人教版六年级数学下册(全册)知识点汇总

合集下载

人教版新课标六年级数学下册(4~6单元)重点知识归纳

人教版新课标六年级数学下册(4~6单元)重点知识归纳

人教版新课标六年级数学下册重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。

○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。

(2)0既不是正数,也不是负数,它是正数与负数的分界点。

2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。

3.能表示出正数、0、负数的直线,我们把它叫做数轴。

4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。

(2)温度计也可以看作是一数轴。

5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。

因此,负数都比正数小。

(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。

6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。

7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。

如果上升用正数表示,那么下降一定用负数表示。

8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。

第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。

2.(1)圆柱的两个圆面叫做底面。

(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

(3)底面的特征:圆柱底面是完全相同的两个圆。

3.(1)圆柱周围的面叫做侧面。

(2)特征:圆柱的侧面是曲面。

4.(1)圆柱两个底面之间的距离叫做圆柱的高。

(2)一个圆柱有无数条高。

5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

(完整版)人教版小学数学六年级下册知识点整理和复习(最新整理)

(完整版)人教版小学数学六年级下册知识点整理和复习(最新整理)

8、改写整数与省略尾数的区别
改写整数
省略尾数
在万位或亿位数字的右下角点上小数 用四舍五入法省略指定
方法
点,去掉小数末尾的 0,并写上受益人 数位后面的尾数,再在后
计数单位“万”或“亿”
面加上相应的计数单位
“万”或“亿”
结果 得到准确数
得到近似数
与原数关 与原数相等用“=”
与原数近似,用“≈”

二、小数
5、约分和通分 (1)约分:把一个分数化成同它相等,但分子、分母都比较小的分数叫约分,通常用分子、分母的公因数(1 除外)去除分子和分母,要除到得出最简分数为止。 分子、分母是互质数的分数叫作最简分数。 (2)通分:把异分母的分数分别化成与原来分数相等的同分母分数,先求出原来几个分母的最公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
2、分数单位 把单位“1”平均分成若干份,表示这样的一份的数,叫作这个分数的分数单位。
3、分数的分类 真分数:分子小于分母的分数,真分数小于 1。
分数 假分数:分子大于分母的分数,假分数大于或等于 1。假分数可以改写成带分数或整数。
4、分数的基本性质 分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0 除外),分数的大小不变。
小 成

百分数

一个最简分数能不能化成有限小数,关键看它的分母:如果分母只含质因数 2 和 5,就能化成有限小数;如果分母中含有 2 和 5 以外的质因数,它就不能化成有限小数。
4、成数与折扣 工农业生产中经常用“成数”来表示生产的增长情况,几成就是十分之几,也就是百分之几十。(六成五= 6.5 =65%)
6、分解质因数 把一个合数用几个质因数相乘的形式表示出来,叫作分解质因数。通常用短除法分解质因数。

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

人教版六年级(下册)数学总复习资料全

人教版六年级(下册)数学总复习资料全

第一章数和数的运算自然数和0都是整数。

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。

倍数和因数是相互依存的。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

个位上是0、2、4、6、8的数,都能被2整除。

个位上是0或5的数,都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

几个数公有的因数,叫做这几个数的公因数。

其中最大的一个,叫做这几个数的最大公因数。

六年级下册数学(人教版)知识点归纳总结整理

六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

人教版六年级下册数学知识点汇总 课件

人教版六年级下册数学知识点汇总 课件
点在同一条直线上。这一特征也可以作为判断两个量 是否成正比例关系的依据。
例:
知识点6:反比例的意义 两种相关联的量,一种量变化,另一种量也随着变
化,如果这两种量中相对应的两个数的乘积一定,这 两种量就叫做成反比例的量,它们的关系叫做反比例
关系。表示反比例关系的式子为:xy k(一定)
知识点7:比例尺的意义 一幅图的图上距离与实际距离的比叫做这幅图的
2、3、5的倍数的特征:
❖个位上是0、2、4、6、8的数,都是2的倍数。 ❖个位上是0或5的数,都是5的倍数。 ❖一个数的各位上的数的和能被3整除,那么这个数就是 3的倍数。
基本性质:
❖分数的基本性质:分数的分子和分母同时乘以或除以 相同的数(0除外),分数的大小不变。
❖小数的基本性质:小数的末尾添上“0”或者去掉 “0”,小数的大小不变。
小数的分类
(1)按小数位数是有限还是无限分
有限小数 小数
无限小数
纯循环小数 无限循环小数 混循环小数 无限不循环小数
(2)按小数的整数部分是否为0分
纯小数
小数
带小数(混小数)
循环小数
一个小数的小数部分,从某一位起,有一个或几个数 字依次不断重复出现,这样的数叫做循环小数. 如 0.5555…… 7.23838……
例:( 12,24,36 等 )都是4和6的公倍数,( 12 )是4 和6的最小公倍数.
100以内质数口诀
二,三,五,七,一十一; 一三,一九,一十七; 二三,二九,三十七; 三一,四一,四十七; 四三,五三,五十九; 六一,七一,六十七; 七三,八三,八十九; 再加七十九,九十七; 百以内质数 要牢记!
❖分数乘法的意义:一个整数和分数相乘有时可以表 示几个相同分数相加,有时可以表示这个整数的几分之 几是多少;两个分数相乘表示求其中一个分数的几分 之几是多少。

六年级下册数学(人教版)知识点归纳总结复习资料

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

人教版六年级数学下册知识点归纳及题型

人教版六年级数学下册知识点归纳及题型一、基本概念(一)、分数1 .分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2 .分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3.约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(二)百分数1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

二、分数百分数读写法1. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

2. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

3. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(三)、大小比较1. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(四)、数的互化2. 分数化成小数:用分子除以分母。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

4. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

5. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

六年级数学下册(人教版)全册笔记 超详细

六年级数学下册(人教版)全册笔记超详细第一章有理数
1.1 正数与负数
- 正数:大于0的数,例如1、2、3等
- 负数:小于0的数,例如-1、-2、-3等
- 零:等于0的数
1.2 有理数的比较
- 有理数可以通过大小进行比较,大小两者关系如下:
- 正数 > 零 > 负数
- 绝对值大的数较小
- 绝对值相等时,正数较大
1.3 有理数的四则运算
- 加法:
- 同号相加:保留符号,绝对值相加
- 异号相加:符号取绝对值大的数,绝对值相减
- 减法:
- 减去一个数等于加上这个数的相反数
- 乘法:
- 同号相乘为正,异号相乘为负
- 除法:
- 除以一个非零数等于乘以这个数的倒数
1.4 有理数的应用
- 有理数在日常生活中的应用很广泛,例如温度的正负、海拔的正负等。

第二章几何图形
2.1 直角三角形
- 直角三角形有一个角度为90度的直角,其他两个角度之和为90度。

- 直角三角形的两条直角边可以通过勾股定理计算斜边的长度。

2.2 平行四边形
- 平行四边形的对边是平行线段,对角线相等且平分。

2.3 等边三角形
- 等边三角形三条边的边长相等。

第三章数据的整理与描述
3.1 表格的制作和填写
- 制作表格时,要保证表格清晰易读,标题明确。

3.2 概率与统计
- 概率是指某个事件在相同条件下重复进行多次试验时发生的
次数的频率。

- 统计是对收集到的数据进行整理和描述,包括频数、频率、中位数等。

以上是六年级数学下册(人教版)全册的超详细笔记,希望对您有帮助!。

人教版小学六年级数学下册总复习知识点

人教版小学六年级数学下册总复习知识点1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、速度×时间=路程;路程÷速度=时间;路程÷时间=速度3、单价×数量=总价;总价÷单价=数量;总价÷数量=单价4、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;5、加数+加数=和;和-一个加数=另一个加数6、被减数-减数=差;被减数-差=减数;差+减数=被减数7、因数×因数=积;积÷一个因数=另一个因数8、被除数÷除数=商;被除数÷商=除数;商×除数=被除数第二部分【小学数学图形计算公式】1、正方形(C:周长. S:面积. a:边长)周长=边长×4; C=4a面积=边长×边长; S=a×a2、正方体(V:体积. a:棱长)表面积=棱长×棱长×6; S表=a×a×6体积=棱长×棱长×棱长; V= a×a×a3、长方形(C:周长. S:面积. a:边长. b:宽)周长=(长+宽)×2; C=2(a+b)面积=长×宽; S=a×b4、长方体(V:体积. S:面积. a:长. b:宽. h:高)(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)(2)体积=长×宽×高; V=abh5、三角形(S:面积. a:底. h:高)面积=底×高÷2 ; S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积. a:底. h:高)面积=底×高; S=ah7、梯形(S:面积. a:上底. b:下底. h:高)面积=(上底+下底)×高÷2; S=(a+b)×h÷28、圆形(S:面积. C:周长.π:圆周率. d:直径. r:半径)(1)周长=π×直径π=2×π×半径; C=πd=2πr(2)面积=π×半径×半径; S= πr29、圆柱体(V:体积. S:底面积. C:底面周长. h:高. r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积. S:底面积. h:高. r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间13、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;涨跌金额=本金×涨跌百分比;税后利息=本金×利率×时间×(1-利息税)第三部分【常用单位换算】(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;第四部分【基本概念】第一章数和数的运算一、概念(一)整数1.自然数、负数和整数(1)、自然数:我们在数物体的时候.用来表示物体个数的1.2.3……叫做自然数.一个物体也没有.用0表示.0也是自然数.1是自然数的基本单位.任何一个自然数都是由若干个1组成.0是最小的自然数.没有最大的自然数.(2)、负数:在正数前面加上“-”的数叫做负数.“-”叫做负号.正整数(1、2、3、4、……)(3)整数零 (0既不是正数.也不是负数)负整数(-1、-2、-3、-4……)2、零的作用(1)表示数位.读写数时.某个单位上一个单位也没有.就用0表示.(2)占位作用.(3)作为界限.如“零上温度与零下温度的界限”.3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法.4、数位:计数单位按照一定的顺序排列起来.它们所占的位置叫做数位.5、数的整除:整数a除以整数b(b ≠ 0).除得的商是整数而没有余数.我们就说a能被b整除.或者说b能整除a .(1)如果数a能被数b(b ≠ 0)整除.a就叫做b的倍数.b就叫做a的约数(或a的因数).倍数和约数是相互依存的. 如:因为35能被7整除.所以35是7的倍数.7是35的约数.(2)一个数的约数的个数是有限的.其中最小的约数是1.最大的约数是它本身.例如:10的约数有1、2、5、10.其中最小的约数是1.最大的约数是10.(3)一个数的倍数的个数是无限的.其中最小的倍数是它本身.如:3的倍数有:3、6、9、12……其中最小的倍数是3 .没有最大的倍数.(4)个位上是0、2、4、6、8的数.都能被2整除.例如:202、480、304.都能被2整除..(5)个位上是0或5的数.都能被5整除.例如:5、30、405都能被5整除..(6)一个数的各位上的数的和能被3整除.这个数就能被3整除.例如:12、108、204都能被3整除.(7)一个数各位数上的和能被9整除.这个数就能被9整除.(8)能被3整除的数不一定能被9整除.但是能被9整除的数一定能被3整除.(9)一个数的末两位数能被4(或25)整除.这个数就能被4(或25)整除.例如:16、404、1256都能被4整除.50、325、500、1675都能被25整除.(10)一个数的末三位数能被8(或125)整除.这个数就能被8(或125)整除.例如:1168、4600、5000、12344都能被8整除.1125、13375、5000都能被125整除.(11)能被2整除的数叫做偶数.不能被2整除的数叫做奇数.0也是偶数.自然数按能否被2 整除的特征可分为奇数和偶数.(12)一个数.如果只有1和它本身两个约数.这样的数叫做质数(或素数).100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.(13)一个数.如果除了1和它本身还有别的约数.这样的数叫做合数.例如 4、6、8、9、12都是合数.(14)1不是质数也不是合数.自然数除了1外.不是质数就是合数.如果把自然数按其约数的个数的不同分类.可分为质数、合数和1.(15)每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数.叫做这个合数的质因数.例如15=3×5.3和5 叫做15的质因数.(16)把一个合数用质因数相乘的形式表示出来.叫做分解质因数. 例如:把28分解质因数(17)几个数公有的约数.叫做这几个数的公约数.其中最大的一个.叫做这几个数的最大公约数.例如:12的约数有1、2、3、4、6、12; 18的约数有1、2、3、6、9、18.其中.1、2、3、6是12和1 8的公约数.6是它们的最大公约数.(18)公约数只有1的两个数.叫做互质数.成互质关系的两个数.有下列几种情况:①1和任何自然数互质. ②相邻的两个自然数互质. ③两个不同的质数互质.④当合数不是质数的倍数时.这个合数和这个质数互质.⑤两个合数的公约数只有1时.这两个合数互质.如果几个数中任意两个都互质.就说这几个数两两互质.⑥如果较小数是较大数的约数.那么较小数就是这两个数的最大公约数.⑦如果两个数是互质数.它们的最大公约数就是1.(19)几个数公有的倍数.叫做这几个数的公倍数.其中最小的一个.叫做这几个数的最小公倍数.如:2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数.6是它们的最小公倍数..①如果较大数是较小数的倍数.那么较大数就是这两个数的最小公倍数.②如果两个数是互质数.那么这两个数的积就是它们的最小公倍数.③几个数的公约数的个数是有限的.而几个数的公倍数的个数是无限的.(二)小数1 、小数的意义(1)把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示.(2)一位小数表示十分之几.两位小数表示百分之几.三位小数表示千分之几……(3)一个小数由整数部分、小数部分和小数点部分组成.数中的圆点叫做小数点.小数点左边的数叫做整数部分.小数点右边的数叫做小数部分.(4)在小数里.每相邻两个计数单位之间的进率都是10.小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10.2、小数的分类(1)纯小数:整数部分是零的小数.叫做纯小数.例如: 0.25 、 0.368 都是纯小数.(2)带小数:整数部分不是零的小数.叫做带小数. 例如: 3.25 、 5.26 都是带小数.(3)有限小数:小数部分的数位是有限的小数.叫做有限小数.例如: 41.7 、 25.3 、 0.23 都是有限小数.(4)无限小数:小数部分的数位是无限的小数.叫做无限小数.例如: 4.33 …… 3.1415926 ……(5)无限不循环小数:一个数的小数部分.数字排列无规律且位数无限.这样的小数叫做无限不循环小数.例如:π(6)循环小数:一个数的小数部分.有一个数字或者几个数字依次不断重复出现.这个数叫做循环小数. 例如: 3.555 …… 0.0333 …… 12.109109 ……(7)一个循环小数的小数部分.依次不断重复出现的数字叫做这个循环小数的循环节.例如: 3.99 ……的循环节是“ 9 ” . 0.5454 ……的循环节是“ 54 ” .(8)纯循环小数:循环节从小数部分第一位开始的.叫做纯循环小数.例如: 3.111 …… 0.5656 ……(9)混循环小数:循环节不是从小数部分第一位开始的.叫做混循环小数.例如: 3.1222 …… 0.03333 ……(10)写循环小数的时候.为了简便.小数的循环部分只需写出一个循环节.并在这个循环节的首、末位数字上各点一个圆点.如果循环节只有一个数字.就只在它的上面点一个点.例如: 3.777 ……简写作:3.7(•) ; 0.5302302 ……简写作:0.53(•)02(•) .(三)分数1、分数的意义(1)把单位“1”平均分成若干份.表示这样的一份或者几份的数叫做分数.(2)在分数里.中间的横线叫做分数线;分数线下面的数.叫做分母.表示把单位“1”平均分成多少份;分数线下面的数叫做分子.表示有这样的多少份.(3)把单位“1”平均分成若干份.表示其中的一份的数.叫做分数单位.2、分数的分类真分数:分子比分母小的分数叫做真分数.真分数小于1.假分数:分子比分母大或者分子和分母相等的分数.叫做假分数.假分数大于或等于1.带分数:假分数可以写成整数与真分数合成的数.通常叫做带分数.3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数 .叫做约分.分子分母是互质数的分数.叫做最简分数.把异分母分数分别化成和原来分数相等的同分母分数.叫做通分.(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.二、方法(一)数的读法和写法1、整数的读法:从高位到低位.一级一级地读.读亿级、万级时.先按照个级的读法去读.再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来.其它数位连续有几个0都只读一个零.2、整数的写法:从高位到低位.一级一级地写.哪一个数位上一个单位也没有.就在那个数位上写0.3、小数的读法:读小数的时候.整数部分按照整数的读法读.小数点读作“点”.小数部分从左向右顺次读出每一位数位上的数字.4、小数的写法:写小数的时候.整数部分按照整数的写法来写.小数点写在个位右下角.小数部分顺次写出每一个数位上的数字.5、分数的读法:读分数时.先读分母再读“分之”然后读分子.分子和分母按照整数的读法来读.6、分数的写法:先写分数线.再写分母.最后写分子.按照整数的写法来写.7、百分数的读法:读百分数时.先读百分之.再读百分号前面的数.读数时按照整数的读法来读.8、百分数的写法:百分数通常不写成分数形式.而在原来的分子后面加上百分号“%”来表示.(二)数的改写一个较大的多位数.为了读写方便.常常把它改写成用“万”或“亿”作单位的数.有时还可以根据需要.省略这个数某一位后面的数.写成近似数.1、准确数:在实际生活中.为了计数的简便.可以把一个较大的数改写成以万或亿为单位的数.改写后的数是原数的准确数. 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿.2、近似数:根据实际需要.我们还可以把一个较大的数.省略某一位后面的尾数.用一个近似数来表示. 例如:1302490015 省略亿后面的尾数是 13 亿.3、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小.就把尾数去掉;如果尾数的最高位上的数是5或者比5大.就把尾数舍去.并向它的前一位进1.例如:省略 345900 万后面的尾数约是 35 万.省略4725097420 亿后面的尾数约是 47 亿.4、大小比较(1)比较整数大小:比较整数的大小.位数多的那个数就大.如果位数相同.就看最高位.最高位上的数大.那个数就大;最高位上的数相同.就看下一位.哪一位上的数大那个数就大.(2)比较小数的大小:先看它们的整数部分..整数部分大的那个数就大;整数部分相同的.十分位上的数大的那个数就大;十分位上的数也相同的.百分位上的数大的那个数就大……(3)比较分数的大小:分母相同的分数.分子大的分数比较大;分子相同的数.分母小的分数大.分数的分母和分子都不相同的.先通分.再比较两个数的大小.(三)数的互化1、小数化成分数:原来有几位小数.就在1的后面写几个零作分母.把原来的小数去掉小数点作分子.能约分的要约分.2、分数化成小数:用分母去除以分子.能除尽的就化成有限小数.有的不能除尽.不能化成有限小数的.一般保留三位小数.3、一个最简分数.如果分母中除了2和5以外.不含有其他的质因数.这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数.这个分数就不能化成有限小数.4、小数化成百分数:只要把小数点向右移动两位.同时在后面添上百分号.5、百分数化成小数:把百分数化成小数.只要把百分号去掉.同时把小数点向左移动两位.6、分数化成百分数:通常先把分数化成小数(除不尽时.通常保留三位小数).再把小数化成百分数.7、百分数化成小数:先把百分数改写成分数.能约分的要约成最简分数.(四)数的整除1、把一个合数分解质因数.通常用短除法.先用能整除这个合数的质数去除.一直除到商是质数为止.再把除数和商写成连乘的形式.2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除.一直除到所得的商只有公约数1为止.然后把所有的除数连乘求积.这个积就是这几个数的的最大公约数 .3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除.一直除到互质(或两两互质)为止.然后把所有的除数和商连乘求积.这个积就是这几个数的最小公倍数.4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时.这个合数和这个质数互质;两个合数的公约数只有1时.这两个合数互质.(五)约分和通分(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止. (2)通分的方法:先求出原来的几个分数分母的最小公倍数.然后把各分数化成用这个最小公倍数作分母的分数.三、性质和规律(一)商不变的规律商不变的规律:在除法里.被除数和除数同时扩大或者同时缩小相同的倍.商不变.(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变.(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位.原来的数就扩大10倍;小数点向右移动两位.原来的数就扩大100倍;小数点向右移动三位.原来的数就扩大1000倍……2、小数点向左移动一位.原来的数就缩小10倍;小数点向左移动两位.原来的数就缩小100倍;小数点向左移动三位.原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时.要用“0"补足位.(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外).分数的大小不变.(五)分数与除法的关系1、被除数÷除数= 商2、因为零不能作除数.所以分数的分母不能为零.3、被除数相当于分子.除号相当于分数线.除数相当于分母.商相当于分数值.四、运算的意义(一)整数四则运算1、整数加法:把两个数合并成一个数的运算叫做加法.在加法里.相加的数叫做加数.加得的数叫做和.加数是部分数.和是总数.加数+加数=和一个加数=和-另一个加数2、整数减法:已知两个加数的和与其中的一个加数.求另一个加数的运算叫做减法.在减法里.已知的和叫做被减数.已知的加数叫做减数.未知的加数叫做差.被减数是总数.减数和差分别是部分数.加法和减法互为逆运算.3、整数乘法:求几个相同加数的和的简便运算叫做乘法.在乘法里.相同的加数和相同加数的个数都叫做因数.相同加数的和叫做积.在乘法里.0和任何数相乘都得0; 1和任何数相乘都的任何数.一个因数×一个因数 =积;一个因数=积÷另一个因数4、整数除法:已知两个因数的积与其中一个因数.求另一个因数的运算叫做除法.在除法里.已知的积叫做被除数.已知的一个因数叫做除数.所求的因数叫做商.乘法和除法互为逆运算.在除法里.0不能做除数.被除数÷除数=商除数=被除数÷商被除数=商×除数(二)小数四则运算1、小数加法:小数加法的意义与整数加法的意义相同.是把两个数合并成一个数的运算.2、小数减法:小数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数.求另一个加数的运算.3、小数乘法:小数乘整数的意义和整数乘法的意义相同.就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少.4、小数除法:小数除法的意义与整数除法的意义相同.就是已知两个因数的积与其中一个因数.求另一个因数的运算.5、乘方: 求几个相同因数的积的运算叫做乘方.例如 3 × 3 =32(三)分数四则运算1、分数加法:分数加法的意义与整数加法的意义相同. 是把两个数合并成一个数的运算.2、分数减法:分数减法的意义与整数减法的意义相同.已知两个加数的和与其中的一个加数.求另一个加数的运算.3、分数乘法:分数乘法的意义与整数乘法的意义相同.就是求几个相同加数和的简便运算.4、乘积是1的两个数叫做互为倒数.5、分数除法:分数除法的意义与整数除法的意义相同.就是已知两个因数的积与其中一个因数.求另一个因数的运算.(四)运算定律1、加法交换律:两个数相加.交换加数的位置.它们的和不变.即a+b=b+a .2、加法结合律:三个数相加.先把前两个数相加.再加上第三个数;或者先把后两个数相加.再和第一个数相加它们的和不变.即(a+b)+c=a+(b+c) .3、乘法交换律:两个数相乘.交换因数的位置它们的积不变.即a×b=b×a.4、乘法结合律:三个数相乘.先把前两个数相乘.再乘以第三个数;或者先把后两个数相乘.再和第一个数相乘.它们的积不变.即(a×b)×c=a×(b×c) .5、乘法分配律:两个数的和与一个数相乘.可以把两个加数分别与这个数相乘再把两个积相加.即(a+b)×c=a×c+b×c .6、减法的性质:从一个数里连续减去几个数.可以从这个数里减去所有减数的和.差不变.即a-b-c=a-(b+c) .(五)运算法则1、整数加法计算法则:相同数位对齐.从低位加起.哪一位上的数相加满十.就向前一位进一.2、整数减法计算法则:相同数位对齐.从低位加起.哪一位上的数不够减.就从它的前一位退一作十.和本位上的数合并在一起.再减.3、整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数.用因数哪一位上的数去乘.乘得的数的末尾就对齐哪一位.然后把各次乘得的数加起来.4、整数除法计算法则:先从被除数的高位除起.除数是几位数.就看被除数的前几位;如果不够除.就多看一位.除到被除数的哪一位.商就写在哪一位的上面.如果哪一位上不够商1.要补“0”占位.每次除得的余数要小于除数.5、小数乘法法则:先按照整数乘法的计算法则算出积.再看因数中共有几位小数.就从积的右边起数出几位.点上小数点;如果位数不够.就用“0”补足.6、除数是整数的小数除法计算法则:先按照整数除法的法则去除.商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数.就在余数后面添“0”.再继续除.7、除数是小数的除法计算法则:先移动除数的小数点.使它变成整数.除数的小数点也向右移动几位(位数不够的补“0”).然后按照除数是整数的除法法则进行计算.8、同分母分数加减法计算方法:同分母分数相加减.只把分子相加减.分母不变.9、异分母分数加减法计算方法:先通分.然后按照同分母分数加减法的的法则进行计算.10、带分数加减法的计算方法:整数部分和分数部分分别相加减.再把所得的数合并起来.11、分数乘法的计算法则:分数乘整数.用分数的分子和整数相乘的积作分子.分母不变;分数乘分数.用分子相乘的积作分子.分母相乘的积作分母.12、分数除法的计算法则:甲数除以乙数(0除外).等于甲数乘乙数的倒数.(六)运算顺序1、小数四则运算的运算顺序和整数四则运算顺序相同.2、分数四则运算的运算顺序和整数四则运算顺序相同.3、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法.后算加减法.4、有括号的混合运算:先算小括号里面的.再算中括号里面的.最后算括号外面的.5、第一级运算:加法和减法叫做第一级运算.6、第二级运算:乘法和除法叫做第二级运算.(一)整数的应用(1)植树问题:这类应用题是以“植树”为内容.凡是研究总路程、株距、段数、棵树四种数量关系的应用题.叫做植树问题.解题关键:解答植树问题首先要判断地形.分清是否封闭图形.从而确定是沿线段植树还是沿周长植树.然后按基本公式进行计算.解题规律:a.沿线段植树棵树=段数+1 棵树=总路程÷株距+1株距=总路程÷(棵树-1)总路程=株距×(棵树-1)b.沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例:沿公路一旁埋电线杆 301 根.每相邻的两根的间距是 50 米 .后来全部改装.只埋了201 根.求改装后每相邻两根的间距.分析:本题是沿线段埋电线杆.要把电线杆的根数减掉一.列式为: 50 ×( 301-1 )÷( 201-1 ) =75 (米)(12)年龄问题:将差为一定值的两个数作为题中的一个条件.这种应用题被称为“年龄问题”.解题关键:年龄问题与和差、和倍、差倍问题类似.主要特点是随着时间的变化.年岁不断增长.但大小两个不同年龄的差是不会改变的.因此.年龄问题是一种“差不变”的问题.解题时.要善于利用差不变的特点. 例:父亲 48 岁.儿子 21 岁.问几年前父亲的年龄是儿子的 4 倍?分析:父子的年龄差为 48-21=27 (岁).由于几年前父亲年龄是儿子的 4 倍.可知父子年龄的倍数差是( 4-1 )倍.这样可以算出几年前父子的年龄.从而可以求出几年前父亲的年龄是儿子的 4 倍.列式为: 21-( 48-21 )÷( 4-1 ) =12 (年)(13)鸡兔问题:已知“鸡兔”的总头数和总腿数.求“鸡”和“兔”各多少只的一类应用题.通常称为“鸡兔问题”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法.假设全是一种动物(如全是“鸡”或全是“兔”.然后根据出现的腿数差.可推算出某一种的头数.解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数兔子只数=(总腿数-2×总头数)÷2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版六年级数学下册(全册)知识点汇总第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。

国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/31、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:图上距离/实际距离=比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:(成正比例或成反比例)单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量18、已知图上距离和实际距离可以求比例尺。

相关文档
最新文档