最优化之多目标规划
MOP多目标规划

多目标规划multiple objectives programming数学规划的一个分支。
研究多于一个目标函数在给定区域上的最优化。
又称多目标最优化。
通常记为VMP。
在很多实际问题中,例如经济、管理、军事、科学和工程设计等领域,衡量一个方案的好坏往往难以用一个指标来判断,而需要用多个目标来比较,而这些目标有时不甚协调,甚至是矛盾的。
因此有许多学者致力于这方面的研究。
1896年法国经济学家V.帕雷托最早研究不可比较目标的优化问题,之后,J.冯·诺伊曼、H.W.库恩、A.W.塔克尔、A.M.日夫里翁等数学家做了深入的探讨,但是尚未有一个完全令人满意的定义。
求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标或双目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
对多目标的线性规划除以上方法外还可以适当修正单纯形法来求解;还有一种称为层次分析法,是由美国运筹学家沙旦于70年代提出的,这是一种定性与定量相结合的多目标决策与分析方法,对于目标结构复杂且缺乏必要的数据的情况更为实用。
1947年,J.冯·诺伊曼和O.莫根施特恩从对策论的角度提出了有多个决策者在彼此有矛盾的情况下的多目标问题。
1951年,T.C.库普曼斯从生产和分配的活动中提出多目标最优化问题,引入有效解的概念,并得到一些基本结果。
同年,H.W.库恩和A.W.塔克尔从研究数学规划的角度提出向量极值问题,引入库恩-塔克尔有效解概念,并研究了它的必要和充分条件。
1963年,L.A.扎德从控制论方面提出多指标最优化问题,也给出了一些基本结果。
1968年,A.M.日夫里翁为了排除变态的有效解,引进了真有效解概念,并得到了有关的结果。
自70年代以来,多目标规划的研究越来越受到人们的重视。
多目标优化方法及实例解析

图1 多目标规划的劣解与非劣解
而对于方案⑤、⑥、⑦之间则无法确定优劣,而且又没有比它们更好的其他方案,所以它们就被称为多目标规划问题的非劣解或有效解, 其余方案都称为劣解。 所有非劣解构成的集合称为非劣解集。
当目标函数处于冲突状态时,就不会存在使所有目标函数同时达到最大或最小值的最优解,于是我们只能寻求非劣解(又称非支配解或帕累托解)。
每一个决策变量取什么值,原问题可以得到最满意的解决 ?
3
每一个目标函数取什么值,原问题可以得到最满意的解决?
多目标规划的非劣解
在图1中,max(f1, f2) .就方案①和②来说,①的 f2 目标值比②大,但其目标值 f1 比②小,因此无法确定这两个方案的优与劣。 在各个方案之间,显然:④比①好,⑤比④好, ⑥比②好, ⑦比③好……。
120
70
单件利润
3000
10
3
设备台时
2000
5
4
煤炭
3600
4
9
钢材
资源限制
乙
甲
单位 产品 资源 消耗
解:设生产甲产品: x1 ,乙产品: x2 ,
(1)
若在例3中提出下列要求: 1、完成或超额完成利润指标 50000元; 2、产品甲不超过 200件,产品乙不低于 250件; 3、现有钢材 3600吨必须用完。 试建立目标规划模型。
求解多目标规划的方法大体上有以下几种: 一种是化多为少的方法 , 即把多目标化为比较容易求解的单目标或双目标,如主要目标法、线性加权法、理想点法等; 另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。 对多目标的线性规划除以上方法外还可以适当修正单纯形法来求解;还有一种称为层次分析法,是由美国运筹学家沙旦于70年代提出的,这是一种定性与定量相结合的多目标决策与分析方法,对于目标结构复杂且缺乏必要的数据的情况更为实用。
第六章 多目标最优化方法

对于最小值的目标函数(如前一中所述问 题中的目标函数4和5)可采用乘以-1的办法 化为且最大值的目标函数。
①最优解定义:若x0∈R,对任一个x∈R, 总有F(x)≤F(x0),称此x0为此多目标问题的最优 解。 ②非劣解定义:若x0∈R,且不存在x∈R, 使得F(x) ≥F(x0),则称x0为此目标问题的非劣 解。 由此可见,所谓非劣解是个允许解(可 行解但却找不到另一个可行解,它至少在一 个目标值上大于它,而在其它目标值上欲等 于它,所谓求解多目标问题往往归结为如何 从非劣解中求一个最优解)
…,gm(x)]T (约束条件)
g(x)=[ g1(x), g2(x),
F(x)=[ f1(x), f2(x), …,fk(x)]T
求多目标最优化问题可记为
(目标函数)
V max F ( x)
பைடு நூலகம்
xR
即在满足约束条件的集合R中找出x,使所 有的目标fi(x)达到最大。这里 R={x∣g(x) ≥0}
并把第j个方案xj的劣序数记为
H j aij
iN
jN
(4)根据Ki的 其
大小优选决策次序
Hi Ki m(n 1) i N表明一个方案
的优序数Ki与劣序数Hi成反比,决策方
法是按Ki的大小将所有的方案排序,可 选择一个方案xe使得 K max K
e iN i
6.4.1 其中ui(x)表示第i个指标,它可以是定量的,
也可以是定性的,M={1,2,…,m},
N={1,2,…,n}而且要求m≥2,n≥2,为将指标
转化为比较序数aijl (相当于等效系数),则 令
i j i j 1 若ul ( x ) ul ( x )或ul ( x ) ul ( x ) (1) aijl 0.5 若ul ( xi )=ul ( x j )或ul ( xi ) ul ( x j ) 0 若ul ( xi ) ul ( x j )或ul ( xi ) ul ( x j )
多目标优化方法

多目标优化方法在现实生活和工作中,我们常常需要面对多个目标同时进行优化的情况。
比如在生产过程中需要考虑成本和质量的双重优化,或者在个人发展中需要兼顾事业和家庭的平衡。
针对这样的多目标优化问题,我们需要运用一些有效的方法来进行处理。
首先,我们可以考虑使用加权法来进行多目标优化。
加权法是一种简单而直观的方法,它通过为每个目标设定权重,然后将各个目标的值乘以对应的权重,最后将加权后的值相加得到一个综合指标。
这样一来,我们就可以将多个目标转化为单一的综合指标,从而方便进行优化决策。
当然,在使用加权法时,我们需要注意权重的确定要充分考虑到各个目标的重要性,以及权重的确定要充分考虑到各个目标的重要性,以及权重之间的相对关系,避免出现权重设置不合理导致优化结果不准确的情况。
其次,我们可以采用多目标规划方法来进行优化。
多目标规划是一种专门针对多目标优化问题的数学建模方法,它可以帮助我们在考虑多个目标的情况下,找到一组最优的决策方案。
在多目标规划中,我们需要将各个目标之间的相互影响考虑在内,通过建立数学模型来描述各个目标之间的关系,然后利用多目标规划算法来求解最优解。
多目标规划方法可以帮助我们充分考虑各个目标之间的平衡和权衡关系,从而得到更为合理的优化结果。
此外,我们还可以考虑使用进化算法来进行多目标优化。
进化算法是一种模拟生物进化过程的优化方法,它通过不断地演化和迭代,逐步优化出最优的解决方案。
在多目标优化问题中,我们可以利用进化算法来搜索出一组最优的解决方案,从而实现多个目标的同时优化。
进化算法具有较强的全局搜索能力和较好的鲁棒性,适用于复杂的多目标优化问题。
综上所述,针对多目标优化问题,我们可以运用加权法、多目标规划方法和进化算法等多种方法来进行处理。
在实际应用中,我们需要根据具体问题的特点和要求,选择合适的方法进行处理,以达到最佳的优化效果。
希望本文所介绍的方法能为大家在面对多目标优化问题时提供一些帮助和启发。
多目标最优化模型

缺点
计算复杂度高
求解速度慢
难以找到全局最优 解
对初始解依赖性强
多目标最优化模 型的发展趋势
算法改进
进化算法:如遗传算法、粒子群算法等,在多目标优化问题中表现出色,能够找到多个非支配解。
机器学习算法:如深度学习、强化学习等,在处理大规模、高维度多目标优化问题时具有优势,能 够自动学习和优化目标函数。
金融投资
风险管理:多目标最 优化模型用于确定最 优投资组合,降低风 险并最大化收益。
资产配置:模型用于 分配资产,以实现多 个目标,例如最大化 收益和最小化风险。
投资决策:模型帮助 投资者在多个投资机 会中选择最优方案, 以实现多个目标。
绩效评估:模型用于评 估投资组合的绩效,以 便投资者了解其投资组 合是否达到预期目标。
混合算法:将多种算法进行融合,形成新的优化算法,以适应不同类型和规模的多目标优化问题。
代理模型:利用代理模型来近似替代真实的目标函数,从而加速多目标优化问题的求解过程。
应用拓展
人工智能领域的应用
金融领域的应用
物流领域的应用
医疗领域的应用
未来研究方向
算法改进:研究更高效的求解多目标最优化问题的算法 应用拓展:将多目标最优化模型应用于更多领域,如机器学习、数据挖掘等 理论深化:深入研究多目标最优化理论,提高模型的可解释性和可靠性 混合方法:结合多种优化方法,提高多目标最优化模型的性能和适用范围
资源分配
电力调度:多目标最优化模型用于协调不同区域的电力需求和供应,实现电力资源的 合理分配。
金融投资:多目标最优化模型用于确定投资组合,以最小风险实现最大收益,优化金 融资源分配。
多目标优化设计方法

7.1 概述(续)
对于一个具有L个目标函数和若干个约束条件的多 目标优化问题,其数学模型的表达式可写为:
求: X [x1, x2,..., xn )T
n维欧氏空间的一个向量
min F( X ) [ f1( X ), f2 ( X ),..., fL ( X )]T s.t. gi ( X ) 0, (i 1, 2,..., m)
即:
minF (X ) minF ( f1(X ), f2(X ),..., fl (X ))
X D
X D
D为可行域,f1(X),f2(X),…,fl(X)为各个子目 标函数。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法 1、线性加权和法(线性加权组合法)
根据各子目标的重要程度给予相应的权数,然后 用各子目标分别乘以他们各自的权数,再相加即构成 统一目标函数。
L
min f ( X ) i fi ( X ) i 1
s.t. gi ( X ) 0 (i 1, 2,..., m) hj ( X ) 0 ( j 1, 2,..., k)
注意:
1、建立这样的评价函数时,各子目标的单位已经脱 离了通常的概念。
2、权数(加权因子)的大小代表相应目标函数在优 化模型中的重要程度,目标越重要,权数越大。
7.4 功效系数法(续)
二、评价函数 用所有子目标的功效系数的几何平均值作为评价函数
f ( X ) L d1d2 dL
f(X)的值越大,设计方案越好;反之越差; 0 f (X ) 1
f(X)=1时,表示取得最满意的设计方案 f(X)=0时,表示此设计方案不能接受
该评价函数不会使某一个目标最不满意——功效 系数法的特点
第五章_多目标问题的最优化方法

min . s .t .
q
Fx wjjd j
j 1
gux o
j 1,2,, q u 1,2,, m
dj o
其中:d j
f jx
fo j
称为目标函数的离差;
wj — 离差值加权因子,只反 映各分目标函数
q
的重要程度, wj 1, 称为本征权。
j 1
若不易估计,可令 j 0, j f j x0 ;
令容限值
f j
j
j 2
则加权因子
wj
1 f j
2
2、两项加权因子: 用于一般情况
① 适用于有导数信息的情况:
wj w1 j w2 j
其中:w1
是本征权,反应分目标函数的重要程度;
j
w2 j 是校正权,用于调整分目标函数的数量级,
四. 常用的求选好解的方法: 1、协调曲线法: 2、统一目标函数法:目标规划法、线性加权因子法 3、功效系数法: 另外,还有分层序列法、词典编辑法、边界目标函数法等
§5.2 协调函数法
一. 基本思想: 在多目标优化设计中,当各分目标函数的
最优值出现矛盾时,先求出一组非劣解,以 其集合得出协调曲线,再根据恰当的匹配关 系得到满意曲线,沿着满意程度的增加的方 向,各分目标值下降,直至获得选好解。
设 X =[x1, x2 , …,xn]T
min. F (x)
X∈Rn
s.t. gu(x) ≤ 0 hv(x) = 0
u = 1,2,…,m v = 1,2,…, p
其中: F x f1x, f2x,, fqx T
或写为: min . f1x, f2x,, fqx
多目标规划ppt

多目标规划问题的典型实例
例1 木梁设计问题
用直径为 1(单位长)的圆木制成截面为矩形的梁。为使重量最轻面强度最大, 问截面的宽和高应取何尺寸? 假设矩形截面的宽和高分别为 x1 和 x2 ,那么根据几何知识可得:
2 x12 + x2 = 1
且此时木梁的截面面积为 x x 。同时根据材料力规划的解集
绝对最优解
* * 设 x* ∈ R ,如果对于 ∀x ∈ R 均有 F ( x ) ≤ F ( x ) ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n = 1, p = 2 时绝对最优解的示意图。
以显然 A2 比 A3 好。 对于方案 A1 和 A2 ,由于无法确定其优劣, 而且又没有比它们更好的其他方案,所 以它们就被称之为多目标规划问题的有效解 有效解 (或者非劣解) ,其余方案都称为劣解。所有 非劣解构成的集合称为非劣解集 非劣解集。 非劣解集
O
f2 A5 A4 A1 A3 A2 f1 A6 A7
x2 L xn ] ; F ( x ) = f1 ( x )
T
f2 ( x ) L
f p ( x ) , p ≥ 2
对向量形式的 p 个目标函数求最小,且目标函数 F ( x ) 和约束函数 gi ( x ) 、hi ( x ) 可以 是线性函数也可以是非线性函数。
令 R = {x | gi ( x ) ≤ 0, i = 1, 2,..., m} ,则称 R 为问题的可行域,V-min F ( x ) 指的是
多目标规划问题的典型实例
例2 工厂采购问题
某工厂需要采购某种生产原料,该原料市场上有 A 和 B 两种,单价分别为 2 元/kg 和 1.5 元/kg。现要求所花的总费用不超过 300 元,购得的原料总重量不少于 120kg,其中 A 原料不得少于 60kg。间如何确定最佳采购方案,花最少的钱,采 购最多数量的原料。 设 A、B 两种原料分别采购 x1 、 x2 kg,那么总的花费为: f1 ( x ) = 2 x1 + 1.5 x2 购得的原料总量为: f 2 ( x ) = x1 + x2 那么我们求解的目标即是使得花最少的钱买最多的原料,即最小化 f ( x ) 的同时