高数下册公式总结
(完整版)高数公式汇总

高数公式汇总经管学生会内部资料导数公式:(tgx) sec x(ctgx) csc x(secx) secx tgx(cscx) cscx ctgx(a x) a x l na(log a x) 1xl na基本积分表:tgxdxctgxdxsecxdxcscxdxdx~ 2a xdx~ 2x adx~ 2a xdx2a x 高等数学公式In cosx CIn sinx CIn secx tgx C In cscx ctgx C 1 x-arctg — Ca a1 x a —— C 2a x a1 a x —— C 2a a xarcs in仝C aI n2sin xdx cos x2 2 a 'x2 2 a 'a2x2dxdxdxo三角函数的有理式积分:2usin x 2, c osx1 u22u2,1 u(arcsin x)(arccos x)(arctgx)(arcctgx)dx2~ cosxdx~~~2-sin xxdxx 2—x22 ax 2—x22 ax 21 a2 xn2otg i,111 x211 x2sec2 xdx tgx C2csc xdx ctgx Csecx tgxdx secx Ccscx ctgxdx cscx Cxa x dx — CIn ashxdx chx Cchxdx shx C2 2----------- In( x 、x a ) C2 2 v 7 x aI n2 a —In( x22 a .一In x22a . x arcs in C2x2 a2) C、x2 a2dx2du1 u2高数公式汇总 经管学生会内部资料两个重要极限:sin x ’lim 1x 0 xlim(1 -)x e 2.718281828459045…xarchx In (x x 21)三角函数公式:•诱导公式:-和差角公式:sin( )sin COS COS sin COS ( )COSCOS sin sintg()汽tg1 tg tgCtg()CtgCtg 1Ctg Ctg-和差化积公式:sin sin 2 si nCOS 2 2sinsin2 COSsin22COS COS 2 COSCOS --2 2COS COS2 si nsin2 2一些初等函数: xe e x2xxe e2shx x e x echx x e x ex 21)arthx llnl 双曲正弦:shx双曲余弦:chx双曲正切:thx高数公式汇总经管学生会内部资料sin 2 2sin cos cos2 2cos 2 1ctg2ctg 212ctgtg2 2tg 21 tg•倍角公式: 1 2si n 2-半角公式: 2cos 2sinsin3 3sin 4sin 3 cos3 4cos 3costg33tg tg 31 3tg 2tg 2sin — 2 1 cos 1 cos sin sin 1 cos-余弦定理:-正弦定理:a b sin A sinB c si nC2Rc 2 a 2 b 2 2ab cosC•反三角函数性质: arcs inx arccosx 2 arctgx arcctgx高阶导数公式 ------ 莱布尼兹( Leibniz )公式:2! k ! 中值定理与导数应用:拉格朗日中值定理: f(b) f(a) f ( )(b a) 柯西中值定理:丄型 f (a) f () F(b) F(a) F () n (n) k (n k) (k)(uv) C n u v k 0(n) (n 1) n(n 1) (n 2) n(n 1) (n k 1) (n k) (k)u v nu v u vu v当F(x) x 时,柯西中值定理就是 拉格朗日中值定理 曲率:uv(n)高数公式汇总 经管学生会内部资料弧微分公式:ds .1 y 2dx,其中y tg平均曲率:K .:从M 点到M 点,切线斜率的倾角变 化量;s : MM 弧长。
(完整版)高等数学常用公式大全

高数常用公式平方立方:22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba -sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -其他非重点三角函数csc(a) =a sin 1sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1- sin(a) = (sin 2a -cos 2a)2公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A特殊角的三角函数值:等价代换:(1) x sinx ~ (2) x tanx ~ (3) x arcsinx ~ (4) x arctanx ~(5) 2x 21cosx 1~- (6) x )x 1(ln ~+ (7) x 1e x~- (8)ax 1)x 1(a ~-+基本求导公式:(1) 0)(='C ,C 是常数 (2) 1)(-='αααx x (3) a a a x x ln )(=' (4) ax x a ln 1)(log =' (5) x x cos )(sin =' (6) x x sin )(cos -=' (7) x x x 22sec cos 1)(tan ==' (8) x xx 22csc sin 1)(cot -=-='(9) x x x tan )(sec )(sec =' (10) x x x cot )(csc )(csc -='(11) =')(arcsin x 211x- (12) 211)(arccos xx --='(13) 211)(arctan xx +=' (14) 21(arccot )1x x '=-+ (15)x21x =')( (16) 2x1x 1-=)(基本积分公式:(1) 0dx C =⎰ (2) ()为常数k Ckx kdx +=⎰(3) ()111-≠++=+⎰μμμμC x dx x (4) C x dx x +=⎰||ln 1(5) C aa dx a xx+=⎰ln (6) C e dx e x x +=⎰ (7) C x xdx +=⎰sin cos (8)Cx xdx +-=⎰cos sin (9)⎰⎰+==C x xdx x dx tan sec cos 22(10) ⎰⎰+-==C x xdx x dxcot csc sin 22 (11) C x xdx x +=⎰sec tan sec(12) C x xdx x +-=⎰csc cot csc (13) C x x dx +=+⎰arctan 12 或(C x arc x dx+-=+⎰cot 12)(14) C x xdx +=-⎰arcsin 12或(C x xdx +-=-⎰arccos 12)(15) C x xdx +-=⎰|cos |ln tan , (16) C x xdx +=⎰|sin |ln cot , (17)Cx x xdx ++=⎰|tan sec |ln sec , (18)C x x dx x c +-=⎰|cot csc |ln sc ,一些初等函数: 两个重要极限:·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx xx xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x拉格朗日中值定理。
数学高一下册公式总结

数学高一下册公式总结
一、等差数列的通项公式:
a n= a1 + (n-1)d
其中,a n表示第n项, a1表示第一项,d表示公差。
二、等差数列的求和公式:
Sn = n/2 * ( a1 + a n)
其中,Sn表示前n项的和, a1表示第一项,a n表示第n项。
三、等比数列的通项公式:
a n = a1* q^(n-1)
其中,a n表示第n项,a1表示第一项,q表示公比。
四、等比数列的求和公式:
当q≠1时,
Sn = a1 * (1 - q^n) / (1 - q)
当q=1时,
Sn = n *a1
五、三角函数的诱导公式:
sin(π/2 - x) = cosx
cos(π/2 - x) = sinx
tan(π/2 - x) = 1/tanx
cot(π/2 - x) = 1/tanx
sec(π/2 - x) = cscx
csc(π/2 - x) = secx
六、两角和与差的三角函数公式:
sin(x + y) = sinxcosy + cosxsiny
cos(x + y) = cosxcosy - sinxsiny
tan(x + y) = (tanx + tany)/(1 - tanxtany)
七、二倍角公式:
sin2x = 2sinxcosx
cos2x = cos²x - sin²x
tan2x = 2tanx / (1 - tan²x)
这些公式在高一下册数学中占据重要地位,希望能够帮助您进行有效的复习和总结。
高数下册公式总结材料

第八章 向量与解析几何c a b =+ 0a ≠,则a ae a=x z aaa==,,∑:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x xz y x -=-=- ),(y x f z = 0000((,),(,),1)x y n f x y f x y =--或0000((,),(,),1)x y n f x y f x y =-切平“面”方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x法“线“方程:1),(),(0000000--=-=-z z y x f y y y x f x x y x 第十章 重积分重积分积分类型计算方法典型例题二重积分()σd ,⎰⎰=Dy x f I平面薄片的质量质量=面密度⨯面积(1) 利用直角坐标系X —型 ⎰⎰⎰⎰=Dbax x dy y x f dx dxdy y x f )()(21),(),(φφY —型⎰⎰⎰⎰=dcy y Ddx y x f dy dxdy y x f )()(21),(),(ϕϕ(2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 ); (2) 被积函数用极坐标变量表示较简单( 含22()x y α+, α为实数 )21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤ 0θπ≤≤ 2πθπ≤≤(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)第十一章曲线积分与曲面积分所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
最完整高数公式大全赶紧了以后用

最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。
2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。
- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。
-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。
-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。
- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。
-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。
- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。
高数下册总复习知识点.pptx

F ( x, G( x,
y, z) y, z)
0 ,
0
(取 x为参数)
i jk
取T Fx Fy Fz
切线方程为
Gx Gy Gz M
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz M Gz Gx M Gx Gy M
法平面方程为
Fy Gy
Fz Gz
M
(x
x0 )
它们距离为
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
2、数量积 (点积、内积)
a
b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式 a b axbx a yby azbz
两向量夹角余弦的坐标表示式
cos
ab
axbx a yby azbz
ax2
函数连续
函数可导
有极限
函数可微 偏导数连续
4、多元复合函数求导法则
中间变量均为一元函数的情形
定理1 若函数
在点t处可导,z f (u, v)
在点 处偏导连续, 则复合函数 z f ( (t), (t))
在点 t 可导, 且有链式法则
dz z du z dv dt u dt v dt
z
u v
1
旋 转 椭 球 面
z
o
y
x
(1)球面 (2)圆锥面 (3)旋转双曲面
x2 y2 z2 1
x2 y2 z2
( x x0 )2 ( y y0 )2 (z z0 )2 R2
x2 a2
y2 a2
z2 c2
高数必备公式

高数必备公式在学习高等数学的过程中,公式是帮助我们解题的重要工具,掌握了相关的公式,我们可以更加高效地解决问题。
下面是一些高等数学中常用的必备公式,希望对大家的学习有所帮助。
一、微积分1.导数公式导数是微积分中的重要概念,通过导数可以描述函数在某一点上的变化率。
以下是一些常见函数的导数公式:- 常数函数:(c)'= 0,其中 c 为常数- 幂函数:(x^n)'=n*x^(n-1),其中 n 为常数- 指数函数:(a^x)'=a^x * ln(a),其中 a 为常数且 a>0- 对数函数:(log_a(x))'=(1/x) * (1/ln(a)),其中 a>0 且a≠1- 三角函数:(sin(x))'=cos(x),(cos(x))'=-sin(x),(tan(x))'=(sec^2(x)),(cot(x))'=-(csc^2(x)),(sec(x))'=sec(x) * tan(x),(csc(x))'=-csc(x) * cot(x)2.积分公式积分可以看作是导数的逆运算,用于求解函数的原函数。
以下是一些常见函数的积分公式:- 幂函数积分:∫x^n dx = (1/(n+1)) * x^(n+1),其中n ≠ -1- 指数函数积分:∫e^x dx = e^x- 对数函数积分:∫(1/x) dx = ln|x| + C- 三角函数积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln|cos(x)| + C3.泰勒级数展开公式泰勒级数是一种将函数展开成无穷多项式的方法,可以帮助我们在一定范围内近似计算复杂函数。
以下是一些常用函数的泰勒级数展开公式:- sin(x) = x - (x^3/3!) + (x^5/5!) - (x^7/7!) + ...- cos(x) = 1 - (x^2/2!) + (x^4/4!) - (x^6/6!) + ...- e^x = 1 + x + (x^2/2!) + (x^3/3!) + (x^4/4!) + ...二、线性代数1.向量运算公式向量是线性代数中的重要概念,通过一些向量运算公式可以方便地进行向量计算。
高数下 知识点总结

高数下知识点总结高数是大学数学的重要组成部分,主要涉及函数、极限、微分和积分等内容。
下面是高数的一些重要知识点总结,包括基本概念、定理及其应用。
基本概念:1. 函数:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
常见的函数有多项式函数、指数函数、对数函数等。
2. 极限:描述函数在某一点或无穷远处的趋势。
正式定义了极限的分析方法和计算方法。
3. 连续性:函数在某一区间上的连续性意味着在该区间上函数图像上不存在断点,且图像可以一笔画出。
4. 导数:描述函数在某一点的变化率,也可以理解为函数图像在该点的切线斜率。
常用于求函数的最值、凹凸性等问题。
5. 积分:描述函数在某一区间上的累积效应,可以从导数的逆过程理解。
常用于计算曲线下面积、求函数的平均值等。
定理与应用:1. 介值定理:若函数f(x)在区间[a,b]上连续,且f(a)和f(b)异号,则在(a,b)存在一点c,使得f(c)=0。
该定理的重要意义在于可以用来证明方程存在根的情况。
2. 零点定理:若函数f(x)在[a,b]上连续,且f(a)f(b)<0,则方程f(x)=0在区间(a,b)内至少有一个实数根。
该定理为介值定理的特殊情况,用于求解方程的根。
3. 极值定理:若函数f(x)在区间[a,b]上连续且可导,若在x=c 的邻域内f'(x)>0(或f'(x)<0),则f(x)在x=c处有极小值(或极大值)。
该定理为求函数的极值提供了判定条件。
4. 拉格朗日中值定理:对于在[a,b]上连续且可导的函数f(x),存在一个c在(a,b)内,使得f'(c) = (f(b)-f(a))/(b-a)。
该定理常用于证明不等式或计算函数的近似值。
5. 微分中值定理:若函数f(x)在[a,b]上连续且可导,存在一个c在(a,b)内,使得f'(c) = f(b)-f(a)/(b-a)。
该定理常用于求函数的导数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(一)教案 期末总复习 - 2 - 第八章 向量与解析几何
向量代数 定义 定义与运算的几何表达 在直角坐标系下的表示
向量 有大小、有方向. 记作a或AB
a(,,)xyzxyzaiajakaaa
,,xxyyzzaprjaaprjaaprja 模 向量a的模记作a a222xyzaaa
和差 cab cab- cab
,,xxyyzzababab
单位向量 0a,则aaea
a
e
222
(,,)xyzxyzaaa
aaa
方向余弦 设a与,,xyz轴的夹角分别为,,,则方向余弦分别为cos,cos,cos
cosyxzaaaaaa,cos,cos
cosae(,cos,cos) 222cos1+coscos
点乘(数量积) cosbaba
, 为向量a与b的夹
角 zzyyxxbabababa
叉乘(向量积) bac
sinbac
为向量a与b的夹角
向量c与a,b都垂直 zyx
zyxbbb
aaakjiba
定理与公式 垂直 0abab 0xxyyzzabababab
平行 //0abab //yzxxyzaaaabbbb
交角余弦 两向量夹角余弦babacos 222222
cosxxyyzzxyzxyzabababaaabbb
投影 向量a在非零向量b上的投影 cos()babprjaaabb 222
xxyyzzb
xyz
abababprjabbb
平面 直线 法向量{,,}nABC 点),,(0000zyxM 方向向量{,,}Tmnp 点),,(0000zyxM 方程名称 方程形式及特征 方程名称 方程形式及特征
一般式 0DCzByAx 一般式
0022221111DzCyBxADzCyBxA 高等数学(一)教案 期末总复习 - 3 - 点法式 0)()()(000zzCyyBxxA 点向式 pzznyym
xx000
三点式 1112121213131310xxyyzzxxyyzzxxyyzz 参数式
ptzzntyymtxx
000
截距式 1xyzabc 两点式 000101010
xxyyzz
xxyyzz 面面垂直 0212121CCBBAA 线线垂直 0212121ppnnmm
面面平行 212121CCBBAA 线线平行 21212
1
ppnnm
m
线面垂直 pCnBmA 线面平行 0CpBnAm 点面距离 ),,(0000zyxM 0DCzByAx 面面距离 10AxByCzD 20AxByCzD
222000CBADCzByAxd
12
222
DDdABC
面面夹角 线线夹角 线面夹角 },,{1111CBAn},,{2222CBAn
},,{1111pnms },,{2222pnms },,{pnms
},,{CBAn
222222212121
212121||cosCBACBACCBBAA
222222212121
212121cospnmpnmppnnmm
222222sinpnmCBACpBnAm
空间曲线:
()() ()xtytzt,,,)(t
切向量 ))(,)(,)((000tttT
切“线”方程:)()()(000000tzztyytxx
法平“面”方程: 0))(()()()()(000000zztyytxxt
()()yxzx
切向量 ))(,)(,1(xxT
切“线”方程:)()(100000xzzxyyxx
法平“面”方程: 0))(()()()(00000zzxyyxxx
空间曲面 :
0),,(zyxF 法向量 000000000((,,),(,,),(,,))xyz
nFxyzFxyzFxyz 切平“面”方程: 000000000000(,,)()(,,)()(,,)()0xxx
FxyzxxFxyzyyFxyzzz
法“线“方程:
),,(),,(),,(000000000000zyxFzzzyxFyyzyxFxxzyx
),(yxfz 0000((,),(,),1)xy
nfxyfxy
切平“面”方程:
0)())(,())(,(0000000zzyyyxfxxyxfyx 高等数学(一)教案 期末总复习 - 4 - 或
0000((,),(,),1)xy
nfxyfxy
法“线“方程:
1),(),(0000000zzyxfyyyxfxx
yx 第十章 重积分 重积分 积分类型 计算方法 典型例题
二重积分 d,DyxfI
平面薄片的质量
质量=面密度面积
(1) 利用直角坐标系 X—型 Dbaxxdyyxfdxdxdyyxf)()(21),(),(
Y—型 dcyyDdxyxfdydxdyyxf)()(21),(),( (2)利用极坐标系 使用原则 (1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 ); (2) 被积函数用极坐标变量表示较简单( 含22()xy, 为实数 )
21
()
()
(cos,sin)(cos,sin)Dfdddfd
02 0 2 (3)利用积分区域的对称性与被积函数的奇偶性 当D关于y轴对称时,(关于x轴对称时,有类似结论)
11
0(,)(,)(,)2(,)(,)(,)(,)DfxyxfxyfxyIfxydxdyfxyxfxyfxyDD对于是奇函数,即对于是偶函数,
即是的右半部分 计算步骤及注意事项 1. 画出积分区域 2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数 关于坐标变量易分离 3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙 高等数学(一)教案 期末总复习 - 5 - 4. 确定积分限 方法:图示法 先积一条线,后扫积分域 5. 计算要简便 注意:充分利用对称性,奇偶性
三重积分
dvzyxfI),,(
空间立体物的质量
质量=密度面积
(1) 利用直角坐标截面法投影法 投影bayxzyxzxyxyzzyxfyxVzyxf),(),()()(2121d),,(ddd),,(
(2) 利用柱面坐标 cossinxryrzz
相当于在投影法的基础上直角坐标转换成极坐标
适用范围:
○1积分区域表面用柱面坐标表示时方程简单;如 旋转体 ○2被积函数用柱面坐标表示时变量易分离.如2222()()fxyfxz 21
()()(,,)ddd(cos,sin,)dbr
arfxyzVzfz
(3)利用球面坐标 cossincossinsinsincosxryrzr
dvrdrdd2sin 适用范围: ○1积分域表面用球面坐标表示时方程简单;如,球体,锥体. ○2被积函数用球面坐标表示时变量易分离. 如,222()fxyz 222111
(,)2
(,)dd(sincos,sinsin,cos)sindIf
(4)利用积分区域的对称性与被积函数的奇偶性