105° D. 15°或105° 10.如图,AB 是⊙的直径,弦CD 垂直平分OB ,则∠BDC=( ) A. 20° B.30° C.40° D.50° 11.如图.⊙O 中OA ⊥BC ,∠CDA=25o
,则∠AOB 的度数为_______.
12.如图.AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50 o
.则∠ADC=_______.
13.如图,点A 、B 、C 都在⊙O 上,连结AB 、BC 、AC 、OA 、OB ,且∠BAO=25°,则∠ACB 的大小为___________.
14.已知:如图,四边形ABCD 是⊙O 的内接四边形,∠BOD=140°,则∠DCE= . 15.如图,AB 是⊙O 的直径,C, D, E 都是⊙O 上的点,则∠1+∠2 = .
16.如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = 。
17.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______. 18. 圆的一条弦长等于它的半径,求这条弦所对的圆周角的度数为 . 19.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.
30
D
C
B
A
O
20.如图,点A 、B 、C 为圆O 上的三个点,∠AOB=
1
3
∠BOC, ∠BAC=45°,求∠ACB 的度数.
21.如图,AD 是∆ABC 的高,AE 是∆ABC 的外接圆的直径.试说明弧BE=弧CF
第11题
13题
第12题
14题
15题
D
22.已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,° (1)求EBC ∠的度数; (2)求证:BD CD =.
23.如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD .
(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.
24.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.
25.如图,P 是∠AOB 的角平分线OC 上的一点,⊙P 与OA 相交于E ,F 点,与OB 相交于G ,H 点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.
26.已知:⊙O 的半径OA =1,弦AB 、AC 的长分别为2,3,
求∠BAC 的度数.
27.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°, 求∠C 及∠AOC 的度数.
28.如图,在Rt △ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC
E D
B A
O
C
D
C
B A O A
C
B
D
E
的角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE 。
(1)求证:AC =AE ;
(2)求△ACD 外接圆的半径。
29.已知:⊙O 的半径为25cm ,弦AB =40cm ,弦CD =48cm ,AB ∥CD .求这两条平行弦AB ,CD 之间 的距离.
30.已知:△ABC 的三个顶点在⊙O 上,AB=AC ,圆心O 到BC 的距离为3cm ,圆的半径为7cm ,求AB 的长.
31.⊙O 的直径为10,弦AB=8,连接弦AB 的中点C 与⊙O 上一动点M 作线段CM ,求线段CM 的范围.
32.如图,ABC △内接于⊙O ,过点A 的直线交⊙O 于点P ,交BC 的延长线于点D ,且AB 2
=AP ·AD
(1)求证:AB AC =;(2)如果60ABC ∠=
,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.
33.如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 BF
的中点,AD ⊥BC 于D ,求证:AD =1
2
BF .
O
P
D
C
B
A
A
F
D
O
C
B。