Instanton counting via affine Lie algebras I Equivariant J-functions of (affine) flag manif
生物信息学中的序列比对算法使用方法解析

生物信息学中的序列比对算法使用方法解析序列比对在生物信息学中是一项重要的技术,用于寻找DNA、RNA或蛋白质序列之间的相似性和差异性。
它是理解生物学结构和功能的基石之一。
在本文中,我们将解析生物信息学中常用的序列比对算法的使用方法。
序列比对算法主要分为全局比对和局部比对。
全局比对用于比较完整的序列,而局部比对则更适用于在序列中查找相似区域。
在这两个主要类别中,有几种经典的序列比对算法,包括Pairwise Sequence Alignment、BLAST、Smith-Waterman算法和Needleman-Wunsch算法等。
首先,我们来看Pairwise Sequence Alignment(两两序列比对)算法。
这个算法是基本的序列比对方法,通过比较两个序列中的每一个碱基、氨基酸或核苷酸,并根据其相似性和差异性对它们进行排列。
Pairwise Sequence Alignment算法使用动态规划的思想,通过计算匹配、替代和插入/删除的分数,来确定两个序列的最佳匹配方案。
在生物信息学中,常用的实现包括Needleman-Wunsch算法和Smith-Waterman算法。
Needleman-Wunsch算法是一种全局比对算法,用于比较两个序列的整个长度。
它是通过填充一个二维矩阵来计算最佳匹配路径的。
算法的核心思想是,通过评估每个格子的分数,根据路径选择的最佳分数进行全局比对。
这个算法不仅可以计算序列的相似性,还可以计算每个位置的分数,从而获得两个序列的对应二面的对应关系。
Smith-Waterman算法是一种局部比对算法,用于寻找两个序列中的最佳匹配片段(子序列)。
它与Needleman-Wunsch算法的计算思路相同,但不同之处在于允许负分数,这使得算法能够确定具有高分数的局部匹配片段。
通过动态规划计算,Smith-Waterman算法可以寻找到两个序列中的相似片段,并生成比对的结果。
另一种常用的序列比对算法是基本本地搜索工具(BLAST)。
SequenceManager Logix Controller-based Batch和排队解决方

SequenceManagerLogix Controller-based Batch and Sequencing SolutionA Scalable Batch Solution for Process Control ApplicationsA modern batch system must account for the growing need for architecture flexibility, true distribution of control, and scalability. SequenceManager software provides batch sequencing in the Logix family of controllers by adding powerful new capability closer to the process and opening new possibilities for skids, off network systems, and single unit control. SequenceManager allows you to configure operations in Studio 5000 Logix Designer®, run sequence in FactoryTalk® View SE, and to capture and display batch results.SequenceManager directs PhaseManager™ programs inside a Logix-based controller in an ordered sequence to implement process-oriented tasks for single unit or multiple independent unit operations. Using industry standard ISA-88 methodology, SequenceManager enables powerful and flexible sequencing capabilities that allow for the optimal control of sequential processes.With SequenceManager, you can deliver fast and reliable sequence execution while reducing infrastructure costs for standalone units and complete skid-based system functionality.Key BenefitsSequenceManager™ software significantly reduces engineering time for system integrators and process equipment builders while providing key controller-based batch management capabilities for end users. Key benefits include:• Enables distributed sequence execution • Fast and excellent reliability of sequence execution native to controller • Efficient sequence development and monitoring in core product • Integrated control and HMI solution for intuitive operation • Reduced infrastructure costs for small systems • Provides data necessary for sequence reportingDistributed Batch Management Based on Proven TechnologyBuilt Upon Rockwell AutomationIntegrated ArchitectureSequenceManager was built using the standard control and visualization capabilities found in Rockwell Automation® Integrated Architecture® software. SequenceManager is a new capability that is builtinto Logix firmware that uses visualization through FactoryTalk® View SE to create an integrated sequencing solution. Combined with event and reporting tools, SequenceManager software is a complete batch solution for single unit and skid-based process applications.Scalable Controller-based Solution SequenceManager allows flexible design for skid-based equipment to be developed, tested and delivered asa fully functioning standalone solution but, if needed, seamlessly integrated into a larger control system. This strategy provides the end user with the option to integrate equipment without imposing design constraints on the OEM delivering the skid. Additionally, it enables the end user to deliver equipment as a standalone system without the constraint to scale to a larger process solution in the future. This batch solution offers scalability to help prevent costly redesign and engineering.Flexibility to Meet Process Needs SequenceManager enables you to expand your process control on skid based equipment that performs repetitive tasks and decision-making abilities. By using the ISA-88 methodology, SequenceManager allows for control design that can be adopted to fit the needs of the process industries without the constraints of custom application code. Built-in state model handling provides for fast and easy configuration while maintainingcontrol of the process.Editor and ViewerAs a brand new program type in Studio 5000 Logix Designer®, SequenceManager™ software gives the user the power and flexibility necessary to create dynamic recipes to maximize the effectiveness of the process control system.Without limitations on steps and parameters, and the ability to run parallel phases, to branch, and to loop back and rerun steps, SequenceManager removes the barriers in achieving effective batch within the controller.Sequence ExecutionProcedural sequences are executed through nativefunctions in the controller. With an integrated ISA-88 state model, the control and states of phases can be assured. Standard batch functionality, such as manual control and active step changes, are included to give the operational flexibility that is needed to respond toabnormal process conditions.Allowing for an Intuitive Batch ApplicationResponsive batch interactions between the controller and equipment, along with intuitive operator interfaces, provide the core of a truly distributed batching strategy that drives ISA-88 procedural models.Allen-Bradley, FactoryTalk Batch, FactoryTalk® View SE, Integrated Architecture, Listen.Think.Solve., PhaseManager, PlantPAx, Rockwell Automation, Rockwell Software, SequenceManager, and Studio 5000 Logix Designer are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.Operator ViewerFactoryTalk® View SE and ActiveX controls monitor and interact with a running procedural sequence through the HMI. Advance ActiveX controls provide an intuitive interface for controlling sequences and changingparameters from the operational environment. Improved capabilities allow the user to perform manual step changes and acquire control easily.Reporting and AnalyticsSequenceManager data generates events that are used to produce batch reports and procedural analysis. A separate event client transfers the event data from the Logixcontroller to a historical database. SequenceManager uses the same data structure and reports as FactoryTalk Batch, which provides a consistent and intuitive batch reporting tool among Rockwell Automation® Batch Solutions.Additional InformationVisit us at /processPublication PROCES-PP001A-EN-E – June 2016Copyright © 2016 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.。
时序关联规则算法公式

时序关联规则算法公式
时序关联规则算法是一种用于发现时间序列数据中的关联规则的方法。
其主要思想是利用时间序列数据中的时间顺序信息,来发现不同时间点之间的关联规则。
一种常见的时序关联规则算法是基于序列模式挖掘的方法,其中常用的算法包括PrefixSpan算法和GSP算法。
PrefixSpan算法是一种基于前缀投影的序列模式挖掘算法,其主要思想是通过递归地构建序列的前缀投影来发现频繁序列模式。
该算法的公式可以表示为:
PrefixSpan(S, α, β, P)。
其中,S是输入的时间序列数据集,α是最小支持度阈值,β是最小序列长度阈值,P是当前的序列前缀。
另一种常见的时序关联规则算法是GSP算法(Generalized Sequential Pattern algorithm),该算法通过扫描数据库多次来发现频繁序列模式。
其公式可以表示为:
GSP(S, α, β)。
其中,S是输入的时间序列数据集,α是最小支持度阈值,β是最小序列长度阈值。
除了这两种算法外,还有一些基于时间序列数据的关联规则挖掘算法,它们的公式可能会有所不同,但总体思想是类似的,即利用时间序列数据中的时间顺序信息来挖掘关联规则。
这些算法的公式通常会涉及到支持度和置信度等概念,用于衡量发现的关联规则的重要程度和可靠性。
总的来说,时序关联规则算法的公式会涉及到时间序列数据的输入、最小支持度阈值、最小序列长度阈值等参数,以及算法内部的递归或迭代过程,用于发现频繁序列模式或关联规则。
这些公式的具体形式会根据具体的算法而有所不同,但都是为了在时间序列数据中发现有意义的关联规则。
Infinity Analyze 摄像头控制说明书

INFINITY ANALYZE>Camera ControlINFINITY ANALYZE provides an intuitivecamera interface containing advanced features to produce high quality images. The layout is customizableand has the ability to save unlimited unique user settings. It contains simple save features that allow you to easilymanage and organize your images. Features include:Basic ControlsReal time preview, manual/auto exposure,white balance, gain, brightness, gamma, saturation, intensity, hue, image orientation,averaging, subsampling, light source selection,clockwise/counter clockwise, rotate 90, rotate 180, flip vertical, flip horizontal, flip diagonal,mirror, zoom preview, cascade, tile horizontal,tile vertical, INFINITY 3-1cooling control.Capture OptionsSingle capture, time lapse, auto increment filename, single key capture.>Image Processing and ArchivingINFINITY ANALYZE allows you to quickly and easily process images which can then be entered into an archive application or saved in a variety of formats. Measurements and annotations are easy to perform, highly reproducible and can be customized to your needs.Easily manage and retrieve images within this built-in database. MeasurementCaliper, polyline, circle from 3 points, area,perimeter, polygon, counting, light density,micrometer, grid/circle overlay, manual calibration, drag and drop data to excel.AnnotationLine, rectangle, round rectangle, ellipse, polygon, arrow, text.INFINITY ANALYZE is a complete image capture and processing software package for advanced imaging in the life science, clinical and industrial research markets. Easily capture and process images with excellent reproducibility and accuracy. The combination of INFINITY ANALYZE and INFINITY USB 2.0 microscopy cameras create the perfectsolution for all your imaging needs.I M A G I N G S O F T W A R E>Image Processing and Archiving ContinuedAdvanced Image ProcessingMultiple image averaging, subsampling, flat field correction, denoise,unsharpen, adaptive edge emphasis, sketch, equalization, amplitude depletion, darkfield simulation, photometric transform. Combine ImagesCombine, max, min, average, split, subtract, divide.StitchingStitch small images into a large seamless image along vertical or horizontal planes.Fluorescence Image CompositionCreate a composite image of fluorescent images captured through mono channel filters.Database/ArchiveA custom database system has been built into INFINITY ANALYZE. The database is accessible whenever the software is running. All the informa-tion content of an image, together with its quantitative measurement results, date of creation, author and description may be archived.>Advanced Features Module*Multi-Focus Enhancement Multi-focus enhancement creates depth of focus using multiple imagesfrom a stereoor compoundmicroscope. The resulting image is focused from top to bottom and leaves no trace of the original images. Spherical Aberration CorrectionSpherical aberration correction reduces the blur caused by the increased refraction of light rays hitting a lens near its edge, in comparison with those that strike near the center.* Advanced Features Module is not included. Contact your local dealer for more information.>Software Appearance and Help MenusWith INFINITY ANALYZE you can customize your workspace to your specific application through the addition or removal of icons and work spaces, as well as access help menus for each software feature. A field group menu provides a thumbnail worksheet to easily manage multiple images.Field MenuThe field group menu in INFINITY ANALYZE is a buffer of images with a thumbnail displayed for each cached image. The field group can be the destination for captured images or it can act as the input for multiple image processing such as fluorescent combination or er Defined InterfaceAdd/remove/customize tool icons.Help SectionActive help boxes for each software function are provided.>Upgrading to INFINITY ANALYZEExisting INFINITY CAPTURE users can quickly and easily upgrade to INFINITY ANALYZE for a nominal fee. Please contact Lumenera directly at ********************or visit our website at for details.Spherical AberrationCorrectionMulti – Focus Enhancement 7 Capella Court, Ottawa, ON, Canada K2E 8A7P h o n e : 1.613.736.4077 F a x : 1.613.736.4071 。
德国功能翻译理论

e.g. 奈达早在1964年区分“形式对等”和“功能对等”。 20世纪70年代以来语用学受到更多的关注, 翻译代为由词、短语转移到了语篇, 但基本的语言学框架没变。 在功能主义翻译学派成为主流之前, 以对等论为基础的语言学派在德国翻译界占主导地位。其代表人物是Wilss 和Koller等。
科勒指出: 如果译文能够满足有关结构条件的某些要求,那么原文和译文便存在着对等。这些相关的条件跟内容、风格以及功能有关。因而对等的要求便体现为: 原文的质量必须得以保留。也就是说原文的风格、内容及功能必须得以保留,或者至少译文应该尽可能地保留这些特征。 对等论者一般都侧重于原文,认为原文的特征必须在译文中得以保留。
Dacron 的确凉 TOFEL 托福 第六届中国厦门对台商品交易会暨海峡两岸机械电子商品展销会 The sixth China Xiamen Commodity Fair & Machinery and Electronics Exhibition
在家靠自己, 出国靠国旅 At home you’re your own boss. In china your Aladdin’s Lamp is at CITS
e.g. Cette semaine on tuer le cochon. this week we (will) kill the pig. 这个星期我们杀猪。 为实现译文功能。只能改写: Special offer—Fresh and abundant
删减与改写
删减和改写在文学类语篇翻译有时是一种必要。(见P39) 在应用语篇的翻译中, 则是常常必须借助的手段。
在目的论的框架下, 决定翻译目的的最重要因素之一便是受众——依着心目中的接收者, 他们有自己的文化背景知识, 对译文的期待及交际需求。每一种翻译都指向一定的受众, 因此翻译是在 “目标语情景中为某种目的及目的受众而生产的文本”(Vermeer) 费米尔的理论中较少提及原文, 可见目的论中原文明显低于对等论中原文的地位。费米尔认为原文只是为目的语受众提供部分或全部信息的源泉。
instant-ngp用法 -回复

instant-ngp用法-回复InstantNGP是一种计算机编程语言,被广泛应用于游戏开发和图形处理领域。
它具有简洁、高效和易于使用等优点,能够方便地创建各种图形效果和交互式应用程序。
本文将逐步介绍InstantNGP的用法和相关技术。
第一步:了解InstantNGP的基本概念和语法InstantNGP的语法风格与C++和JavaScript类似,但它也有自己独特的特点。
首先,我们需要了解InstantNGP的变量与数据类型、运算符、条件语句和循环语句等基本概念。
在这一步中,我们将学习如何声明和初始化变量,以及如何使用算术、逻辑和比较运算符。
我们还将熟悉if-else 和for循环等条件和循环语句的使用方法。
第二步:掌握InstantNGP中的图形绘制和动画效果InstantNGP最大的特点之一就是其强大的图形处理能力。
它提供了一系列简单易用的图形库,可以方便地绘制各种形状和图像。
在这一步中,我们将学习如何创建窗口、绘制基本图形(如矩形、圆形和多边形)以及加载和显示图像。
我们还将学习如何使用InstantNGP的动画库来实现流畅的动画效果。
第三步:应用InstantNGP进行交互式开发除了图形处理外,InstantNGP还可以用于创建交互式应用程序。
它提供了一系列输入和输出函数,可以方便地获取用户输入和显示输出结果。
在这一步中,我们将学习如何使用InstantNGP的键盘和鼠标事件来实现用户交互。
我们还将学习如何处理用户输入和输出,以及如何创建交互式的游戏和应用程序。
第四步:优化InstantNGP代码和性能当我们掌握了InstantNGP的基本用法后,我们可以进一步优化代码和提高性能。
在这一步中,我们将学习如何使用InstantNGP的调试工具和性能分析器来发现和修复代码中的错误和性能问题。
我们还将学习如何使用InstantNGP的优化技术和技巧来提高代码的执行效率和响应速度。
第五步:扩展InstantNGP的功能和应用领域除了上述基本用法外,InstantNGP还可以通过扩展功能库来满足不同的需求。
Silicon Sensing Systems DMU30-01 高性能 MEMS 陀螺仪 加速计技

FeaturesPrecision 6-DOF MEMS Inertial Measurement Unit Silicon Sensing’s latest VSG3Q MAX inductive gyroand capacitive accelerometer MEMSExcellent Bias Instability and Random WalkAngular - 0.1°/hr, 0.02°/√hrLinear - 15μg, 0.05m/s/√hrNon-ITARCompact and lightweight - 68.5 x 61.5 x 65.5H (mm), 345gInternal power conditioning to accept 4.75V to 36V input voltageRS422 interfaces-40°C to +85°C operating temperature range Sealed aluminium housingRoHS compliantIn-house manufacture from MEMS fabrication to IMU calibrationEvaluation kit and integration resources availableFirst class customer technical supportFuture developments and expansion capabilityMulti sensor MEMS blendingLow power ‘sleep’ modeAdditional sensor integration - GPS/Magnetometer/BarometerNorth fi nding modeAHRS functionalityOther interface protocols and specifi cationsCustom and host application integrationDMU30-01 IMU DMU30 Evaluation Kit DMU30 Mating ConnectorFigure 5.3 Gyro Scale Factor Errorover TemperatureFigure 5.5 Gyro Max Non-Linearity Error (±490°/s range) over Temperature Figure 5.4 Normalised Gyro Scale Factor Errorover TemperatureFigure 5.6 Gyro Max Non-Linearity Error (±200°/s range) over TemperatureFigure 5.1 Gyro Bias Error (°/h) over Temperature Figure 5.2 Normalised Gyro Bias Error (°/h)over TemperatureFigure 5.11 Accelerometer Scale Factor Error (±1g range) over Temperature(Plymouth g = 9.81058m/s/s)Figure 5.10 Normalised AccelerometerBias Error (mg) over TemperatureFigure 5.12 Normalised Accelerometer Scale Factor Error (±1g range) over TemperatureFigure 5.7 Gyro Noise (°/srms) vs Test Chamber Temperature Figure 5.8 Gyro Misalignments and Crosscoupling (±200°/s range) over Chamber TemperatureFigure 5.15 current Consumption vs Chamber Temperature (12V supply)Figure 5.16 DMU30 Temperature Output Difference (°/C) vs Test Temperature (self heating)Figure 5.17 Gyro Allan Variance Figure 5.14 Accelerometer Misalignments and Crosscoupling over TemperatureFigure 5.18 Gyro In Run StabilityFigure 5.21 Accelerometer Allan Variance Figure 5.23 Accelerometer Spectral DataFigure 5.22 Accelerometer In Run Stability Figure 5.24 Accelerometer Cumulative Noise Figure 5.20 Gyro Cumulative NoiseFigure 5.19 Gyro Spectral DataFigure 8.1 DMU30 Evaluation Kit8.1.1 DMU30 Evaluation Kit ContentsFigure 9.1 DMU30 LabelSER NO. YYWWXXXX CCMADE IN PLYMOUTH UKFigure 11.1 Axis De In order to minimise the requirement for size effectcompensation the accelerometer seismic masses have been located as close as possible to the centre of the DMU30 (the inertial reference point shown in Figure 11.2).61.5 M A X68.5 MAXExperts on Design-Infor sensors and power solutionsScan here and get an overview of personal contacts!We are here for you. Addresses and Contacts.Headquarter Switzerland:Angst+Pfister Sensors and Power AG Thurgauerstrasse 66CH-8050 ZurichPhone +41 44 877 35 00*********************************Office Germany:Angst+Pfister Sensors and Power Deutschland GmbH Edisonstraße 16D-85716 UnterschleißheimPhone +49 89 374 288 87 00************************************。
pinecone 向量数据库的基本概念

Pinecone 向量数据库的基本概念1. 引言Pinecone 是一种高性能、高可扩展性的向量数据库,专为大规模向量数据存储和快速检索而设计。
它利用最新的向量索引技术,提供了高效的相似度搜索和近邻搜索功能。
本文将详细介绍 Pinecone 向量数据库的关键概念,包括向量、索引、查询和应用等。
2. 向量在 Pinecone 中,向量是指具有固定维度的数值数组。
每个维度对应于数据中的一个特征或属性。
例如,在图像识别任务中,可以使用一个具有固定长度的向量来表示图像特征。
在自然语言处理任务中,可以使用一个固定长度的向量来表示文本特征。
通过将数据转换为向量形式,可以方便地进行相似度计算和近邻搜索。
2.1 定义在数学上,向量表示空间中一个点或对象。
它由一组有序数值组成,并且可以在空间中进行运算和比较。
2.2 重要性向量是机器学习和数据挖掘等领域中常用的数据表示方式之一。
它具有以下重要性:•统一表示:将不同类型的数据(如图像、文本、音频等)转换为向量形式,可以统一数据的表示方式,方便进行后续的计算和分析。
•特征提取:通过将原始数据转换为向量形式,可以从中提取出有用的特征信息,帮助解决各种机器学习和数据挖掘问题。
•相似度计算:通过计算向量之间的相似度,可以衡量数据之间的相似程度,并进行相应的分类、聚类或推荐等任务。
2.3 应用向量在各个领域都有广泛的应用。
以下是一些常见的应用场景:•图像识别:将图像转换为向量表示,通过计算向量之间的距离来识别图像中的物体或场景。
•文本分类:将文本转换为向量表示,通过计算向量之间的相似度来判断文本所属类别。
•推荐系统:将用户和物品表示为向量,通过计算用户与物品之间的相似度来进行个性化推荐。
•搜索引擎:将查询词和文档表示为向量,通过计算它们之间的相似度来返回相关文档。
3. 索引索引是 Pinecone 向量数据库中存储和组织向量数据的关键技术。
它可以加速相似度搜索和近邻搜索操作,提高查询的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rational function of a ∈ k and (ε1 , ε2 ) ∈ Consider now the generating function
∞
R2 .
Z=
d=0
Qd
d UK
1d .
It can (and should) be thought of as a function of the variables q and a, ε1 , ε2 as before. In [23] it was conjectured that the first term of the asymptotic in the limit lim ln Z
INSTANTON COUNTING VIA AFFINE LIE ALGEBRAS I: EQUIVARIANT J-FUNCTIONS OF (AFFINE) FLAG MANIFOLDS AND WHITTAKER VECTORS
arXiv:math/0401409v2 [math.AG] 15 Oct 2004
ε1 ,ε2 →0
is closely related to Seiberg-Witten prepotential of K . For K = SU (n) this conjecture has been proved in [24] and [22]. Also in [23] an explicit combinatorial expression for Z has been found. 1.2. Algebraic version. In this paper we want to generalize the definition of the function Z in several directions and compute it in some of these new cases. First of all, it will be convenient for us to make the whole situation completely algebraic. Namely, let G be a complex semi-simple algebraic group whose maximal compact subgroup is isomorphic to K . We shall denote by g its Lie algebra. Let also S = P2 and denote by D∞ ⊂ S the ”straight line at ∞”; thus S\D∞ = A2 . It is well-known d that Md K is isomorphic to the moduli space BunG (S, D∞ ) of principal G-bundles on S endowed with a trivialization on D∞ of second Chern class −d. When it does not lead to a confusion we shall write BunG instead of BunG (S, D∞ ). The algebraic analog of d has been constructed in [3]; we denote this algebraic variety by U d . This variety UK G is endowed with a natural action on G × (C∗ )2 . 1.3. Parabolic generalization of the partition function. Let C ⊂ S denote the ”horizontal line”. Choose a parabolic subgroup P ⊂ G. Let BunG,P denote the moduli space of the following objects: 1) A principal G-bundle FG on S; 2) A trivialization of FG on D∞ ⊂ S; 3) A reduction of FG to P on C compatible with the trivialization of FG on C. Let us describe the connected components of BunG,P . Let M be the Levi group ˇ the Langlands dual group of M and let Z (M ˇ ) be its center. We of P . Denote by M aff ˇ ). Let also Λ denote by ΛG,P the lattice of characters of Z (M G,P = ΛG,P × Z be the ∗ aff ˇ lattice of characters of Z (M ) × C . Note that ΛG,G = Z.
d UK
This research has been partially supported by t来自e NSF.12
ALEXANDER BRAVERMAN
of the unit K × (S 1 )2 -equivariant cohomology class (which we denote by 1d ) over d ; the integral takes values in the field K which is the field of fractions of the algebra UK 1 ∗ A = HK ×(S 1 )2 (pt) . Note that A is canonically isomorphic to the algebra of polynomial functions on k × R2 (here k denotes the Lie algebra of K ) which are invariant with 1d may naturally be regarded as respect to the adjoint action of K on k. Thus each
ALEXANDER BRAVERMAN Abstract. Let g be a simple complex Lie algebra, G - the corresponding simply connected group; let also gaff be the corresponding untwisted affine Lie algebra. aff For a parabolic subgroup P ⊂ G we introduce a generating function ZG,P which 2 roughly speaking counts framed G-bundles on P endowed with a P -structure on the horizontal line (the formal definition uses the corresponding Uhlenbeck type aff compactifications studied in [3]). In the case P = G the function ZG,P coincides with Nekrasov’s partition function introduced in [23] and studied thoroughly in [24] and [22] for G = SL(n). In the ”opposite case” when P is a Borel subgroup of G aff we show that ZG,P is equal (roughly speaking) to the Whittaker matrix coefficient in the universal Verma module for the Lie algebra ˇ gaff – the Langlands dual Lie algebra of gaff . This clarifies somewhat the connection between certain asymptotic aff of ZG,P (studied in loc. cit. for P = G) and the classical affine Toda system. We also explain why the above result gives rise to a calculation of (not yet rigorously defined) equivariant quantum cohomology ring of the affine flag manifold associated with G. In particular, we reprove the results of [13] and [18] about quantum cohomology of ordinary flag manifolds using methods which are totally different from loc. cit. We shall show in a subsequent publication how this allows one to connect certain aff asymptotic of the function ZG,P with the Seiberg-Witten prepotential (cf. [2], thus proving the main conjecture of [23] for an arbitrary gauge group G (for G = SL(n) it has been proved in [24] and [22] by other methods.