最小二乘支持向量机的自编代码和安装SVM工具箱方法

合集下载

LS-SVM中文使用说明

LS-SVM中文使用说明
2.1.2 调谐,稀疏,完整性 调用函数:tunelssvm, crossvalidatelssvm, leaveoneoutlssvm, robustlssvm,sparselssvm; 演示:Subsections , demofun, democlass, demomodel
估算训练模式的泛化性能的很多方法都包括在内。对于分类,可以用错误分类率 (misclass)来表述。对重复培训和验证为基础的估计都是通过 crossvalidatelssvm 和 leaveoneoutlssvm 来实现的。一个强大的 crossvalidation(关于迭代重加权 LS - SVM 的) 分数由 rcrossvalidatelssvm 函数被调用。这些绩效措施,可用于确定调整参数(如正规化 和内核参数的 LS - SVM 的(tunelssvm))。减少一个 LS - SVM 的模型的复杂性可以通过 反复修剪较重要支持值(sparselssvm). 在数据中的异常值的情况下,支持数值的更正将 改进模型(robustlssvm).
所有 CMEX 和/或 C 文件已被删除。求解 线该性系统通过使用 MATLAB 命令“反斜杠” (\)
第一章 引言
在解决非线性分类,函数估计和密度估计问题中,支持向量机是一个很强大的方法,支 持向量机也致使了其核心的新动向,最新发展事基于一般学习方法的。支持向量机应经被引 入统计学习理论和结构风险最小化之中。这些方法中,凸优化问题,解决了一个典型的二次 规划问题。LS-SVM 是标准 SVM 的改进,这样就可以解决线性 kkt 系统的问题了。最小二 乘支持向量机与正规化网络和高斯过程密切相关,但更加重视和利用原始对偶的规范条款解 释。经典的模式识别算法的内核版本如判别分析的内核 Fisher,以非监督学习、循环式网络 扩展和控制之间的链接是可用的。健全性、稀疏性、权重可以被应用到 LS-SVM 上,并具 有三个层次的推理贝叶斯框架已经制定。LS – SVM 像原始对偶那样配方给予核 PCA,核 CCA 和 PLS。对于非常大的规模问题和在线学习,一个固定大小的 LS - SVM 方法被提出, 它基于 Nystrom 在原始空间中支持向量的积极选择和估计的近似值。原始对偶申述的方法 被开发为核心谱聚类,数据可视化,降维和生存分析。

LSSVM概述学习资料

LSSVM概述学习资料

5 最小二乘支持向量机(LSSVM)估计算法
支持向量机主要是基于如下思想:通过事先 选择的非线性映射将输入向量映射到高维特征 空间, 在这个空间中构造最优决策函数。在构 造最优决策函数时,利用了结构风险最小化原 则。 并巧妙的利用原空间的核函数取代了高维 特征空间中的点积运算。
设样本为 n维向量,某区域的 l个样本及其值表示为
( x1, y1 ),......, ( xl , y l ) R n R
首先用一非线性映射 Y( x)把样本从原空间R n映射到特征
空间 Y(x) (j (x1 ),j (x2 ),..., j (xl ))。在这个高维特征空间 中构造最优决策函数 y(x) w .j ( x) b。这样非线性估计
所谓 VC 维是对函数类的一种度量,可以简单的理解为问题的复杂程 度,VC 维越高,一个问题就越复杂。正是因为 SVM 关注的是 VC维,后 面我们可以看到,SVM 解决问题的时候,呾样本的维数是无关的(甚至 样本是上万维的都可以,这使得 SVM 径适合用来解决文本分类的问题, 当然,有这样的能力也因为引入了核函数)。
函数转化为高维特征空 间中的线性估计函数。 利用结构
风险最小化原则,w寻,b找 就是最小化
R
1 2
w2
c Remp,其中w 2控制模型的复杂度,
c为正规化参数R。 emp为误差控制函数,也不即敏感损失
函数。常用的损失有 函线 数性损失函数,二损 次失函
数,hube损 r 失函数。选取了的 不损 同失函数,可构同 造不
SVM分类函数形式上类似于一个神经网络,输出是中间节点的线性组合, 每个中间节点对应一个输入样本于一个支持向量机的内积,因此也就叫做支持 向量网络。
4 相关名词解释

SVM的原理和代码实现

SVM的原理和代码实现

SVM的原理和代码实现SVM(Support Vector Machine,支持向量机)是一种常用的机器学习算法,用于二分类和回归问题。

SVM的核心思想是找到一个最优的超平面,将不同类别的数据样本分开。

这个超平面由支持向量(样本)确定,使得支持向量到超平面的距离最大化。

本文将介绍SVM的原理及其代码实现。

一、SVM原理:1.线性可分情况:对于线性可分的数据集,SVM的目标是找到一个超平面,使得所有正例样本都位于超平面的一侧,负例样本都位于另一侧。

超平面的方程可以表示为:w^T*x+b=0,其中w是一个向量,表示法向量,b是偏置。

2.间隔最大化:SVM的关键是最大化两个不同类别样本之间的几何间隔。

间隔是沿着超平面的宽度,因此离分类超平面最近的实例点,即两个最靠近超平面的支持向量(x1和x2),满足w^T*x1+b=1和w^T*x2+b=-1、它们满足w^T*(x1-x2)=2/(,w,)。

因此,SVM的优化问题转化为求解最大化2/(,w,)的最小化问题。

也就是求解以下优化问题:minimize ,w,^2/2,其中y_i*(w^T*x_i + b) >= 13.引入松弛变量:当数据不是完全线性可分时,引入松弛变量xi,使得一些样本可以处于错误的一侧。

此时优化问题转化为:minimize ,w,^2/2 + C*Σξ_i,其中y_i*(w^T*x_i + b) >= 1 - ξ_i,ξ_i >= 0。

C是一个超参数,用于控制错误样本的惩罚程度。

当C越大,对错误样本的惩罚越重;C越小,则对错误样本的惩罚越轻。

4.对偶问题:为了方便求解SVM的优化问题,引入拉格朗日乘子,将SVM的原始问题转化为对偶问题。

通过求解对偶问题,可以得到最优解。

对偶问题如下:maximize Σα_i - 1/2*ΣΣ α_i*α_j*y_i*y_j*x_i*x_j,其中Σα_i*y_i = 0,0 <= α_i <= C。

LSSVM概述学习资料

LSSVM概述学习资料
所谓 VC 维是对函数类的一种度量,可以简单的理解为问题的复杂程 度,VC 维越高,一个问题就越复杂。正是因为 SVM 关注的是 VC维,后 面我们可以看到,SVM 解决问题的时候,呾样本的维数是无关的(甚至 样本是上万维的都可以,这使得 SVM 径适合用来解决文本分类的问题, 当然,有这样的能力也因为引入了核函数)。
( x1, y1 ),......, ( xl , y l ) R n R
首先用一非线性映射 Y( x)把样本从原空间R n映射到特征
空间 Y(x) (j (x1 ),j (x2 ),..., j (xl ))。在这个高维特征空间 中构造最优决策函数 y(x) w .j ( x) b。这样非线性估计
LS-SVM方法简化了计算的复杂性。另外,由于LS-SVM采用 了最小二乘法,因此运算速度明显快于支持向量机的其它版 本。
3 SVM和示意图
最优分类函数为:
f(x ) sg n {li 1i* y iK (x i,x ) b * }
这就是支持向量机。
概括地说,支持向量机就是 通过用内积函数定义的非线性变 换将输入空间变换到一个高维空 间,在这个空间中求最优分类面。
SVM分类函数形式上类似于一个神经网络,输出是中间节点的线性组合, 每个中间节点对应一个输入样本于一个支持向量机的内积,因此也就叫做支持 向量网络。
4 相关名词解释
VC 维理论:
为了研究经验风险最小化函数集的学习一致收敛速度和推广性,SLT 定义了一些指标来衡量函数集的性能,其中最重要的就是VC维(VapnikChervonenkis Dimension)。对于一个指示函数(即只有0和1两种取值的函 数)集,如果存在h个样本能够被函数集里的函数按照所有可能的2h种形 式分开,则称函数集能够把h个样本打散,函数集的VC维就是能够打散的 最大样本数目。

Python中的支持向量机SVM的使用(附实例代码)

Python中的支持向量机SVM的使用(附实例代码)

Python中的⽀持向量机SVM的使⽤(附实例代码)除了在Matlab中使⽤PRTools⼯具箱中的svm算法,Python中⼀样可以使⽤⽀持向量机做分类。

因为Python中的sklearn库也集成了SVM算法,本⽂的运⾏环境是Pycharm。

⼀、导⼊sklearn算法包skleran中集成了许多算法,其导⼊包的⽅式如下所⽰,逻辑回归:from sklearn.linear_model import LogisticRegression朴素贝叶斯:from sklearn.naive_bayes import GaussianNBK-近邻:from sklearn.neighbors import KNeighborsClassifier决策树:from sklearn.tree import DecisionTreeClassifier⽀持向量机:from sklearn import svm⼆、sklearn中svc的使⽤(1)使⽤numpy中的loadtxt读⼊数据⽂件loadtxt()的使⽤⽅法:fname:⽂件路径。

eg:C:/Dataset/iris.txt。

dtype:数据类型。

eg:float、str等。

delimiter:分隔符。

eg:‘,'。

converters:将数据列与转换函数进⾏映射的字典。

eg:{1:fun},含义是将第2列对应转换函数进⾏转换。

usecols:选取数据的列。

以Iris兰花数据集为例⼦:由于从UCI数据库中下载的Iris原始数据集的样⼦是这样的,前四列为特征列,第五列为类别列,分别有三种类别Iris-setosa,Iris-versicolor, Iris-virginica。

当使⽤numpy中的loadtxt函数导⼊该数据集时,假设数据类型dtype为浮点型,但是很明显第五列的数据类型并不是浮点型。

因此我们要额外做⼀个⼯作,即通过loadtxt()函数中的converters参数将第五列通过转换函数映射成浮点类型的数据。

LS SVM中文使用说明

LS SVM中文使用说明
目前 LS- SVMlab 工具箱用户指南包含了大量 MATALAB 中 LS - SVM 算法的实现,其 中涉及分类,回归,时间序列预测和无监督学习。所有的功能都已经用 Matlab 从 R2008a,
R2008b,R2009a 测试,工具箱中参考命令都以打印字体书写。 LS – SVMlab 主页: http://www.esat.kuleuven.be/sista/lssvmlab/
对单个和多个输出回归和分类的函数都可以使用。训练和模拟可以做到为每个输出 分别通过传递不同的核函数,内核和/或作为列向量正规化参数。执行工具箱中其他核函数 也是简单的。
一个模型的性能依赖于输入数据和输出数据的缩放。一个适当的算法检测,适当的 重新调整重设比例,分类和二进制变量。
2.1.1 分类扩展 调用函数:codelssvm, code, deltablssvm, roc, latentlssvm 演示:Subsection, democlass
所有 CMEX 和/或 C 文件已被删除。求解 线该性系统通过使用 MATLAB 命令“反斜杠” (\)
第一章 引言
在解决非线性分类,函数估计和密度估计问题中,支持向量机是一个很强大的方法,支 持向量机也致使了其核心的新动向,最新发展事基于一般学习方法的。支持向量机应经被引 入统计学习理论和结构风险最小化之中。这些方法中,凸优化问题,解决了一个典型的二次 规划问题。LS-SVM 是标准 SVM 的改进,这样就可以解决线性 kkt 系统的问题了。最小二 乘支持向量机与正规化网络和高斯过程密切相关,但更加重视和利用原始对偶的规范条款解 释。经典的模式识别算法的内核版本如判别分析的内核 Fisher,以非监督学习、循环式网络 扩展和控制之间的链接是可用的。健全性、稀疏性、权重可以被应用到 LS-SVM 上,并具 有三个层次的推理贝叶斯框架已经制定。LS – SVM 像原始对偶那样配方给予核 PCA,核 CCA 和 PLS。对于非常大的规模问题和在线学习,一个固定大小的 LS - SVM 方法被提出, 它基于 Nystrom 在原始空间中支持向量的积极选择和估计的近似值。原始对偶申述的方法 被开发为核心谱聚类,数据可视化,降维和生存分析。

最小二乘支持向量机(LS—SVM)在短期空调负荷预测中的应用

最小二乘支持向量机(LS—SVM)在短期空调负荷预测中的应用

S i mu l a t e d r e s u l t s s h o w t h a t t h e L S —
O 引言 短 期 空 调 负荷 预 测 通 常 是指 对 未 来 一 天或 一周 的空调 负荷进 行预 先 的估算 。 它 是负荷 管 理控制 和 中
绵 阳一栋办公 类建筑的空调 负荷预测 中。试验表 明所提 出的方法预测精度较 高, 运 算简单, 收敛速度快 , 具有较强 的可行性 和
实用 性 。
关键词 : 最小二乘支持向量机 ; 短 期空调 负荷 ; 预测; f o r t r a n 软件建模
中图分类号 : T U8 3 1 文献标志码: A 文章编号 : 1 6 7 3 — 7 2 3 7 ( 2 0 1 3 ) 0 2 - 0 0 5 6 - 0 3
0 年 第 期 ( 总 第4 卷 第 6 4 期
N o . 2 i n 2 0 1 3( T o t a l N o . 2 6 4, V o 1 . 4 1 ) d o i : 1 0 . 3 9 6 9  ̄ . i s s n . 1 6 7 3 - 7 2 3 7 . 2 0 1 3 . 0 2 . 0 1 6
T A NG L i , T ANG Z on h g - h u  ̄J / NJ u n - j i e ( S o u t h we s t Un i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y , Mi a n y a n g 6 2 1 0 1 0 , S i c h u a n , C h i n a )
全 局 最优 、 对 维数 不敏 VM 的一种变 形算 法 ,它将 标准 型 中 的不等 式 约束 改为等 式 约束 , 并简化 了计 算 的复杂 性 。目前 , 它 已被 成 功 应用 于 短 期 电力 负 荷预  ̄ j j t 4 ] 、 城 市用 水 量 预

最小二乘支持向量机

最小二乘支持向量机

最小二乘支持向量机:用于分类和回归问题的机器学习算法随着计算机技术的不断发展,机器学习(Machine Learning)已经成为当前人工智能领域的重要应用之一。

(Least Squares Support Vector Machines,LSSVM)是一种用于分类和回归问题的机器学习算法。

它利用最小二乘法,将样本数据分为不同的类别或预测目标。

LSSVM有着广泛的应用领域,例如语音识别、图像处理、生物医学工程等,具有较好的效果。

SVM的发展背景SVM(Support Vector Machine)是由Vapnik等人在1980年代发明的。

它是一种二分类模型,通过构建一个最优的超平面来分离数据。

SVM在许多问题中取得了出色的解决方案。

然而,它们只设计了处理训练样本是线性可分的情况。

在实际问题中,许多数据集是线性不可分的。

因此,LSSVM是SVM的发展方向之一,它可以用于处理过度拟合或线性不可分的数据集。

支持向量机的数学模型支持向量机(SVM)是一种基于概率的监督学习算法,在分类和回归问题中广泛应用。

在二分类问题中,SVM的目标是找到一个最优的超平面,将样本数据分为两个类别。

其中,这个超平面的特点是离两个类别最近的样本点最远。

这两个样本点被称为“支持向量”。

SVM的数学模型可以表示为:$ \min \limits_{\alpha, b} \frac{1}{2} \alpha^T H \alpha - \alpha^T e $其中, $H$是Gram矩阵, $e$是所有样本的标签向量,$ \alpha $是拉格朗日乘子。

LSSVM是一种推广了SVM算法的机器学习算法。

它通过最小化重建误差,把训练样本映射到高维空间,从而实现非线性分类和回归。

LSSVM和SVM都是在特征空间中构造一个超平面,但LSSVM选择使用最小二乘法来解决优化问题。

LSSVM的数学模型为:$ \min \limits_{w, b, e} \frac{1}{2} w^T w +\frac{C}{2}\sum_{i=1}^{n} e_i^2 $$ y_i = w^T\phi(x_i) + b = \sum_{j=1}^n \alpha_j \phi(x_j) \phi(x_i) +b $其中w是一个权重向量, $b$是常数项, $e$是松弛变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘支持向量机的自编代码
clear all;
clc;
N=35; %样本个数
NN1=4; %预测样本数
%********************随机选择初始训练样本及确定预测样本
*******************************
x=[];
y=[];
index=randperm(N); %随机排序N个序列
index=sort(index);
gama=23.411; %正则化参数
deita=0.0698; %核参数值
%thita=; %核参数值
%*********构造感知机核函数*************************************
%for i=1:N
% x1=x(:,index(i));
% for j=1:N
% x2=x(:,index(j));
% K(i,j)=tanh(deita*(x1'*x2)+thita);
% end
%end
%*********构造径向基核函数************************************** for i=1:N
x1=x(:,index(i));
for j=1:N
x2=x(:,index(j));
x12=x1-x2;
K(i,j)=exp(-(x12'*x12)/2/(deita*deita));
end
end
%*********构造多项式核函数**************************************** %for i=1:N
% x1=x(:,index(i));
% for j=1:N
% x2=x(:,index(j));
% K(i,j)=(1+x1'*x2)^(deita);
% end
%end
%*********构造核矩阵************************************
for i=1:N-NN1
for j=1:N-NN1
omeiga1(i,j)=K(i,j);
end
end
omeiga2=omeiga1';
omeiga=omeiga2+(1/gama)*eye(N-NN1);
A12=ones(1,N-NN1);
A21=A12';
A=[0 A12;A21 omeiga];
%**************************************
for i=1:N-NN1
B21(i,:)=y(index(i));
end
B=[0;B21];
%********LS-SVM模型的解******************************
C=A\B;
%******
b=C(1); %模型参数
for i=1:N-NN1
aipha(i)=C(i+1); %模型参数,行向量
end
%*******************************************
for i=1:N %预测模型
aifx(i)=b+(aipha)*K(1:N-NN1,i);
end
%*******************************************
aifx
index
从网上搜到,还没试,不知那个可以成功,先收藏下
方法一:
Matlab大部分函数都放在了toolbox这个文件夹下面。

可以试着把需要的函数和工具箱放进去看看能不能用。

象matlab升级以后功能会更强大,包含的工具箱也越多,所占用的硬盘空间也变得很大。

建议你安装的时候选择自定义安装,只装自己需要的几个工具箱,看你需要是用在什么专业,它里面有很多比如财务工具箱,航空工具箱,生物技术工具箱对与我专业就没有用,就可以不安装。

这样就省了空间了。

结一下matlab添加工具箱的方法:第一种:如果是安装光盘上的工具箱,重新执行安装程序,选中即可。

如果是单独下载的工具箱,一般情况下仅需要把新的工具箱解压到某个目录,然后用pathtool添加工具箱的路径。

在命令窗口中敲入pathtool,会出现一个setpath的窗口,点add folder或者add with subfolders 按钮,选中你的工具箱。

保存既可。

任选工具箱中的一个命令,然后help一下看看是否好使。

举例:
我下载了支持向量基工具箱,解压后,里边有一个目录svm
我的matlab安装在D:\MATLAB6p5
将svm目录拷贝至D:\MATLAB6p5\toolbox
然后运行matlab,在命令窗口输入addpath D:\MATLAB6p5\toolbox\svm回车,来添加路径。

然后在svm目录下,任意找一个m文件,以svcinfo.m为例
在命令窗口中输入which svcinfo.m
如果显示出该文件路径,如 D:\MATLAB6p5\toolbox\svm\svcinfo.m
则安装成功
方法二:
在libsvm的网站上下载libsvm-mat-2.83-1.zip文件,解压后放在任意目录下(比如c:\libsvm-mat-2.83-1下)
打开matlab,切换到c:\libsvm-mat-2.83-1目录下,键入以下命令:
mex -setup
Matlab会询问你是否需要locate installed compiler,选择y,然后根据需要选择一个编译器即可。

确认时选择y即可。

然后键入
make
就会生成svmtrain.dll,svmpredict.dll和read_sparse.dll这三个文件(对于Matlab 7.1及以上版本,生成的对应文件为svmtrain.mexw32,svmpredict.mexw32和read_sparse.mexw32)
然后可以在matlab的菜单File->Set Path->Add Folder里,把c:\libsvm-mat-2.83-1目录添加进去,这样以后在任何目录下都可以调用libsvm的函数了。

为了检验libsvm和matlab之间的接口是否已经配置完成,可以在matlab下执行以下命令:
load heart_scale.mat
model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2');
如果运行正常并生成了model这个结构体(其中保存了所有的支持向量及其系数),那么说明libsvm和matlab之间的接口已经完全配置成功。

附:SVM的历史
基于数据的机器学习是现代智能技术中的重要方面, 研究从观测数据(样本) 出发寻找规律, 利用这些规律对未来数据或无法观测的数据进
行预测. 包括模式识别、神经网络等在内, 现有机器学习方法共同的重要理论基础之一是统计学.传统统计学研究的是样本数目趋于无穷大时的渐近理论, 现有学习方法也多是基于此假设. 但在实际问题
中, 样本数往往是有限的, 因此一些理论上很优秀的学习方法实际中表现却可能不尽人意.
与传统统计学相比, 统计学习理论
(Statistical Learning Theory 或SLT ) 是一种专门研究小样本情况下机器学习规律的理论. V. Vapnik等人从六、七十年代开始致力于此方面研究 , 到九十年代中期, 随着其理论的不断发展和成熟, 也由于神经网络等学习方法在理论上缺乏实质性进展, 统计学习理论开始受到越来越广泛的重视.
统计学习理论是建立在一套较坚实的理论基础之上的, 为解决有限样本学习问题提供了一个统一的框架. 它能将很多现有方法纳入其中, 有望帮助解决许多原来难以解决的问题(比如神经网络结构选择问题、局部极小点问题等) ; 同时, 在这一理论基础上发展了一种新的通用学习方法——支持向量机(Support Vector Machine 或
SVM ) , 它已初步表现出很多优于已有方法的性能. 一些学者认
为,SVM 正在成为继神经网络研究之后新的研究热点, 并将有力地推动机器学习理论和技术的发展。

我国早在八十年代末就有学者注意到支持向量机的基础成果,但之后较少研究,目前只有少部分学者认识到这个重要的研究方向.。

相关文档
最新文档