福建省三明市永安市2019-2020学年七年级上学期期中考试数学试卷(解析版)
2019-2020年初一数学期中考试试题及答案解析.docx

2019-2020 年初一数学期中考试试题及答案解析注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)评卷人得分一、选择题(每题 3 分,共 30 分)1.多项式 3x2- 2xy 3-1y- 1 是 ().2A.三次四项式B.三次三项式C.四次四项式D.四次三项式2.- 3 的绝对值是A . 3B.- 3C.-D.3.若 |x+2|+|y-3|=0,则 x-y 的值为()A. 5B. -5C.1 或-1D.以上都不对4.1)的相反数是(3A.1B.1C. 3D.﹣3 335. 2014 年 5 月 21 日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30 年的合同规定,从2018 年开始供气,每年的天然气供应量为380 亿立方米, 380 亿立方米用科学记数法表示为()A.3.8 ×10103B.38×1093C.380×1083D.3.8 ×10113 m m m m6.计算 (a 2) 3÷ (a 2) 2的结果是 ()A. a B . a2 C . a3 D . a47.下列因式分解中,正确的有()①4a﹣ a3b2=a( 4﹣ a2b2);②x2y﹣ 2xy+xy=xy ( x﹣ 2);③﹣ a+ab﹣ ac=﹣ a( a﹣ b﹣c );④9abc﹣ 6a 2b=3abc ( 3﹣ 2a);⑤ x 2y+ xy 2= xy ( x+y )A.0个B.1个C.2个D.5个8.下列因式分解正确的是()A. x2﹣ xy+x=x ( x﹣ y)3222B. a ﹣ 2a b+ab =a( a﹣ b)22C. x ﹣ 2x+4=( x﹣ 1) +32D. ax ﹣ 9=a(x+3)( x﹣ 3)9.实数 a、 b 在数轴上的位置如图所示,下列式子错误的是()A. a< b C.- a<- b B. |a| > |b| D. b- a> 010.﹣ 的倒数是( )A 、B 、C 、﹣D 、﹣第 II 卷(非选择题)评卷人 得分二、填空题(每题 3 分,共 24 分)12 .用代数式表示“a 的 4 倍与 5 的差”为 .13 .已知2x m 1y 3 和 1 x n y m+n 是同类项,则nm 2012 =▲。
2019-2020学年七年级(上)期中数学试卷 解析版

七年级(上)期中数学试卷一、选择题本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的1.下列四个有理数中,最大的是()A.﹣B.﹣C.﹣1 D.﹣22.我市某天早晨气温是﹣3℃,到中午升高了7℃,晚上又降低了3℃,到午夜又降低了6℃,午夜时温度为()A.19℃B.1℃C.﹣5℃D.﹣2℃3.节约是一种美德,据不完全统计,某国每年浪费食物总量折合粮食可养活约3亿6千万人,360000000用科学记数法表示为()A.0.36×109B.3.6×108C.36×107D.360×1064.如果a,b互为相反数,x,y互为倒数,则(a+b)2018+(﹣xy)2019的值是()A.1 B.0 C.﹣1 D.﹣20195.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a元的某种常用药降低60%,则降低后的价格为()A.元B.元C.0.4a元D.0.6a元6.下列各组代数式中,不是同类项的是()A.2与﹣5 B.2xy2与3x2y C.﹣3t与200t D.ab2与b2a7.当代数式x2+3x+5的值为11时,代数式3x2+9x﹣2的值为()A.16 B.12 C.9 D.﹣28.定义一种新运算“※”,观察下列各式1※3=1×5+3=83※(﹣1)=3×5﹣1=145※4=5×5+4=294※(﹣3)=4×5﹣3=17若a※(﹣b)=﹣6,则(a﹣b)※(5a+3b)的值为()A.12 B.6 C.﹣6 D.﹣12二、填空题本大题共8个问题,钊题3分,共24分,答案填在题中横线上9.有理数﹣的倒数是.10.绝对值小于3.5的整数是.11.若|x|=2,|y|=3,则|x+y|的值为.12.已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为.13.已知a,b,c三个数在数轴上对应点的位置如图所示①a<c<b,②﹣a<b,③a﹣b>0,④c﹣a<0在上述几个判断中,错误的序号为.14.若规定一种运算法则=ad﹣bc,请运算=.15.下列说法中正确的序号为.①在正有理数中,0是最小的整数②最大的负整数是﹣1③有理数包括正有理数和负有理数④数轴上表示﹣a的点一定在原点的左边⑤在数轴上5与7之间的有理数是6.16.由1开始的连续奇数排成如下图所示,观察规律.则此表中第n行的第一个数是.(用含有n的代数式表示)三、解答题本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤. 17.根据下列要求完成各题(1)计算:(﹣5)﹣(﹣2)+(﹣3)+6(2)计算:(﹣10)÷2﹣(﹣3)×418.计算:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|19.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|+|b+c|.20.先化简,再求值:2(x3﹣32)﹣(5x3+x)﹣3(y2﹣x3),其中x=﹣7,y=﹣21.如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形后,还有一部分空余(阴影部分),已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD和宽AB.(2)用含a、b的代数式表示阴影部分的面积(列式表示即可,不要求化简).(3)若a=7cm,b=2cm,求阴影部分的面积.22.如图1所示,在一个长方形广场的四角都设计一块半径相同的四分之一圆形的花坛.若广场的长为m米,宽为n米,圆形的半径为r米.(1)列式表示广场空地的面积.(2)若广场的长为300米,宽为200米,圆形的半径为30米,求广场空地的面积(计算结果保留π).(3)如图2所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积不少于广场总面积的,求R的最大整数值(π取3.1).参考答案与试题解析一.选择题(共8小题)1.下列四个有理数中,最大的是()A.﹣B.﹣C.﹣1 D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣>﹣>﹣1>﹣2,∴四个有理数中,最大的是﹣.故选:B.2.我市某天早晨气温是﹣3℃,到中午升高了7℃,晚上又降低了3℃,到午夜又降低了6℃,午夜时温度为()A.19℃B.1℃C.﹣5℃D.﹣2℃【分析】根据题意列出算式,利用有理数的加减即可求得结果.【解答】解:根据题意,得﹣3+7﹣3﹣6=﹣5故选:C.3.节约是一种美德,据不完全统计,某国每年浪费食物总量折合粮食可养活约3亿6千万人,360000000用科学记数法表示为()A.0.36×109B.3.6×108C.36×107D.360×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿6千万=360000000=3.6×108,故选:B.4.如果a,b互为相反数,x,y互为倒数,则(a+b)2018+(﹣xy)2019的值是()A.1 B.0 C.﹣1 D.﹣2019【分析】利用相反数,倒数的性质求出a+b与xy的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,xy=1,则原式=0﹣1=﹣1,故选:C.5.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a元的某种常用药降低60%,则降低后的价格为()A.元B.元C.0.4a元D.0.6a元【分析】关键描述语是:降价后是在a的基础上减少了60%,价格为:a(1﹣60%)=40%a =0.4a元.【解答】解:依题意得:价格为:a(1﹣60%)=40%a=0.4a元.故选:C.6.下列各组代数式中,不是同类项的是()A.2与﹣5 B.2xy2与3x2y C.﹣3t与200t D.ab2与b2a【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【解答】解:A是两个常数项,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.7.当代数式x2+3x+5的值为11时,代数式3x2+9x﹣2的值为()A.16 B.12 C.9 D.﹣2【分析】根据题意求出x2+3x=6,变形后整体代入,即可求出答案.【解答】解:根据题意得:x2+3x+5=11,x2+3x=6,所以3x2+9x﹣2=3(x2+3x)﹣2=3×6﹣2=16.故选:A.8.定义一种新运算“※”,观察下列各式1※3=1×5+3=83※(﹣1)=3×5﹣1=145※4=5×5+4=294※(﹣3)=4×5﹣3=17若a※(﹣b)=﹣6,则(a﹣b)※(5a+3b)的值为()A.12 B.6 C.﹣6 D.﹣12【分析】题中等式利用新定义化简,原式化简后代入计算即可求出值.【解答】解:根据题中的新定义得:a※(﹣b)=5a﹣b=﹣6,则原式=5(a﹣b)+5a+3b=10a﹣2b=2(5a﹣b)=﹣12,故选:D.二.填空题(共8小题)9.有理数﹣的倒数是﹣5 .【分析】根据倒数的定义即可求解.【解答】解:有理数﹣的倒数是﹣5.故答案为:﹣5.10.绝对值小于3.5的整数是0,±1,±2,±3 .【分析】根据一个数所表示的点到原点的单位长度叫做这个数的绝对值,从而画图得出答案.【解答】解:如图,绝对值小于3.5的整数是:﹣3;﹣2;﹣1;0;1;2;3.故答案为:0;±1;±2;±3.11.若|x|=2,|y|=3,则|x+y|的值为5或1 .【分析】根据绝对值的意义由|x|=2,|y|=3得到x=±2,y=±3,可计算出x+y=±1或±5,然后再利用绝对值的意义求|x+y|.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3,∴x+y=±1或±5,∴|x+y|=5或1.故答案为5或1.12.已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为a+2b.【分析】根据长方形的对边相等得出算式(4a+2b)÷2﹣(a﹣b),化简即可.【解答】解:∵长方形的周长为4a+2b,其一边长为a﹣b,∴另一边长为(4a+2b)÷2﹣(a﹣b),即(4a+2b)÷2﹣(a﹣b)=2a+b﹣a+b=a+2b.故答案为:a+2b.13.已知a,b,c三个数在数轴上对应点的位置如图所示①a<c<b,②﹣a<b,③a﹣b>0,④c﹣a<0在上述几个判断中,错误的序号为③.【分析】利用A、B、C在数轴上的位置,确定符号和绝对值,进而对各个选项做出判断.【解答】解:由题意得,a<0,b<0,c>0,且|a|<|b|,|c|<|b|,因此:①a<c<b,不正确,②﹣a<b,不正确,③a﹣b>0,正确,④c﹣a<0不正确,故答案为:③14.若规定一种运算法则=ad﹣bc,请运算=﹣28 .【分析】根据新定义得到:=﹣2×5﹣3×6,再先算乘法运算,然后进行减法运算.【解答】解:=﹣2×5﹣3×6=﹣10﹣18=﹣28.故答案为:﹣28.15.下列说法中正确的序号为②.①在正有理数中,0是最小的整数②最大的负整数是﹣1③有理数包括正有理数和负有理数④数轴上表示﹣a的点一定在原点的左边⑤在数轴上5与7之间的有理数是6.【分析】根据有理数的意义、数轴等知识逐个判断,得出结论即可.【解答】解:①0既不是正数也不是负数,因此①不正确,②负整数中最大的是﹣1,正确,③有理数包括正有理数,0,负有理数,因此③不正确,④﹣a不一定是负数,不一定在原点的左边,因此④不正确,⑤在数轴上5与7之间的有理数有无数个,不仅仅有6,因此⑤不正确,故答案为:②.16.由1开始的连续奇数排成如下图所示,观察规律.则此表中第n行的第一个数是n(n ﹣1)+1 .(用含有n的代数式表示)【分析】根据图中给出的第一个数找出规律,根据规律解答;【解答】解:由题意得,第1行的第一个数是1=1×(1﹣1)+1,第2行的第一个数是3=2×(2﹣1)+1,第3行的第一个数是5=3×(3﹣1)+1,…第n行的第一个数是n(n﹣1)+1,故答案为:n(n﹣1)+1.三.解答题(共6小题)17.根据下列要求完成各题(1)计算:(﹣5)﹣(﹣2)+(﹣3)+6(2)计算:(﹣10)÷2﹣(﹣3)×4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘除法,再算减法.【解答】解:(1)(﹣5)﹣(﹣2)+(﹣3)+6=﹣5+2﹣3+6=﹣8+8=0;(2)(﹣10)÷2﹣(﹣3)×4=﹣5+12=7.18.计算:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|=9×(﹣2)﹣(﹣1﹣8)÷3+7=﹣18﹣(﹣9)÷3+7=﹣18+3+7=﹣8.19.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【分析】直接利用数轴结合绝对值的性质化简求出答案.【解答】解:由数轴可得:原式=﹣a﹣[﹣(a+b)]+c﹣a﹣(b+c)=﹣a.20.先化简,再求值:2(x3﹣32)﹣(5x3+x)﹣3(y2﹣x3),其中x=﹣7,y=﹣【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x3﹣18﹣5x3﹣x﹣3y2+3x3=﹣18﹣x﹣3y2,当x=﹣7,y=﹣时,原式=﹣18+7﹣=﹣11.21.如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形后,还有一部分空余(阴影部分),已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD和宽AB.(2)用含a、b的代数式表示阴影部分的面积(列式表示即可,不要求化简).(3)若a=7cm,b=2cm,求阴影部分的面积.【分析】(1)如图所示,AD=a+b+b=a+2b,CD=a+b,即为长方形的长与宽;(2)阴影部分的面积=长方形ABCD的面积﹣6个小长方形的面积,利用长方形的面积公式表示出阴影部分的面积即可;(3)代入求值即可.【解答】解:(1)由图形得:AD=a+2b,AB=a+b;(2)S阴影=(a+b)(a+2b)﹣6ab=a2+2ab+ab+2b2﹣6ab=a2﹣3ab+2b2;(3)把a=7cm,b=2cm代入,得S阴影=72﹣3×7×2+2×22=15.22.如图1所示,在一个长方形广场的四角都设计一块半径相同的四分之一圆形的花坛.若广场的长为m米,宽为n米,圆形的半径为r米.(1)列式表示广场空地的面积.(2)若广场的长为300米,宽为200米,圆形的半径为30米,求广场空地的面积(计算结果保留π).(3)如图2所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积不少于广场总面积的,求R的最大整数值(π取3.1).【分析】(1)长方形的面积减去半径为r的圆的面积即可.(2)把m=300,n=200,r=30代入即可求出空地的面积,(3)根据面积之间的关系列出不等式,求出不等式的整数解即可.【解答】解:(1)由题意得,mn﹣πr2,答:广场空地的面积为(mn﹣πr2)平方米,(2)把m=300,n=200,r=30代入得,原式=300×200﹣π×900=(60000﹣900π)平方米,答:广场空地的面积大约为(60000﹣90π)平方米.(3)由题意得,300×200﹣π×302﹣πR2≥300×200×,解得R≤74.51,R为最大的整数,所以R=74米,答:R的最大整数值为74米.。
2019-2020年七年级(上)期中数学试卷(解析)

2019-2020年七年级(上)期中数学试卷(解析)一、细心选一选,慧眼识金!(四个选项中只有一个答案是正确.每小题2分,共20分)1.3的相反数是()A.3 B.﹣3 C. D.﹣2.若规定收入为“+”,那么﹣50元表示()A.收入了50元B.支出了50元C.没有收入也没有支出D.收入了100元3.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个4.下列变形正确的是()A.2÷8×=2÷(8×)B.6÷(+)=6÷+6÷C.(﹣8)×(﹣5)×0=40 D.(﹣2)××(﹣5)=55.绝对值不大于3的整数的个数是()A.4 B.5 C.6 D.76.我校七年级有学生x人,其中女生占45%,男生人数是()A.45%x B. C.(1﹣45%)x D.7.如果﹣22a2bc n是7次单项式,则n的值是()A.4 B.3 C.2 D.58.近似数2.60所表示的精确值x的取值范围()A.2.600<x≤2.605 B.2.595<x≤2.605C.2.595≤x<2.605 D.2.50≤x<2.709.若代数式2a2﹣a+3的值为5,则代数式4a2﹣2a+6的值为()A.﹣22 B.10 C.﹣10 D.2210.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()A. B. C. D.二、耐心填一填,你一定能行.11.化简或计算:﹣[﹣(﹣5)]=,(﹣1)99=,(﹣2)+3=.12.平方等于16的数是,立方等于﹣27的数是.13.绝对值等于本身的有理数是;倒数等于本身的数是;绝对值最小的有理数是.14.在“百度”搜索引擎中输入“嫦娥三号”,能搜索到与之相关的网页约13 100 000个,将13 100 000用科学记数法表示为.15.将算式(﹣5)﹣(﹣10)+(﹣9)﹣(+2)改写成省略加号的和的形式,应该是.16.某班有女生a人,男生比女生的2倍少5人,则男生有人.17.单项式﹣的系数是,次数是;多项式a3﹣3a2b2+ab4﹣1是次项式.18.把代数式2x2﹣8xy3+x4y﹣y2+9x3y4按下列要求填空:(1)按字母x的升幂排列(2)按字母y的降幂排列.19.已知|x+2|+(y﹣5)2=0,则x=,y=.20.用四舍五入法,将下列各数按括号中的要求取近似数.(1)67.31 (精确到个位)≈;(2)479550 (精确到千位)≈.21.规定一种新的运算:A*B=A×B﹣A,如4*2=4×2﹣4=4,运算6*(﹣3)=.22.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为;第n个单项式为.三、认真做一做,你一定是生活的强者23.把下列各数填入相应的大括号里:﹣4,xx,﹣0.5,﹣,8.7,0,﹣95%.整数集:{…};负分数集:{…}.24.计算(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)(2)(﹣7)×(﹣5)﹣90÷(﹣15)(3)(﹣+)×(﹣36)(4)2÷(﹣)×÷(﹣)(5)﹣24+(4﹣9)2﹣5×(﹣1)6(6)用简便方法计算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)25.求值(1)已知:a=﹣5,b=2时,求代数式a2﹣3b的值.(2)当a=﹣1,b=﹣3时,求代数式a2+2ab+b2的值(3)已知:有理数m在原点右侧并且和原点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2(a+b)﹣(﹣3cd)﹣m的值.26.小虫从某点O出发在一天直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程(单位:厘米)依次为:+4,﹣3,+10,﹣8,﹣7,+12,﹣10①通过计算说明小虫最后是否回到起点.②如果小虫爬行的速度为每秒0.5厘米,小虫共爬行了多长时间?27.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?28.已知多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x的二次三项式,求(m+3)(m ﹣3)的值.四、解答题(共3小题,满分20分)29.数轴三要素:,,.30.比较大小:﹣70,1001.31.小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为;(2)根据表中的规律猜想:用n的代数式表示S,则S=2+4+6+8+…+2n=;(3)利用上题的猜想结果,计算300+302+304+…+xx+xx的值(要有计算过程).xx学年福建省泉州市晋江一中、华侨中学七年级(上)期中数学试卷参考答案与试题解析一、细心选一选,慧眼识金!(四个选项中只有一个答案是正确.每小题2分,共20分)1.3的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.若规定收入为“+”,那么﹣50元表示()A.收入了50元B.支出了50元C.没有收入也没有支出D.收入了100元【考点】正数和负数.【分析】若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.【解答】解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B.【点评】本题考查了“+”与“﹣”所表示的意义.3.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个【考点】有理数的乘方;正数和负数.【专题】计算题.【分析】先对每个数进行化简,然后再确定负数的个数.【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.【点评】本题考查了去绝对值,有理数的乘方、正数和负数的意义,关键准确掌握.4.下列变形正确的是()A.2÷8×=2÷(8×)B.6÷(+)=6÷+6÷C.(﹣8)×(﹣5)×0=40 D.(﹣2)××(﹣5)=5【考点】有理数的乘法;有理数的混合运算.【分析】A、乘除是同级运算,应按从左往右的顺序进行,而不能先算乘法,再算除法;B、除法不满足分配律,对于混合运算,有括号应该先算括号里面的;C、根据有理数的乘法法则,几个数相乘,有一个因数为0,积就为0,可知(﹣8)×(﹣5)×0=0≠40;D、根据有理数的乘法法则计算等号的左边,再与等号的右边比较.【解答】解:A、2÷8×=2×=,2÷(8×)=2÷1=2,故错误;B、6÷(+)=6÷=,6÷+6÷=12+18=30,故错误;C、0乘以任何数都得0,(﹣8)×(﹣5)×0=0,故错误;D、(﹣2)××(﹣5)=5,故正确.故选D.【点评】本题考查了有理数的运算.需牢固掌握运算顺序与运算法则.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的.对于同级运算,需按从左往右的顺序进行.5.绝对值不大于3的整数的个数是()A.4 B.5 C.6 D.7【考点】绝对值.【分析】绝对值不大于3的整数即为绝对值分别等于3、2、1、0的整数.【解答】解:不大于3的整数绝对值有0,1,2,3.因为互为相反数的两个数的绝对值相等,所以绝对值不大于3的整数是0,±1,±2,±3;故选:D.【点评】考查了绝对值的定义和性质,注意掌握互为相反数的两个数的绝对值相等.6.我校七年级有学生x人,其中女生占45%,男生人数是()A.45%x B. C.(1﹣45%)x D.【考点】列代数式.【分析】男生人数=总人数×男生所占的百分比.【解答】解:男生人数为:(1﹣45%)x.故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.7.如果﹣22a2bc n是7次单项式,则n的值是()A.4 B.3 C.2 D.5【考点】单项式.【分析】直接利用单项式次数的确定方法得出n的值.【解答】解:∵﹣22a2bc n是7次单项式,∴2+1+n=7,∴n=4,故选A.【点评】题主要考查了单项式的次数,正确把握单项式次数的定义是解题关键.8.近似数2.60所表示的精确值x的取值范围()A.2.600<x≤2.605 B.2.595<x≤2.605C.2.595≤x<2.605 D.2.50≤x<2.70【考点】近似数和有效数字.【分析】利用近似数的精确度可确定x的范围.【解答】解:近似数2.60所表示的精确值x的取值范围为2.595≤x<2.605.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.9.若代数式2a2﹣a+3的值为5,则代数式4a2﹣2a+6的值为()A.﹣22 B.10 C.﹣10 D.22【考点】代数式求值.【分析】根据题意可得2a2﹣a的值,再整体代入即可.【解答】解:∵代数式2a2﹣a+3的值为5,∴2a2﹣a+3=5,∴2a2﹣a=2,∴4a2﹣2a+6=2(2a2﹣a)+6=2×2+6=10,故选B.【点评】本题考查了代数式的求值,整体思想的运用是解题的关键.10.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()A. B. C. D.【考点】函数值.【专题】规律型.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=,故选:C.【点评】此题主要考查数字的规律性问题,根据已有输入输出数据找出它们的规律,进而求解.二、耐心填一填,你一定能行.11.化简或计算:﹣[﹣(﹣5)]=﹣1,(﹣1)99=﹣1,(﹣2)+3=1.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式去括号即可得到结果;原式利用乘方的意义计算即可得到结果;原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣1;原式=﹣1;原式=1,故答案为:﹣1;﹣1;1【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.平方等于16的数是±4,立方等于﹣27的数是﹣3.【考点】有理数的乘方.【专题】存在型.【分析】根据有理数的乘方的概念进行解答即可.【解答】解:∵(±4)2=16,∴平方等于16的数是±4;∵(﹣3)3=﹣27,∴立方等于﹣27的数是﹣3.故答案为:±4;﹣3.【点评】本题考查的是有理数的乘方,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.13.绝对值等于本身的有理数是非负数;倒数等于本身的数是±1;绝对值最小的有理数是0.【考点】绝对值;倒数.【分析】根据绝对值的定义及性质和倒数的定义来解答.【解答】解:绝对值等于本身的有理数是非负数,倒数等于本身的±1,绝对值最小的有理数是0,故答案为:非负数,±1,0.【点评】本题考查了绝对值的定义和倒数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,±1的倒数是它本身.14.在“百度”搜索引擎中输入“嫦娥三号”,能搜索到与之相关的网页约13 100 000个,将13 100 000用科学记数法表示为 1.31×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于13 100 000有8位,所以可以确定n=8﹣1=7.【解答】解:13 100 000=1.31×107.故答案为:1.31×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.将算式(﹣5)﹣(﹣10)+(﹣9)﹣(+2)改写成省略加号的和的形式,应该是﹣5+10﹣9﹣2.【考点】有理数的加减混合运算.【专题】推理填空题.【分析】根据有理数加法和减法的法则即可解答本题.【解答】解:因为(﹣5)﹣(﹣10)+(﹣9)﹣(+2)=﹣5+10﹣9﹣2,故答案为:﹣5+10﹣9﹣2.【点评】本题考查有理数的加减混合运算,解题的关键是明确在运算中正数的正号可以省略,减去一个负数相当于加上这个负数的相反数.16.某班有女生a人,男生比女生的2倍少5人,则男生有(2a﹣5)人.【考点】列代数式.【分析】男生人数=女生人数×2倍﹣5.【解答】解:依题意得:(2a﹣5).【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.17.单项式﹣的系数是﹣,次数是2;多项式a3﹣3a2b2+ab4﹣1是4次4项式.【考点】多项式;单项式.【分析】根据单项式系数和次数的定义,根据多项式次数和项数的定义求解即可.【解答】解:单项式﹣的系数是﹣,次数是2;多项式a3﹣3a2b2+ab4﹣1是4次4项式,故答案为:﹣,2,4,4.【点评】本题考查了单项式,此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.解答本题的关键各定义,属于基础题.18.把代数式2x2﹣8xy3+x4y﹣y2+9x3y4按下列要求填空:(1)按字母x的升幂排列﹣y2﹣8xy3+2x2+9x3y4(2)按字母y的降幂排列9x3y4+2x2﹣8xy3﹣y2.【考点】多项式.【专题】计算题;整式.【分析】(1)把原式按照x升幂排列即可;(2)把原式按照y的降幂排列即可.【解答】解:(1)按字母x的升幂排列为﹣y2﹣8xy3+2x2+9x3y4;(2)按字母y的降幂排列为9x3y4+2x2﹣8xy3﹣y2.故答案为:(1)﹣y2﹣8xy3+2x2+9x3y4;(2)9x3y4+2x2﹣8xy3﹣y2.【点评】此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.19.已知|x+2|+(y﹣5)2=0,则x=﹣2,y=5.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值即可.【解答】解:根据题意得,x+2,y﹣5=0,解得x=﹣2,y=5.故答案为:﹣2;5.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.用四舍五入法,将下列各数按括号中的要求取近似数.(1)67.31 (精确到个位)≈67;(2)479550 (精确到千位)≈ 4.80×105.【考点】近似数和有效数字.【分析】(1)把十分位上的数字3进行四舍五入即可;(2)先用科学记数法表示,然后把百位上的数字5进行四舍五入即可.【解答】解:(1)67.31 (精确到个位)≈67;(2)479550 (精确到千位)≈4.80×105.故答案为67,4.80×105.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.21.规定一种新的运算:A*B=A×B﹣A,如4*2=4×2﹣4=4,运算6*(﹣3)=﹣24.【考点】有理数的混合运算.【专题】新定义.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:6*(﹣3)=﹣18﹣6=﹣24,故答案为:﹣24【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为64a7;第n个单项式为(﹣2)n﹣1a n..【考点】单项式.【专题】压轴题;规律型.【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【解答】解:根据观察可得第7个单项式为64a7第n个单项式为(﹣2)n﹣1a n.故答案为:64a7,(﹣2)n﹣1a n.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.三、认真做一做,你一定是生活的强者23.把下列各数填入相应的大括号里:﹣4,xx,﹣0.5,﹣,8.7,0,﹣95%.整数集:{﹣4,xx,0…};负分数集:{﹣0.5,,﹣95%…}.【考点】有理数.【分析】分别根据整数的意义:正整数、负整数、0统称整数;负分数定义得出即可.【解答】解:整数集:{﹣4,xx,0 …};负分数集:{﹣0.5,,﹣95% …}.故答案为:﹣4,xx,0;﹣0.5,,﹣95%.【点评】此题主要考查了有理数的有关定义,熟练掌握相关的定义是解题关键.24.计算(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)(2)(﹣7)×(﹣5)﹣90÷(﹣15)(3)(﹣+)×(﹣36)(4)2÷(﹣)×÷(﹣)(5)﹣24+(4﹣9)2﹣5×(﹣1)6(6)用简便方法计算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式变形后,逆用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣6+8﹣4+2=﹣10+10=0;(2)原式=25+6=31;(3)原式=﹣18+20﹣21=﹣19;(4)原式=2×××=1;(5)原式=﹣16+25﹣5=4;(6)原式=0.25×(370+24.5+5.5)=0.25×400=100.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.求值(1)已知:a=﹣5,b=2时,求代数式a2﹣3b的值.(2)当a=﹣1,b=﹣3时,求代数式a2+2ab+b2的值(3)已知:有理数m在原点右侧并且和原点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2(a+b)﹣(﹣3cd)﹣m的值.【考点】代数式求值.【分析】(1)将a、b的值代入代数式进行计算即可;(2)利用完全平方公式因式分解,再代入即可;(3)首先得出m的值,再利用相反数和倒数的定义得出a+b和cd的值,代入即可.【解答】解:(1)把a=﹣5,b=2代入得,a2﹣3b=(﹣5)2﹣3×2=25﹣6=19;(2)∵a=﹣1,b=﹣3,∴a2+2ab+b2=(a+b)2=(﹣1﹣3)2=16;(3)∵m在原点右侧并且和原点距离4个单位,∴m=4,∵a,b互为相反数,且都不为零,c,d互为倒数,∴=﹣1,a+b=0,cd=1,∴2(a+b)﹣(﹣3cd)﹣m=2×0﹣(﹣1﹣3)﹣4=0.【点评】本题主要考查了代数式求值,倒数的定义和相反数的定义,利用代入法式是解答此题的关键.26.小虫从某点O出发在一天直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程(单位:厘米)依次为:+4,﹣3,+10,﹣8,﹣7,+12,﹣10①通过计算说明小虫最后是否回到起点.②如果小虫爬行的速度为每秒0.5厘米,小虫共爬行了多长时间?【考点】正数和负数.【分析】①将+4,﹣3,+10,﹣8,﹣7,+12,﹣10这几个数进行相加,得到的结果若是0就说明最后回到了起点,若结果不是0那么就没有回到起点;②将4,3,10,8,7,12,10进行相加的到54就是小虫爬行的总路程,然后根据速度可以求的小虫爬行的时间.【解答】解:①(+4)+(﹣3)+(+10)+(﹣8)+(﹣7)+(+12)+(﹣10)=﹣2,所以小虫最后没有回到起点;②因为小虫爬行的总路程是:4+|﹣3|+10+|﹣8|+|﹣7|+12+|﹣10|=54(厘米),所以小虫爬行的时间为:54÷0.5=108(秒),故小虫爬行了108秒.【点评】本题主要考查了正数和负数的概念和意义:1、在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号;2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数;3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.解答本题的关键就是读懂题意然后仔细计算就好.27.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?【考点】一元一次方程的应用.【分析】(1)起步价+超过3千米的部分×每千米收费,列式计算即可求解;(2)利用起步价+超过3千米的部分×每千米收费=出租车费16.7元列方程解答即可.【解答】解:(1)5+1.3×(7﹣3)=5+1.3×4=5+5.2=10.2(元)答:出租车行驶7千米应付10.2元;(2)设小红最多乘坐x千米,由题意得5+1.3(x﹣3)=16.7解得:x=12答:小红最多乘坐12千米.【点评】此题考查一元一次方程的实际运用,找出乘车费用的计算方法是解决问题的关键.28.已知多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x的二次三项式,求(m+3)(m ﹣3)的值.【考点】多项式;代数式求值.【分析】根据题意可得当m2﹣49=0时,多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x 的二次三项式,再解即可.【解答】解:由题意得:m2﹣49=0,且m﹣7≠0,解得:m=﹣7,则(m+3)(m﹣3)=40.【点评】此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数.四、解答题(共3小题,满分20分)29.数轴三要素:原点,正方向,单位长度.【考点】数轴.【分析】根据数轴的三要素:原点、正方向、单位长度,即可解答.【解答】解:数轴的三要素:原点、正方向、单位长度,故答案为:原点、正方向、单位长度.【点评】本题考查了数轴,解决本题的关键是熟记数轴的三要素:原点、正方向、单位长度.30.比较大小:﹣7<0,100>1.【考点】有理数大小比较.【分析】根据正数大于负数和0,0大于负数,即可解答.【解答】解:﹣7<0,100>1,故答案为:<,>.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记正数大于负数和0,0大于负数.31.小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为72;(2)根据表中的规律猜想:用n的代数式表示S,则S=2+4+6+8+…+2n=n(n+1);(3)利用上题的猜想结果,计算300+302+304+…+xx+xx的值(要有计算过程).【考点】规律型:数字的变化类.【分析】(1)当n=8时,表示出S,计算得到S的值;(2)根据表格得到从2开始的偶数之和为偶数个数乘以个数加1,用n表示出即可;(3)将所求式子表示为(2+4+6+…+298+300+302+304+…+xx+xx)﹣(2+4+6+…+298),用上述规律计算,即可得到结果.【解答】解:(1)当n=8时,那么S=2+4+6+8+10+12+14+16=8×9=72;(2)∵2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,∴S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);(3)300+302+304+…+xx+xx=(2+4+6+...+298+300+302+304+...+xx+xx)﹣(2+4+6+ (298)=1006×1007﹣149×150=1013042﹣22350=990692.故答案为:(1)72;(2)n(n+1).【点评】此题考查了规律型:数字的变化类,本题的规律为:从2开始的连续偶数之和为偶数个数乘以偶数个数加1.。
福建省三明市七年级上学期数学期中考试试卷

福建省三明市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·禹会模拟) -4的相反数是()A .B . -4C . -D . 42. (2分) (2020九下·东台期中) 下列几何体中,从正面看与从上面看不相同的是()A . 正方体B . 四棱锥C . 圆柱D . 球3. (2分) (2019七上·施秉月考) 的倒数的绝对值是()A .B .C .D .4. (2分) (2018七上·驿城期中) 圆柱的截面不可能是()A . 椭圆形B . 正方形C . 梯形D . 圆形5. (2分)下面的数中,与-3的和为0的是().A . 3B . -3C .D .6. (2分) (2018七上·鄂州期末) 在﹣3,π﹣2,,﹣ x2y,﹣,x这六个代数式中,单项式的个数为()A . 2B . 3C . 4D . 57. (2分)用代数式表示“a与-b的差的2倍”正确的是()A . a-(-b)×2B . a+(-b)×2C . 2[a-(-b)]D . 2ª-2b8. (2分)在2x2 , 1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A . 5个B . 4个C . 3个D . 2个9. (2分) (2020七上·德城期末) 下列计算正确的是A .B .C .D .10. (2分)宁波市重点工程领导小组会议上发布消息,2012年共安排重点工程项目537个,总投资约11000亿元,那么请将数据11000用科学记数法表示()A . 11×103B . 0.11×105C . 1.1×104D . 110×10211. (2分) (2019八下·赵县期末) 已知△ABC的三边之长分别为a、1、3,则化简|9-2a|- 的结果是()A . 12-4aB . 4a-12C . 12D . -1212. (2分)实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A . a<-a<<a2B . -a<<a<a2C . <a<a2<-aD . <a2<a<-a二、填空题 (共4题;共5分)13. (1分)一枚硬币绕着它的直径旋转说明________ .14. (1分) (2020七上·黄冈期末) 单项式的系数是________.15. (1分)如图中几何体的截面分别是________.16. (2分) (2019七上·黄冈期末) 若式子2x2+3y+7的值为8,那么式子6x2+9y+2的值为________.三、解答题 (共9题;共73分)17. (6分)正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的;如图所示,请至少再画出三种不同的平面展开图.18. (5分)对图中的几何体,请你试着画出它的表面展开图及三视图.19. (5分) (2019七上·泰州月考) 把下列各数在数轴上表示出来.并用“ ”连接-1.5,0,3,-1, .20. (20分) (2017七上·临川月考)21. (5分) (2019八上·黔西期中) 已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e 的绝对值为,f的算术平方根是8,求 ab++e2+的值.22. (15分) (2019七上·上饶月考) 学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为6元,3千米后每千米收1.2元,不足1千米的按1千米计算.请你回答下列问题(1)小明乘车3.8千米,应付费________元(2)小明乘车X(X是大于3的整数)千米,应付费多少钱?(3)小明身上仅有10元钱,乘出租车到距学校7千米远的博物馆的车费够不够?请说明理由.23. (2分) (2018七上·天河期末) 如图的长方形MNPQ是州某市民健身广场的平面示意图,它是由6个正方形拼成的(分别用A,B,C,D,E,F六个字母表示).已知中间最小的正方形A的边长是1米,设正方形C的边长是x米.(1)请用含x的代数式分别表示出正方形EF和B的边长;(2)观察图形的特点,找出两个等量关系,分别用两种方法列方程求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,若甲,乙两个工程队单独铺设分别需要10天和15天完成,如果两队从M处开始,分别沿两个不同方向同时施工天后,因甲队另有任务,余下的工程由乙队单独施工10天完成,求的值.24. (10分) (2020七下·沙坪坝月考) 若规定=a﹣b+c﹣3d,计算:的值,其中x=2,y=﹣1.25. (5分)一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,请写出x、y、z的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共9题;共73分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、25-1、。
2019-2020年七年级数学上学期期中试卷(含解析) 新人教版

2019-2020年七年级数学上学期期中试卷(含解析)新人教版一、选择题(共11小题,每小题3分,共33分,每小题只有一个正确的选项,请把正确的选项填在题后的括号内)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.下列四个数中最大的是()A.﹣2 B.0 C.﹣ D.0.73.下列说法错误的是()A.﹣2是负有理数B.0不是整数C.是正有理数 D.﹣0.25是负分数4.A为数轴上表示2的点,将点A沿数轴向左平移7个单位到点B,再由B向右平移6个单位到点C,则点C所表示的数是()A.11 B.1 C.2 D.35.下列各组的两个数中,运算结果互为相反数的是()A.23和 32B.﹣23和(﹣2)3C.﹣22和(﹣2)2D.﹣|﹣2|和﹣(+2)6.如果|a+4|+(3﹣b)2=0,则(a+b)2016的值是()A.2016 B.﹣2016 C.1 D.﹣17.下列由四舍五入得到的近似数说法正确的是()A.0.720精确到百分位B.5.078×104精确到千分位C.3.6万精确到十分位D.2.90精确到0.018.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>09.已知代数式x﹣3y的值是﹣5,则代数式2x﹣6y﹣1的值是()A.﹣6 B.﹣7 C.﹣11 D.﹣1210.某种商品进价为m元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.m元B.0.8m元C.1.04m元D.0.92m元11.已知:有理数a,b满足ab<0,则+的值为()A.±2 B.﹣1 C.1 D.0二、填空题:(每题4分,共36分)请将正确的答案直接填在横线上12.的倒数是.13.大于﹣1.5小于2.5的整数共有个.14.比较大小:﹣﹣0.8 (填“>”或“<号”).15.把6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的代数和的形式是.16.已知a、b互为相反数,c、d互为倒数,则 2(a+b)﹣cd= .17.平方后等于的有理数是.18.现在网购已成为人们的一种消费方式,在2015年的“双11”促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为元.19.在式子“2×()﹣6×()=12”中括号内填入一个相同的数,使得等式成立,这个数是:.20.按如下规律摆放三角形:则第(4)堆三角形的个数为;第(n)堆三角形的个数为.三、解答题:(共81分)21.计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6)(2)2×(﹣3)﹣48÷(﹣6)(3)﹣5﹣(﹣)+7+(﹣2.25)(4)﹣5×(﹣3)2﹣1÷(﹣0.5)(5)﹣14+24×(﹣+)(6)(﹣1)5×[﹣4﹣(﹣2)3]+3÷(﹣)22.将下列各数填在相应的集合里.﹣45%,3.14,|﹣6|,(﹣2)2,0,﹣2016,﹣(+).整数集合:{ …};分数集合:{ …};负数集合:{ …}.在以上已知的数据中,最大的有理数是,最小的有理数是.23.(1)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣求(﹣2)⊕3的值;(2)对于有理数a、b,若定义运算:a⊗b=(﹣4)⊗3的值等于;(3)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.24.已知a,b为有理数,且它们在数轴上的位置如图所示.(1)在数轴上分别标出表示a,b的相反数的位置;(2)把a,﹣a,b,﹣b按照从大到小的顺序排列并用“>”连接;(3)若|a|=1,|b|=3,求2a﹣3b的值.25.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?(3)利用你发现的结论,求:20152﹣4030×2013+20132的值.2016-2017学年福建省漳州市长泰县七年级(上)期中数学试卷参考答案与试题解析一、选择题(共11小题,每小题3分,共33分,每小题只有一个正确的选项,请把正确的选项填在题后的括号内)1.﹣3的绝对值是()A.3 B.﹣3 C.D.【考点】绝对值.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.2.下列四个数中最大的是()A.﹣2 B.0 C.﹣ D.0.7【考点】有理数大小比较.【分析】按从小到大的顺序排列四个选项中的有理数,由此即可得出结论.【解答】解:∵﹣2<﹣<0<0.7,∴0.7为四个数中最大的.故选D.3.下列说法错误的是()A.﹣2是负有理数B.0不是整数C.是正有理数 D.﹣0.25是负分数【考点】有理数.【分析】根据有理数的定义对各选项分析判断后利用排除法求解.【解答】解:A、﹣2是负有理数正确,故本选项错误;B、0是整数,故本选项正确;C、是正有理数正确,故本选项错误;D、﹣0.25是负分数正确,故本选项错误.故选B.4.A为数轴上表示2的点,将点A沿数轴向左平移7个单位到点B,再由B向右平移6个单位到点C,则点C所表示的数是()A.11 B.1 C.2 D.3【考点】数轴.【分析】根据数轴规定向右为正方向,则向右平移,用加;向左平移,用减求解.【解答】解:B的点表示的数为2﹣7=﹣5,点C所表示的数是﹣5+6=1.故选:B.5.下列各组的两个数中,运算结果互为相反数的是()A.23和 32B.﹣23和(﹣2)3C.﹣22和(﹣2)2D.﹣|﹣2|和﹣(+2)【考点】有理数的乘方;相反数;绝对值.【分析】首先根据有理数的乘方,以及绝对值的含义和求法,求出每个选项中的两个数各是多少;然后根据相反数的含义和求法,判断出运算结果互为相反数的是哪两个数即可.【解答】解:∵23=8,32=9,8和9不是一组相反数,∴选项A不正确;∵﹣23=﹣8,(﹣2)3=﹣8,∴﹣23=(﹣2)3,∴选项B不正确;∵﹣22=﹣4,(﹣2)2=4,∴﹣22和(﹣2)2互为相反数,∴选项C正确;∵﹣|﹣2|=﹣2,﹣(+2)=﹣2,∴﹣|﹣2|=﹣(+2),∴选项D不正确.故选:C.6.如果|a+4|+(3﹣b)2=0,则(a+b)2016的值是()A.2016 B.﹣2016 C.1 D.﹣1【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,计算即可.【解答】解:有题意得,a+4=0,3﹣b=0,解得,a=﹣4,b=3,则(a+b)2016=1,故选:C.7.下列由四舍五入得到的近似数说法正确的是()A.0.720精确到百分位B.5.078×104精确到千分位C.3.6万精确到十分位D.2.90精确到0.01【考点】近似数和有效数字.【分析】根据近似数精确到哪一位,应当看末位数字实际在哪一位,分别对每一项进行分析,即可得出答案.【解答】解:A、0.720精确到千分位,故本选项错误;B、5.078×104精确到十位,故本选项错误;C、3.6万精确到千位,故本选项错误;D、2.90精确到0.01,故本选项正确;故选D.8.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.9.已知代数式x﹣3y的值是﹣5,则代数式2x﹣6y﹣1的值是()A.﹣6 B.﹣7 C.﹣11 D.﹣12【考点】代数式求值.【分析】由原式2x﹣6y﹣1=2(x﹣3y)﹣1,进而求出即可.【解答】解:∵x﹣3y=﹣5,∴2x﹣6y﹣1=2(x﹣3y)﹣1=2×(﹣5)﹣1=﹣11.故选C.10.某种商品进价为m元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.m元B.0.8m元C.1.04m元D.0.92m元【考点】列代数式.【分析】根据题意列出等量关系,商品的售价=原售价的80%.直接列代数式求值即可.【解答】解:依题意可得:m(1+30%)×0.8=1.04m元.故选C11.已知:有理数a,b满足ab<0,则+的值为()A.±2 B.﹣1 C.1 D.0【考点】绝对值.【分析】根据题意得到a与b异号,原式利用绝对值的代数意义化简即可得到结果.【解答】解:∵ab<0,∴a>0,b<0,此时原式=1﹣1=0;a<0,b>0,此时原式=﹣1+1=0,故选D二、填空题:(每题4分,共36分)请将正确的答案直接填在横线上12.的倒数是.【考点】倒数.【分析】先把带分数化为假分数,然后根据倒数的定义直接求解.【解答】解:﹣2=﹣,所以﹣的倒数为﹣.故答案为﹣.13.大于﹣1.5小于2.5的整数共有 4 个.【考点】有理数大小比较.【分析】先求出这个数的取值范围,再找出整数即可.【解答】解:∵大于﹣1.5小于2.5的数x为:﹣1.5<x<2.5,∴整数解为:﹣1,0,1,2,共4个;故答案为4.14.比较大小:﹣>﹣0.8 (填“>”或“<号”).【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵|﹣|=,|﹣0.8|=0.8,∴<0.8,∴﹣>﹣0.8故答案为:>.15.把6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的代数和的形式是6﹣3+7﹣2 .【考点】有理数的加减混合运算.【分析】根据去括号的法则即可解答.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2.16.已知a、b互为相反数,c、d互为倒数,则 2(a+b)﹣cd= ﹣1 .【考点】代数式求值.【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,则原式=0﹣1=﹣1,故答案为:﹣1.17.平方后等于的有理数是±.【考点】平方根.【分析】根据题意,平方后等于的有理数即为的平方根.【解答】解:∵(±)2=,∴平方后等于的有理数是:±.故答案为±.18.现在网购已成为人们的一种消费方式,在2015年的“双11”促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为 5.7×1010 元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将57000000000用科学记数法表示为:5.7×1010.故答案为:5.7×1010.19.在式子“2×( )﹣6×( )=12”中括号内填入一个相同的数,使得等式成立,这个数是: ﹣3 .【考点】有理数的混合运算.【分析】利用乘法与加法法则判断即可.【解答】解:根据题意得:2×(﹣3)﹣6×(﹣3)=﹣6+18=12,故答案为:﹣320.按如下规律摆放三角形:则第(4)堆三角形的个数为 14 ;第(n )堆三角形的个数为 3n+2 .【考点】规律型:图形的变化类.【分析】本题可依次解出n=1,2,3,…,三角形的个数.再根据规律以此类推,可得出第n 堆的三角形个数.【解答】解:∵n=1时,有5个,即(3×1+2)个;n=2时,有8个,即(3×2+2)个;n=3时,有11个,即(3×3+2)个;n=4时,有12+2=14个;…;∴n=n 时,有(3n+2)个.三、解答题:(共81分)21.计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6)(2)2×(﹣3)﹣48÷(﹣6)(3)﹣5﹣(﹣)+7+(﹣2.25)(4)﹣5×(﹣3)2﹣1÷(﹣0.5)(5)﹣14+24×(﹣+)(6)(﹣1)5×[﹣4﹣(﹣2)3]+3÷(﹣)【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先算乘除,再算加法即可;(3)先将减法转化为加法,再根据加法运算律与有理数加法法则计算即可;(4)先算乘方,再算乘除,最后算加减;(5)先算乘方,再利用分配律计算乘法,最后算加减;(6)先算乘方,再算除法,最后算加减,有括号,要先做括号内的运算.【解答】解:(1)原式=﹣2﹣3﹣1+6=0;(2)原式=﹣6+8=2;(3)原式=﹣5++7﹣2.25=﹣8+7=﹣;(4)原式=﹣5×9﹣1×(﹣2)=﹣45+2=﹣43;(5)原式=﹣1+(﹣9+20)=﹣1+11=10;(6)原式=﹣1×[﹣4﹣(﹣8)]+(﹣5)=﹣1×4﹣5=﹣4﹣5=﹣9.22.将下列各数填在相应的集合里.﹣45%,3.14,|﹣6|,(﹣2)2,0,﹣2016,﹣(+).整数集合:{ |﹣6|,(﹣2)2,0,﹣2016 …};分数集合:{ ﹣45%,3.14,﹣(+)…};负数集合:{ ﹣45%,﹣2016,﹣(+)…}.在以上已知的数据中,最大的有理数是|﹣6| ,最小的有理数是﹣2006 .【考点】有理数;绝对值.【分析】根据有理数的分类进行填空即可.【解答】解:整数集合:|﹣6|,(﹣2)2,0,﹣2016,分数集合:﹣45%,3.14,﹣(+),负数集合:﹣45%,﹣2016,﹣(+),最大的有理数是|﹣6|,最小的有理数是﹣2016;故答案为:|﹣6|,(﹣2)2,0,﹣2016;﹣45%,3.14,﹣(+);﹣45%,﹣2016,﹣(+);|﹣6|;﹣2006.23.(1)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣求(﹣2)⊕3的值;(2)对于有理数a、b,若定义运算:a⊗b=(﹣4)⊗3的值等于7 ;(3)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【考点】有理数的混合运算.【分析】(1)原式利用已知的新定义计算即可得到结果;(2)原式利用已知的新定义计算即可得到结果;(3)根据题意确定出所求新运算即可.【解答】解:(1)(﹣2)⊕3=(﹣2)×(﹣2﹣3)+1=11;(2)(﹣4)⊗3==7;故答案为:7;(3)如:定义a*b=﹣2a+2b,则﹣4*6=﹣2×(﹣4)+2×6=20.24.已知a,b为有理数,且它们在数轴上的位置如图所示.(1)在数轴上分别标出表示a,b的相反数的位置;(2)把a,﹣a,b,﹣b按照从大到小的顺序排列并用“>”连接;(3)若|a|=1,|b|=3,求2a﹣3b的值.【考点】代数式求值;数轴;有理数大小比较.【分析】(1)直接利用相反数的定义分析得出答案;(2)利用数轴进而比较a,﹣a,b,﹣b的大小即可;(3)利用数轴结合绝对值的性质得出a,b的值.【解答】解:(1)如图所示:(2)由数轴可得:b>﹣a>a>﹣b;(3)由|a|=1,|b|=3及已知得a=﹣1,b=3,2a﹣3b=2×(﹣1)﹣3×3=﹣11.25.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?【考点】正数和负数.【分析】(1)所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.(2)用销售总价除以8即可.【解答】解:(1)售价:55×8+(2﹣3+2+1﹣2﹣1+0﹣3)=440﹣4=436,盈利:436﹣400=36(元);答:当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)平均售价:436÷8=54.5(元),答:每套儿童服装的平均售价是54.5元.(3)利用你发现的结论,求:20152﹣4030×2013+20132的值.【考点】代数式求值;有理数的乘方.【分析】将a、b的值分别代入两个代数式中,然后求出数值后即可对两代数式的大小进行比较.【解答】解:(1)填表:4; 16; 9; 9.(2)(a﹣b)2=a2﹣2ab+b2(3)由(2)中的等式可知:20152﹣4030×2013+201322=20152﹣2×2015×2013+20132=2=4故答案为:(1)4; 16; 9; 9.。
2019-2020学年人教版七年级数学上学期期中考试试题(解析版)

2019-2020学年七年级数学上学期期中考试试题一、选择题(每题2分,满分20分)1.下面各数是负数的是()A.0B.﹣2013C.|﹣2013|D.2.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106B.1.008×106C.1.008×105D.10.08×104 3.下列方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=54.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b5.下列合并同类项的计算中,正确的是()A.3a2﹣2a2=a2B.3a2﹣2a2=1C.3a2﹣a2=3D.3a2﹣a2=2a 6.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃7.数轴上表示﹣1的点与表示3的点之间的距离为()A.2B.3C.4D.58.一个数的平方等于16,则这个数是()A.+4B.﹣4C.±4D.±89.若|m|=2,|n|=3,且在数轴上表示m的点与表示n的点分居原点的两侧,则下列哪个值可能是m+n的结果()A.5B.﹣5C.﹣3D.110.若=3,则代数式﹣﹣的值是()A.B.C.5D.4二、填空题(共6小题,每题3分,满分18分)11.(3分)﹣8的相反数是,﹣6的绝对值是.12.(3分)单项式的系数是,次数是.13.(3分)若3x2y m﹣1与﹣2x n y3是同类项,则m﹣n的值为.14.(3分)写出一个只含有字母x,y的二次三项式.15.(3分)如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为米.16.(3分)数轴上表示整数的点称为整点,某数轴的单位长度是lcm,若在该数轴上随意画出一条长为2016cm的线段AB,则线段AB盖住的整点有个.三、解答题(满分62分;请将正确把答案及解答过程填在答题卡相应位置)17.(12分)计算:(1)﹣8.5+4﹣1.5﹣6;(2)()×12;(3)﹣22﹣|﹣7|+32×(﹣)18.(8分)化简:(Ⅰ)st﹣3st+6;(Ⅱ)3(﹣ab+2a)﹣(3a﹣b)+3ab.19.(8分)解方程:(1)2x+2=3x﹣1(2)1﹣x=3﹣x.20.(5分)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2),其中(a﹣2)2+|b+|=0.21.(5分)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.22.(5分)在数轴上表示下列各数:0,﹣4,,﹣2,|﹣5|,﹣(﹣1),并用“<”号连接.23.(4分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.24.(6分)记a1=﹣2,a2=(﹣2)×(﹣2),a3=(﹣2)×(﹣2)×(﹣2),……a n=(1)填空:a4=,a23是一个(填“正”或“负”)(2)计算:a5+a6;(3)请直接写出2018a n+1009a n+1的值25.(9分)已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?参考答案一、选择题1.下面各数是负数的是()A.0B.﹣2013C.|﹣2013|D.【分析】根据正数和负数的定义分别进行解答,即可得出答案.解:A、0既不是正数,也不是负数,故本选项错误;B、﹣2013是负数,故本选项正确;C、|﹣2013|=2013,是正数,故本选项错误;D、是正数,故本选项错误;故选:B.【点评】此题考查了正数和负数,正数:大于0的数叫做正数,负数是小于0的数.2.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106B.1.008×106C.1.008×105D.10.08×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:100800=1.008×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.4.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b【分析】本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a,a的指数为1,解:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,故选:A.【点评】考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.5.下列合并同类项的计算中,正确的是()A.3a2﹣2a2=a2B.3a2﹣2a2=1C.3a2﹣a2=3D.3a2﹣a2=2a【分析】合并同类项时,字母和字母的指数不变,合并的是同类项的系数,据此作答即可.解:A、3a2﹣2a2=a2,此选项正确;B、3a2﹣2a2=a2,此选项错误;C、3a2﹣a2=2a2,此选项错误;D、3a2﹣a2=2a2,此选项错误.故选:A.【点评】本题考查了合并同类项,解题的关键是掌握合并同类项的法则.6.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.7.数轴上表示﹣1的点与表示3的点之间的距离为()A.2B.3C.4D.5【分析】可把﹣1、3表示在数轴上,观察数轴得到两点间的距离;也可以用右边点表示的数减去左边点表示的数,求出两点间的距离.解:法一、如图所示,点A表示﹣1,点B表示3,∴两点间的距离是4;故选C.法二、3﹣(﹣1)=4故选:C.【点评】本题考查了两点间的距离.数轴上的两点间的距离=右边点表示的数﹣左边点表示的数.8.一个数的平方等于16,则这个数是()A.+4B.﹣4C.±4D.±8【分析】根据平方根的定义解答即可.解:∵(±4)2=16,∴所以一个数的平方等于16,则这个数是±4.【点评】此题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.9.若|m|=2,|n|=3,且在数轴上表示m的点与表示n的点分居原点的两侧,则下列哪个值可能是m+n的结果()A.5B.﹣5C.﹣3D.1【分析】根据绝对值的意义确定m、n的值,然后根据在数轴上表示m和n的点位于原点的两侧分类讨论即可确定正确的选项.解:∵|m|=2,|n|=3,∴m=±2,n=±3,∵在数轴上表示m的点与表示n的点分居原点的两侧,∴m=2时n=﹣3,m+n=2﹣3=﹣1;m=﹣2时n=﹣3,m+n=﹣2+3=1;故选:D.【点评】本题考查了数轴和绝对值的知识,解题的关键是能够根据绝对值的意义确定m的取值并能够分类讨论,属于基础题,难度不大.10.若=3,则代数式﹣﹣的值是()A.B.C.5D.4【分析】将=3代入原式得原式=2×3﹣﹣,进一步计算可得.解:当=3时,原式=2×3﹣﹣=6﹣2=4,故选:D.【点评】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.二、填空题(共6小题,每题3分,满分18分)11.(3分)﹣8的相反数是8,﹣6的绝对值是6.【分析】首先根据相反数的含义和求法,可得﹣8的相反数是8;然后根据负有理数的绝对值是它的相反数,可得﹣6的绝对值是6.解:﹣8的相反数是8,﹣6的绝对值是6.故答案为:8,6.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)此题还考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.12.(3分)单项式的系数是﹣,次数是3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.【点评】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.13.(3分)若3x2y m﹣1与﹣2x n y3是同类项,则m﹣n的值为2.【分析】直接利用同类项的定义分析得出答案.解:∵3x2y m﹣1与﹣2x n y3是同类项,∴n=2,m﹣1=3,解得:m=4,故m﹣n=2.故答案为:2.【点评】此题主要考查了同类项,正确得出m,n的值是解题关键.14.(3分)写出一个只含有字母x,y的二次三项式x2+2xy+1.【分析】二次三项式即多项式中次数最高的项的次数为2,并且含有三项的多项式.答案不唯一.解:由多项式的定义可得只含有字母x的二次三项式,例如x2+2xy+1,答案不唯一,故答案为:x2+2xy+1.【点评】本题考查了多项式的定义,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.15.(3分)如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为(a﹣2b)米.【分析】从A点沿着楼梯爬到C点长度的和应该是楼梯的水平宽度与垂直高度的和,依此用(3a﹣b)减去(2a+b),即可求得小明家楼梯的竖直高度.解:(3a﹣b)﹣(2a+b)=3a﹣b﹣2a﹣b=a﹣2b(米).故小明家楼梯的竖直高度(即:BC的长度)为(a﹣2b)米.故答案为:(a﹣2b).【点评】考查了整式的加减,整式的加减实质上就是合并同类项.16.(3分)数轴上表示整数的点称为整点,某数轴的单位长度是lcm,若在该数轴上随意画出一条长为2016cm的线段AB,则线段AB盖住的整点有2017或2016个.【分析】从线段AB始于整点还是始于整点之间分别讨论得结果.解:当线段AB的起点在整点时,长为2016cm的线段AB盖住的整点有2017个,当线段AB的起点不在整点时,即在两个整点之间,长为2016cm的线段AB盖住的整点有2016个.故答案为:2017或2016.【点评】本题考查了数轴的相关知识,解决本题需要分类讨论.三、解答题(满分62分;请将正确把答案及解答过程填在答题卡相应位置)17.(12分)计算:(1)﹣8.5+4﹣1.5﹣6;(2)()×12;(3)﹣22﹣|﹣7|+32×(﹣)【分析】(1)利用加法的交换律和结合律,依据加法法则计算可得;(2)运用乘法分配律计算可得;(3)先计算乘方、绝对值、乘法,再计算加减可得.解:(1)原式=﹣8.5﹣1.5+(4﹣6)=﹣10﹣2=﹣12;(2)原式=6﹣3﹣2=1;(3)原式=﹣4﹣7﹣16=﹣27.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.18.(8分)化简: (Ⅰ)st ﹣3st +6;(Ⅱ)3(﹣ab +2a )﹣(3a ﹣b )+3a b .【分析】(Ⅰ)根据合并同类项的法则计算可得;(Ⅱ)去括号,再合并同类项即可得.解:(Ⅰ)st ﹣3st +6=(﹣3)st +6=﹣st +6;(Ⅱ)原式=﹣3ab +6a ﹣3a +b +3ab =3a +b .【点评】此题考查整式的加减,掌握去括号法则和合并同类项的方法是解决问题的关键. 19.(8分)解方程:(1)2x +2=3x ﹣1(2)1﹣x =3﹣x .【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)移项,得3x﹣2x=3,合并同类项,得x=3;(2)移项,得﹣x+x=3﹣1,合并同类项,得﹣x=2,系数化1,得x=﹣6.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.(5分)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2),其中(a﹣2)2+|b+|=0.【分析】利用非负数的性质求出a、b的值,再根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.解:7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2)=7a2b﹣4a2b+5ab2﹣4a2b+6ab2=﹣a2b+11ab2.∵(a﹣2)2+|b+|=0.(a﹣2)2≥0,|b+|≥0,∴a=2,b=﹣,∴原式=﹣22×(﹣)+11×2×(﹣)2=7【点评】本题考查了整式的化简求值,去括号是解题关键,括号前是正数去括号不变号,括号前是负数去括号要变号.21.(5分)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.【分析】设小明1月份的跳远成绩为xm,则5月份﹣2月份=3(2月份﹣1月份),据此列出方程并解答.解:设小明1月份的跳远成绩为xm,则4.7﹣4.1=3(4.1﹣x),解得x=3.9.则每个月的增加距离是4.1﹣3.9=0.2(m).答:小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(5分)在数轴上表示下列各数:0,﹣4,,﹣2,|﹣5|,﹣(﹣1),并用“<”号连接.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.解:﹣4<﹣2<0<﹣(﹣1)<2<|﹣5|.【点评】本题考查了有理数大小比较,利用数轴比较有理数的大小:数轴上的点表示的数右边的总比左边的大.23.(4分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×275=572×25;②63×396=693×36.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【分析】(1)观察规律,左边,两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;右边,三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可.解:(1)①∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,②∵左边的三位数是396,∴左边的两位数是63,右边的两位数是36,63×369=693×36;故答案为:①275,572;②63,36.(2)∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明:左边=(10a+b)×[100b+10(a+b)+a],=(10a+b)(100b+10a+10b+a),=(10a+b)(110b+11a),=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a),=(100a+10a+10b+b)(10b+a),=(110a+11b)(10b+a),=11(10a+b)(10b+a),左边=右边,所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).【点评】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.24.(6分)记a1=﹣2,a2=(﹣2)×(﹣2),a3=(﹣2)×(﹣2)×(﹣2),……a n=(1)填空:a4=16,a23是一个负(填“正”或“负”)(2)计算:a5+a6;(3)请直接写出2018a n+1009a n+1的值【分析】(1)探究规律,利用规律即可解决问题;(2)利用规律计算即可;(3)2018a n+1009a n+1=1009(2a n+a n+1)=1009[﹣(﹣2)n+1+(﹣2)n+1]=0解:(1)根据规律可知:a4=(﹣2)×(﹣2)×(﹣2)×(﹣2)=16,a23是23个﹣2相乘,的负的,故答案为16,负;(2)a5+a6=﹣32+64=32.(3)2018÷1009=2,∴2018a n+1009a n+1=1009(2a n+a n+1)=1009[﹣(﹣2)n+1+(﹣2)n+1]=0.【点评】本题考查规律型:数字问题,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.25.(9分)已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是1.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?【分析】(I)根据点P到点M,点N的距离相等,可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(II)根据两点间的距离公式结合点P到点M,点N的距离之和是7,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据两点间的距离公式结合点P到点M,点N的距离相等,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.【点评】本题考查了一元一次方程的应用以及数轴,找准等量关系,正确列出一元一次方程是解题的关键.。
福建省三明市七年级上学期数学期中考试试卷

福建省三明市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2019七上·天峨期末) 下列四个数中,在-2到0之间的数是()A . 1B . 2C . -1D . -32. (1分) (2019七上·绍兴期中) 在中无理数的个数是()A . 1B . 2C . 3D . 43. (1分) (2020七上·卫辉期末) 树叶上有许多气孔,在阳光下,这些气孔一面排出氧气和蒸腾水分,一面吸入二氧化碳,一个气孔在一秒钟内能吸入亿个二氧化碳分子,用科学记数法表示亿为()A .B .C .D .4. (1分) (2016七上·个旧期中) 下列式子中,能与2a合并的是()A .B . -3a+bC . -10aD .5. (1分)下列计算正确的是()A . -=B . ×=6C . +=5D . ÷=46. (1分)下列运算中,正确的是()A . 5m﹣m=4B . (m2)4=m8C . ﹣(m﹣n)=m+nD . m2÷m2=m7. (1分) (2018七上·江汉期中) 下列各式运用等式的性质变形,错误的是()A . 若-a=-b,则a=bB . 若,则a=bC . 若ac=bc,则a=bD . 若(m2+1)a=(m2+1)b,则a=b8. (1分)已知x是实数,且满足(x﹣2)(x﹣3) =0,则相应的函数y=x2+x+1的值为()A . 13或3B . 7或3C . 3D . 13或7或39. (1分)若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()A . 4B . 8C . 2D . -210. (1分)(2018·定兴模拟) 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1 , E1 ,E2 , C2 , E3 , E4 ,C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2018B2018C2018D2018的边长是()A . ()2017B . ()2016C . ()2017D . ()2016二、填空题 (共10题;共10分)11. (1分) (2018七上·仁寿期中) - 的倒数是________12. (1分) (2018七上·龙湖期中) 单项式的系数是________,13. (1分) (2019七上·淮安月考) 已知x=4是关于x的方程3x﹣2a=9的解,则a的值为________.14. (1分) (2017七下·临沭期末) 已知是二元一次方程组的解,则m+3n的立方根为________.15. (1分)用四舍五入法将3.886精确到0.01,所得到的近似数为________16. (1分)(2020·松江模拟) 已知:,那么 ________.17. (1分) a、b、c在数轴上的位置如图所示:a-b________0 ; b-c ________0 ; -b-c________0 ; a-(-b)________0 (填>,<,=)18. (1分) (2017七上·上杭期中) 若x2=36,则x=________ .19. (1分) (2017七上·秀洲月考) 1-2+3-4+5-6+…+87-88= ________.20. (1分) (2020七上·武昌期末) 如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是,最小正方形的周长是,则 ________.三、解答题 (共5题;共12分)21. (4分) (2020七上·南召期末) 计算:-1-22. (2分) (2020七上·西安期末) 解方程:(1) 2x-(2-x)=4(2)23. (1分) (2019八上·孝南月考) 先化简,再求值(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a= ,b=﹣1.(2) 6x2﹣(2x﹣1)(3x﹣2)+(x+2)(x﹣2),其中x=3.24. (2分)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2 ,(1)若x12+x22=6,求m值;(2)求的最大值.25. (3分)(2016·余姚模拟) 如图,墙面OC与地面OD垂直,一架梯子AB长5米,开始时梯子紧贴墙面,梯子顶端A沿墙面匀速每分钟向下滑动1米,x分钟后点A滑动到点A′,梯子底端B沿地面向左滑动到点B′,OB′=y 米,滑动时梯子长度保持不变.(1)当x=1时,y=________米;(2)求y关于x的函数关系式,并写出自变量x的取值范围;(3)研究(2)中函数图象及其性质.①填写下表,并在所给的坐标系中画出函数图象;②如果点P(x,y)在(2)中的函数图象上,求证:点P到点Q(5,0)的距离是定值;(4)梯子底端B沿地面向左滑动的速度是A . 匀速B . 加速C . 减速D . 先减速后加速.参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共12分) 21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、25-4、。
福建省三明市七年级上学期期中数学试卷

福建省三明市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2020七上·合川期末) 下列结论:①几个有理数相乘,若其中负因数有奇数个,则积为负;②两个三次多项式的和一定是三次多项式;③若xyz<0,则 + + + 的值为0或﹣4;④若a,b互为相反数,则=﹣1;⑤若x=y,则=.其中正确的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分)有理数a、b在数轴上的对应点的位置如下图所示:则下面结论正确的是()A . a+b>0B . a+b<0C . ab>0D . a+b=03. (2分)下列说法中正确的是()A . πx3的系数是B . y﹣x2y+5xy2的次数是7C . 4不是单项式D . ﹣2xy与4yx是同类项4. (2分) (2016七上·肇庆期末) 如果x=2是方程 x+a=-1的解,那么a的值是:()A . 0B . 2C . -2D . -65. (2分)下列计算,正确的是A .B .C .D .6. (2分) 2012年3月5日上午9时,十一届全国人大五次会议在人民大会堂开幕。
温家宝总理在全国人大会议的政府工作报告中指出,2012年国家财政性教育经费支出21984.63亿元,占国内生产总值4%以上。
中央预算内投资用于教育的比重达到7%左右。
将21984.63用四舍五入法取近数(精确到0.1)表示应为()A . 21985B . 21984.6C . 21980D . 219007. (2分) (2016七上·临洮期中) 计算(﹣3)× ÷(﹣)×3的结果是()A . ﹣9B . 9C . 1D . ﹣18. (2分)不论x , y取何实数,代数式x-4x+y-6y+13总是()A . 非负数B . 正数C . 负数D . 非正数9. (2分) (2017七下·淅川期末) 若关于x的方程x﹣2+3k= 的解是正数,则k的取值范围是()A . k>B . k≥C . k<D . k≤10. (2分)国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x元,则下列方程中正确的是()A . x+1.98%x20%=1219B . 1.98%x20%=1219C . 1.98%x(1-20%)=1219D . x+1.98%x(1-20%)=121911. (2分)如图,已知Rt△ABC中,AC=b,BC=a,D1是斜边AB的中点,过D1作D1E1⊥AC于E1 ,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2 ,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3 ,…,如此继续,可以依次得到点D4 , D5 ,…,Dn ,分别记△BD1E1 ,△BD2E2 ,△BD3E3 ,…,△BDnEn的面积为S1 ,S2 , S3 ,…Sn .则Sn为()A .B .C .D .12. (2分)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A . (a﹣b)2=a2﹣2ab+b2B . (a+b)2=a2+2ab+b2C . 2a(a+b)=2a2+2abD . (a+b)(a﹣b)=a2﹣b2二、解答题: (共14题;共93分)13. (1分)若a,b,c是△ABC的三边,则化简|a﹣b﹣c|+|a﹣c+b|+|a+b+c|=________.14. (1分)若单项式2a3bn+3与﹣4am﹣1b2是同类项,则nm的值为________ .15. (1分)(2019·崇川模拟) 92000用科学记数法表示为________.16. (1分) (2016七上·开江期末) 数轴上点A表示的数是2,那么与点A相距5个单位长度的点表示的数是________.17. (1分) (2018七上·渭滨期末) 若,那么 ________.18. (1分)三个连续奇数,中间的一个是n,则这三个数的和是 ________.19. (9分) (2019七上·秀英期中) 已知a、b互为相反数且a、b均不为0 , m、n互为倒数,x的绝对值为2,(1) a+b=________,________,mn=________,x2=________.(2)求的值.20. (10分) (2018七上·彝良期末) 解方程.(1) 3(2x-1)=4x+3(2)21. (5分) (2017七上·香洲期中) 先化简,再求值:,其中,,22. (5分) (2018七上·宜兴月考) 把下列各数在数轴上表示,并用“<”将它们连接起来,,0,, 0.523. (15分)淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+230﹣17+6﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?24. (15分)将连接的偶数2,4,6,8,…排成如下的数表,用一个十字形框中五个数.(1)你能发现十字框中这五个数之间有哪些关系?请你尝试写出其中两个;(2)设中间数为x,请用代数式表示十字形框中五个数的和;(3)移动十字形框,框出的五个数之和能否等于2000?若能,试求出这五个数中的最大数和最小数;若不能,说明理由.25. (8分)观察下列有规律的数:,,,,,…根据规律可知(1)第7个数是________,第n个数是________(n为正整数);(2)是第________个数;(3)计算 + + + + + +…+ .26. (20分)根据题意,列方程(1)某数与8的和的2倍比它自己大11,求这个数.(2)某老师准备在期末对学生进行奖励,到文具店买了20本练习簿和30支铅笔,共花了16元,现在知道练习簿比铅笔贵3角.求练习簿和铅笔单价?(3)某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价?(4)某文件需要打印,小李独立做需要6小时完成,小王独立做需要9小时完成.现在他们俩共同做了3小时,剩下的工作由小王独自做完.问小王还要用多少小时把剩下的工作做完?参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、解答题: (共14题;共93分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省三明市永安市2019-2020学年七年级上学期期中考试数学试卷一、选择题:本题共10小题,每小题4分,计40分.请把唯一符合题目要求的选项代号填在题后的括号内.1.下列四个几何体中,是三棱柱的为()A.B.C.D.2.(4分)2020的倒数是()A.﹣2020B.2020C.D.3.下列四个数中,最小的数是()A.5B.0C.﹣3D.﹣44.据永安电视台发布的新闻数据显示,今年国庆假期七日永安旅游收入4526000元.4526000用科学记数法表示为()A.4.526×104B.45.26×105C.4.526×106D.4.526×1075.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最小的点是()A.点A B.点B C.点C D.点D6.下列结论:①0是最小的整数;②任何有理数的绝对值都是非负数;③0的相反数、绝对值、倒数仍然都是0;④互为相反数的两个数的绝对值相等.其中正确的有()A.①②B.②④C.①③D.③④7.由下面正方体的平面展开图可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦8.若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.19.多项式2x3﹣10x2+4x﹣1与多项式3x3﹣4x﹣5x2+3相加,合并后不含的项是()A.三次项B.二次项C.一次项D.常数项10.将一列有理数﹣1,2,﹣3,4,﹣5,6,…如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置是有理数4,“峰2”中峰顶的位置是有理数﹣9.那么有理数2022所在的位置应是()A.甲B.乙C.丙D.戊二、填空题:本题共6小题,每小题4分,计24分.请将答案写在题中的横线上.11.(4分)大于﹣1.9的负整数是.12.(4分)对于单项式“10n”,我们可以这样解释:苹果每千克10元,小明买了n千克,共付款10n元,请你对“10n”再给出另一个实际生活方面的合理解释:.13.(4分)单项式﹣a2b3的系数是.14.(4分)一个三位数,个位上的数字是x,十位上的数字是y,百位上的数字是m,则这个三位数表示为.15.(4分)已知a+b=﹣2,则3﹣2a﹣2b=.16.(4分)某小区一块长方形绿地如图所示(单位:m),其中两个扇形表示绿地,两块绿地用五彩石隔开,需要铺五彩石的部分面积为m2.三、解答题:本题共8小题,计86分.解答应写出文字说明、说理过程或演算步骤.17.(6分)下列是由四个相同小立方体搭成的几何体,请同学们画出该几何体从正面和左面看到的形状图.18.(16分)计算(1)(+11)+(﹣12)﹣(+18)(2)2.25+(+0.75)﹣(+2)+(﹣1.75)(3)﹣17÷×(﹣9)(4)(﹣3)2﹣[(﹣12)×(﹣)+(﹣2)3]19.(12分)化简下列各式(1)(x2﹣3x﹣2)+(﹣4+5x﹣3x2)(2)﹣4(2x2﹣3xy﹣3y2)﹣(﹣3x2﹣2xy+10y2)20.(8分)先化简再求值a2+(5a2﹣2b)﹣2(a2﹣3b),其中a=﹣1,b=5.21.(10分)某体育用品商店乒乓球拍每副定价80元,乒乓球每盒定价20元,该店为了促销制定了两种优惠方案.方案一:买一副球拍赠一盒乒乓球;方案二:按购买金额的九折付款.某校计划为校乒乓球兴趣小组购买乒乓球拍10副,乒乓球m盒(m不小于10)(1)分别用代数式表示两种优惠方案的付款金额;(2)当购买40盒乒乓球时,选择哪种方案购买更合算?22.(10分)出租车司机小李某天下午的营运始终在和谐街(自东向西或自西向东)上进行,如果规定向东为正,向西为负,他这天下午从幸福门出发,行车记录仪把当天下午行车情况记录如下表:到达地点起点A B C D E前进方向西东西东西所行路程(千米)0152051810(1)求E点在幸福门的哪个方向?距离幸福门的路程有多少千米?(2)若汽车每行驶1千米耗油0.08升,汽车出发时装满油,油箱的容积为50升,若汽车行驶的路程为x千米,请将汽车剩余的油量用含x的代数式表示出来.(3)汽车在中途需要加油吗?如需加油,应加多少升油?23.(12分)一个几何体是由若干个棱长为3cm的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示:(1)该几何体最少由个小立方体组成,最多由个小立方体组成.(2)将该几何体的形状固定好,①求该几何体体积的最大值;②若要给体积最小时的几何体表面涂上油漆,求所涂油漆面积的最小值.24.(12分)小明收集了某品牌运动鞋的鞋标,如图所示.为了搞清楚这些字母、数字的含义,他以“鞋码”为关键词上网搜索,得到相关资料如下:cm表示以厘米为单位的脚长;US表示美制鞋码,UK表示英制鞋码,EUR表示欧洲鞋码.一个关于欧州鞋码的介绍中还有这么一句话:“欧洲鞋码=1.5×脚长+2,单位:cm”.(1)如果脚长用a表示,请用含a的代数式表示欧洲鞋码;有一个脚长为24cm的人想购买鞋子,应建议他选择EUR码对应数字为多少?(2)小明发现乙、丙两个鞋标显示的cm数不同,但是US码对应数字都是6.5,显然其中一个鞋标是假的.从欧洲鞋码与脚长的换算经验,US码与cm数应该也存在某种关系.若cm数用b表示,请用含b的代数式表示出US码,并帮助小明判断乙、丙中哪个鞋标为假鞋标?参考答案与试题解析一、选择题:本题共10小题,每小题4分,计40分.请把唯一符合题目要求的选项代号填在题后的括号内.1.【解答】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为圆柱,不符合题意;D、该几何体为三棱柱,符合题意;故选:D.2.【解答】解:2020的倒数是,故选:C.3.【解答】解:∵|﹣3|=3,|﹣4|=4,∴﹣3>﹣4,∴5>0>﹣3>﹣4,∴最小的数是﹣4.故选:D.4.【解答】解:将4526000用科学记数法表示为4.526×106元.故选:C.5.【解答】解:∵A,B,C,D四个点,点B离原点最近,∴点B所对应的数的绝对值最小.故选:B.6.【解答】解:①没有最小的整数,故①错误;②|a|≥0,故②正确;③0没有倒数,故③错误;④互为相反数的两个数关于原点对称,因此到原点的距离相等,所以绝对值相等,故④正确;故选:B.7.【解答】解:根据正方体相对的面的特点,“中”字所在的面的对面的汉字是“的”,故选:B.8.【解答】解:根据题意得:a+3=0,b﹣4=0,解得:a=﹣3,b=4,则a+b=﹣3+4=1.故选:D.9.【解答】解:2x3﹣10x2+4x﹣1+3x3﹣4x﹣5x2+3=5x3﹣15x2+2,则多项式2x3﹣10x2+4x﹣1与多项式3x3﹣4x﹣5x2+3相加,合并后不含的项是一次项.故选:C.10.【解答】解:因为每个峰上有5个数,而且峰上的数是从2开始的,所以(2020﹣1)÷5=403 (4)所以2020为403峰的第4个数,排在丙的位置.故选:C.二、填空题:本题共6小题,每小题4分,计24分.请将答案写在题中的横线上.11.【解答】解:大于﹣1.9的负整数是:﹣1.故答案为:﹣1.12.【解答】解:某人以10千米/时的速度骑自行车n小时,他骑自行车的路程是10n千米.答案不唯一.故答案为:某人以10千米/时的速度骑自行车n小时,他骑自行车的路程是10n千米.13.【解答】解:单项式﹣a2b3的系数是:﹣.故答案为:﹣.14.【解答】解:个位上的数字是x,十位上的数字是y,百位上的数字是m,则这个三位数表示为100m+10y+x.故答案为100m+10y+x.15.【解答】解:∵a+b=﹣2,∴原式=3﹣2(a+b)=3+4=7,故答案为:7.16.【解答】解:由图可得,需要铺五彩石的部分面积为:(a+b)a﹣﹣=(a2+ab﹣)(m2),故答案为:(a2+ab﹣).三、解答题:本题共8小题,计86分.解答应写出文字说明、说理过程或演算步骤.17.【解答】解:如图所示:18.【解答】解:(1)(+11)+(﹣12)﹣(+18)=11+(﹣12)+(﹣18)=﹣19;(2)2.25+(+0.75)﹣(+2)+(﹣1.75)=2++(﹣2)+(﹣1)=﹣;(3)﹣17÷×(﹣9)=﹣1×9×(﹣9)=81;(4)(﹣3)2﹣[(﹣12)×(﹣)+(﹣2)3]=9﹣(16﹣8)=9﹣8=1.19.【解答】解:(1)(x2﹣3x﹣2)+(﹣4+5x﹣3x2)=x2﹣3x2﹣3x+5x﹣2﹣4=﹣2x2+2x﹣6;(2)﹣4(2x2﹣3xy﹣3y2)﹣(﹣3x2﹣2xy+10y2)=﹣8x2+12xy+12y2+3x2+2xy﹣10y2=﹣5x2+2y2+14xy.20.【解答】解:原式=a2+5a2﹣2b﹣2a2+6b=4a2+4b,当a=﹣1,b=5时,原式=4﹣20=﹣16.21.【解答】解:(1)方案一:10×80+20(m﹣10)=800+20m﹣200=20m+600(元);方案二:90%×(10×80+20m)=720+18m(元);(2)当m=40时,方案一:800+600=1400元;方案二:720+720=1440元,则方案一更合算.22.【解答】解:(1)E点在幸福门的东方向,距离幸福门的路程有8千米.(2)根据题意,得汽车剩余的油量为(50﹣0.08x)升.答:汽车剩余的油量用含x的代数式表示为(50﹣0.08x)升.(3)因为汽车行驶路程为|﹣15|+|20|+|﹣5|+|18|+|﹣10|=6850﹣68×0.08=50﹣5.44=44.56(升).所以中途不需要加油.23.【解答】解:(1)观察图象可知:最少的情形有2+3+1+1+1+1=9个小正方体,最多的情形有2+2+3+3+3+1=14个小正方体.故答案为9,14.(2)①该几何体体积的最大值为33×14=378cm3.②体积最小时的几何体表面涂上油漆,所涂油漆面积的最小值=9×(2×6+2×5+2×7)=324cm2.24.【解答】解:(1)用含a的代数式表示欧洲鞋码为1.5a+2.1.5×24+2=38.答:用含a的代数式表示欧洲鞋码为:1.5a+2.建议他选择EUR码对应数字为38.(2)根据甲、丁可知,27﹣9=18,26.5﹣8.5=18,所以cm数用b表示,用含b的代数式表示出US码为b﹣18.所以丙的US码为24.5﹣18=6.5,正确;乙的US码为23.5﹣18=5.5≠6.5,错误.所以乙的鞋标为假鞋标.答:用含b的代数式表示出US码为b﹣18,乙的鞋标为假鞋标.。