多目标规划及案例
多目标规划实例

多目标规划实例简介多目标规划是一种决策方法,它可以帮助人们在多个目标之间做出权衡和平衡。
在实际问题中,通常会有多个相互关联的目标需要同时考虑,而单目标规划无法满足这种需求。
多目标规划通过建立多个目标函数和约束条件之间的优化问题,从中寻找一个解集,该解集包含了一系列近似最优的解,这些解通常被称为 Pareto 最优解。
在本文中,我们将介绍一个实际的多目标规划问题,并使用 Markdown 文本格式展示其模型、目标函数和约束条件。
实例描述假设我们是一家电子产品制造公司,我们要生产两种类型的电子产品:手机和平板电脑。
我们有两个主要的目标:最大化销售额和最小化生产成本。
我们需要找到一个生产计划,使得销售额最大化同时生产成本最小化。
模型我们假设我们可以生产的手机数量为 x,平板电脑数量为 y。
我们使用以下模型描述我们的多目标规划问题:•目标函数 1:最大化销售额–销售额 = 销售价格 × 销售数量–销售价格:手机价格为 P1,平板电脑价格为 P2–销售数量:手机数量为 x,平板电脑数量为 y•目标函数 2:最小化生产成本–生产成本 = 生产成本1 + 生产成本2–生产成本1:生产一个手机的成本为C1–生产成本2:生产一个平板电脑的成本为 C2•约束条件–生产产能限制:手机数量加平板电脑数量不能超过产能上限 N–非负约束:手机数量和平板电脑数量不能为负数目标函数和约束条件根据上述模型,我们可以得到以下目标函数和约束条件。
目标函数 1:最大化销售额Maximize: P1 * x + P2 * y目标函数 2:最小化生产成本Minimize: C1 * x + C2 * y约束条件x + y <= Nx >= 0y >= 0结论多目标规划是一种强大的决策方法,可以帮助我们在多个目标之间做出权衡和平衡。
在本文中,我们介绍了一个实际的多目标规划问题,以及该问题的模型、目标函数和约束条件。
多目标规划应用实例

02
投资者需要在满足一定风险承 受能力的前提下,最大化投资 组合的预期收益,同时考虑市 场波动、政策风险等因素。
03
投资决策问题需要考虑多个目 标之间的权衡和折中,以实现 整体最优。
目标函数
收益最大化
投资者希望获得尽可能高的投资回报率,通 常以预期收益率作为目标函数。
风险最小化
投资者希望将投资风险降至最低,通常以方 差或标准差作为目标函数。
城市发展需满足环境保护的相关法律法规和标准。
3
3. 资源利用约束
城市发展需遵循资源利用的可持续性原则。
求解方法与结果分析
• 多目标规划问题通常采用权重法、目标规 划法、遗传算法等求解方法进行求解。通 过对不同方案进行比较和评估,可以得出 最优解或满意解。在城市规划与交通管理 中,多目标规划的应用可以帮助决策者全 面考虑各种因素,制定出更加科学、合理 的城市规划方案,提高城市运行效率,促 进城市的可持续发展。
多目标规划能够为决策者提供一个 系统的方法来权衡和比较不同目标 之间的优劣,从而提高决策的科学 性和合理性。
折衷与平衡
多目标规划可以帮助决策者在多个 目标之间找到一个相对最优的折衷 方案,实现不同目标之间的平衡发 展。
多目标规划的方法与步骤
方法
多目标规划常用的方法包括层次分析 法、多属性决策分析、数据包络分析 等。
问题描述
目标函数
• 目标函数包括两个部分:最小化生产成本 和运输成本。生产成本由各个工厂的生产 费用决定,运输成本则取决于各个工厂之 间的运输距离和运输量。
约束条件
• 约束条件包括:各个工厂的生产能力限制、市场需求量限制以及产品种类限制等。这些约束条件确保了生产计 划的可实施性和有效性。
第九章目标规划——多目标线性规划

目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
(1) 要求恰好达到目标值,即正、负偏差变量都要尽可能地小 min Z = f( d ++ d - )
(2) 要求不超过目标值,即允许达不到目标值,即正偏差变量 要尽可能地小
min Z = f( d +) (3) 要求超过目标值,即超过量不限,但必须是即负偏差变量要 尽可能地小
目标规划 Goal Programming(GP)
第九章
目标规划
——多目标线性规划
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
目标规划问题及其数学模型
目标规划( Goal Programming )方法是Charnes和Cooper于 1961年提出的,目前已成为一种简单、实用的处理多目标决策问题 的 方法,是多目标决策中应用最为广泛的一种方法。
木工 油漆工 1 10
资源总量(小时) 11 10
求解此问题可以得到王老板的最优生产方案: 每天生产椅子 4 把,桌子 3 张,获最大利润 62 元。
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
王老板过去一直以如何计划两种家具的生产量才能获得最大总利 润为其生产、经营的唯一目标。然而,市场经济环境下新的问题不断 出现,它迫使王老板不得不考虑…... 1. 首先,根据市场信息,椅子的销售量已有下降的趋势,故应果断 决策减少椅子的产量,其产量最好不超过桌子的产量。 2. 其次,劳动力市场上已招不到符合生产质量要求的木工了,因此 不可能考虑增加木工这种劳动力资源来增加产量,并且由于某种原因 现有木工已不可能再加班。 3. 再次,应尽可能充分利用油漆工的现有的有效工作时间,可以通 过加班使油漆工资源增加,但应考虑油漆工希望最好不加班。 4. 最后,王老板考虑最好达到并超过预计利润指标 56元。
多目标规划及案例

主办方在会议开始前对所有参会的100位代表 旅游意向进行了调查,充分考虑这些代表的意愿, 为主办方设计代表们合适的旅游路线,使他们在会 议结束后的10天时间内花最少的钱游尽可能多的地 方。 目标一:宾客参观意愿满意度尽可能高 目标二:宾客所花费用尽可能少 目标三:宾客游尽可能多的景点
转化为单目标的具体方法介绍:
求解算法之二:
目标规划法
二、多目标优化目标规划法
线性规划通常考虑一个目标函数(问题简单) 目标规划考虑多个目标函数(问题复杂) 。
例 生产安排问题
某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的盈利与使用设备的工时及限 制如下表所示。
甲 2 A/(h/件) 4 B/(h/件) 0 C/(h/件) 赢利/(元/件) 200 乙 设备的生产能力/h 2 12 0 16 5 15 300
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
4.9 多目标规划

优化建模之多目标规划引例多目标问题的数学模型多目标问题的求解方法引例2007全国大学生数学建模竞赛B题乘公交,看奥运第29届奥运会明年8月将在北京举行,大部分人将会乘坐公共交通工具到现场观看奥运比赛,这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。
请你们解决如下问题:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。
(其它略)花费最小,时间最短,转车次数最小,堵车程度弱。
不可公度性矛盾性目标目标数学模型min x∈R∗f x =(f 1x ,f 2x ,⋯,f p x )s.t.ቊg i x ≥0,j =1,2,⋯,m h k x =0.k =1,2,⋯,lf i ,g i ,h k :R n→R.p ≥2记可行域为D.x ∗:x ∈D,f i (x)≥f i (x ∗)绝对最优解。
min x min y y xA B C D y x A B CD B 通常是不存在的。
多目标决策的本质问题是:如何根据决策者的主观价值判断,对有效解的好坏做出比较?由于可行域中的一个点,对应目标函数是一个向量,所以问题实际是:如何比较两个向量的大小?min x∈R∗f x =(f 1x ,f 2x ,⋯,f p x )(3,5),(2,7)哪个小?思想:转化为单目标问题u(x)minxϵD偏好关系:在像集f (X)上有某个二元关系(称为偏好序)反映决策者的偏好。
最优解:在给定的偏好关系下,f 在X 上的最好解。
(1)加权法:权数线性加权:ϖ1,ϖ2,⋯,ϖp ,i=1pϖi =1u x =i=1pϖi f i (x)指数加权法:u x =ෑi=1p(f i (x))ϖi(2)极小极大(min-max )法*x ()x f 1()x f 2min xϵD u f x =min x∈D (max 1≤i≤pf i (x))min x,tt s.t.f i x ≤t,i =1,⋯,pxϵD等价转化为(3)偏差函数法b.找距离理想点最近的点作为最优解:min x∈D u x=minx∈Di=1p(f i x−f i∗)2(f1,f2,⋯,f p)a.给定理想点:(4)测度法:f i,min=minx∈D f i x,f i,max=minx∈Df i x,d i x=f i,min−f i xf i,max−f i,min∈0,1max x∈D i=1pd i(x)或maxx∈Dෑi=1pd i(x)(5)约束法在多个目标中选定一个主要目标,而对其他目标设定一个期望值,在要求结果不比期望值坏的情况下,求主要目标的最优值。
多目标规划课件

X∈R
然后求解该问题,并将其最优解X*作为(VP) 的最优解。 由于构造评价函数的多种多样,也就出现 了多种不同的评价函数方法。
处理多目标规划的一些方法
1. 线性加权和法 对 重 且(要 ∑V程λPj)=中度1,的给然p以个后适目构当标造的f评1权(X价系),函数f2数(λXj≥),0…(j,=f1p(,X2,)…按,p其),
挑选出满意的方案来。这时称BC上的点为
非劣解,或有效解。
多目标规划解的概念
对于一般的多目标规划问题:
(VP)
V-min F(X)=(f1(X), f2(X),…,fp(X))T
s.t. gi(X)≤0, i=1,2,…,m
其中X=(x1,x2,…,xn)T, p≥2
设R={X| gi(X)≤0, i=1,2,…,m}
多目标规划解的性质
类似地可证明:像集F(R)的有效点一
定是弱有效点,即
E
* pa
E w* p
通过在像集F(R)上寻找有效点(或弱 有效点),就可以确定约束集合R上 的有效解(或弱有效解)。对此,有 如下的定理。
多目标规划解的性质
定理4 在像集F(R)上,若Epa*已知,则在约 束集合R上,有
X∈R
p-1
其中Rp-1=Rp-2∩{X |fp-1(X)≤fp-1*}
处理多目标规划的一些方法
此时求得最优解X*,最优值为fp*,则 X*就是多目标问题(VP)在分层序列意 义下的最优解。进一步有下列定理。
定理6 设X*是由分层序列法所得到的 最优解,则X*∈Rpa*.
处理多目标规划的一些方法
(2)若fj(Y)= fj(X*), j=1,2,…,j0-1 但fj0(Y)<fj0(X*) 2≤j0≤p 此时必有fj(Y)= fj(X*)≤fj*, j=1,2,…,j0-1 因此,Y是问题 (Pj0) min fp(X) X∈Rj0-2∩{X |fj0-1(X)≤fj0-1*} 的可行解,又由
《多目标规划模型》课件

02
权重法的主要步骤包括确定权重、构造加权目标函数、求解加权目标函数,最 后得到最优解。
03
权重法的优点是简单易行,适用于目标数量较少的情况。但缺点是主观性强, 依赖于决策者的经验和判断。
约束法
1
约束法是通过引入约束条件,将多目标问题转化 为单目标问题,然后求解单目标问题得到最优解 。
2
约束法的主要步骤包括确定约束条件、构造约束 下的目标函数、求解约束下的目标函数,最后得 到最优解。
多目标规划模型
目录
• 多目标规划模型概述 • 多目标规划模型的建立 • 多目标规划模型的求解方法 • 多目标规划模型的应用案例 • 多目标规划模型的未来发展与挑战
01 多目标规划模型概述
定义与特点
定义
多目标规划模型是一种数学优化方法 ,用于解决具有多个相互冲突的目标 的问题。
特点
多目标规划模型能够权衡和折衷多个 目标之间的矛盾,寻求满足所有目标 的最佳解决方案。
02 多目标规划模型的建立
确定目标函数
01
目标函数是描述系统或决策问题的期望结果的数学表达 式。
02
在多目标规划中,目标函数通常包含多个目标,每个目 标对应一个数学表达式。
03
目标函数的确定需要考虑问题的实际背景和决策者的偏 好。
确定约束条件
01 约束条件是限制决策变量取值范围的限制条件。 02 在多目标规划中,约束条件可以分为等式约束和
谢谢聆听
模型在大数据和人工智能时代的应用前景
要点一
总结词
要点二
详细描述
随着大数据和人工智能技术的快速发展,多目标规划模型 在许多领域的应用前景广阔。
大数据时代带来了海量的数据和复杂的问题,这为多目标 规划模型提供了广阔的应用场景。例如,在金融领域,多 目标规划可以用于资产配置和风险管理;在能源领域,多 目标规划可以用于能源系统优化和碳排放管理。同时,随 着人工智能技术的不断发展,多目标规划模型有望与机器 学习、深度学习等算法相结合,共同推动相关领域的发展 。
第6章多目标规划方法精品PPT课件

如果将(6.1.1)和(6.1.2)式进一步缩
写, 即
max(m ZiF n(X ) )
(6.1.3)
(X)G
(6.1.4)
式中: ZF(X)是k维函数向量;
k是目标函数的个数;
Φ(X ) 等是m维函数向量;
G是m维常数向量;
m是约束方程的个数。
甘肃农业大学资源与环境学院
对 于 线 性 多 目 标 规 划 问 题 , ( 6.1.3 ) 和 (6.1.4)式可以进一步用矩阵表示
尽可能的小,或即:
(x12x22)min
根据问题的要求,应满足下述约束条件:
x1 H
x1 x1
x2
x2
W
0
4
x
2
x1
0
x 1 0 , x 2 0
这是具有两个目标的非线性规划问题。
甘肃农业大学资源与环境学院
多目标规划及其非劣解
例3:【投资决策问题】某投资开发公司拥有总资金A万元, 今有n(≥2)个项目可供选择。设投资第i(i=1,2,……,n)个 项目要用资金ai万元,预计可得到收益bi万元。问应如何使 用总资金A万元,才能得到最佳的经济效益?
甘肃农业大学资源与环境学院
第1节 多目标规划及其非劣解
➢多目标规划及其非劣解 ➢多目标规划的非劣解
甘肃农业大学资源与环境学院
多目标规划及其非劣解
例1:【喜糖问题】设市场上有甲级糖及乙级糖,单价分别 为4元/斤及2元/斤。今要筹办一桩喜事。“筹备小组”计 划总花费不超过40元,糖的总斤数不少于10斤,甲级糖不 少于5斤。问如何确定最佳的采购方案。
n
f1(x1,……,xn) bixi max i1 n
f2(x1,……,xn) aixi min i1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 以学分最多为目标, 不管课程多少。
最优解显然是选修所 有9门课程 。
多目标规划
• 在课程最少的前提下 以学分最多为目标。
课号
课名
学分
∗1 ∗
微积分
5
∗2 ∗
线性代数
4
∗ 3 ∗ 最优化方法
4
4
数据结构
3
5∗
应用统计
4
∗6
计算机模拟
3
∗ 7 ∗ 计算机编程
2
8
预测理论
2
∗9 ∗
数学实验
3
9
增加约束 ∑ xi = 6 , i =1
A/(h/件)
22
12
B/(h/件)
40
16
C/(h/件)
05
15
赢利/(元/件) 200 300
问该企业应如何安排生产,使得在计划期内 总利润最大?
1. 线性规划建模
该例是一个线性规划问题,直接考虑它的线性规划模型
设甲、乙产品的产量分别为x1, x2,建立线性规划模型:
Max z = 200 x1 + 300 x 2 ;
s. t. 2x1 + 2x2 ≤12,
4x1 ≤16,
5x2 ≤15,
x1, x2 ≥ 0.
用Lindo或Lingo软件求解,得到最优
解
x1 = 3, x2 = 3, z* = 1500.
2. 目标规划建模
若在上例中,企业的经营目标不仅要考
Max
s. t.
z = 200 x 1 + 300 x 2 ;
⎪⎧min{d −}; ⎪⎩⎨200x1 + 300x2 + d − − d + = 1500.
甲 乙 设备的生产能力/h
A/(h/件)
22
12
B/(h/件)
40
16
C/(h/件)
05
15
赢利/(元/件) 200 300
• 力求使利润指标不低于1500元
• 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2
求解算法
转化为单目标
实例1:投资的收益和风险
市场上有n种资产(如股票、债券、…)Si ( i=1,…n) 供投资者选择,某公司有数额为M的一笔相当大的资金可用 作一个时期的投资。公司财务分析人员对这n种资产进行了 评估,估算出在这一时期内购买Si的平均收益率,并预测出 购买Si的风险损失率。考虑到投资越分散,总的风险越小, 公司确定,当用这笔资金购买若干种资产时,总体风险可用 所投资的Si中最大的一个风险来度量。 购买Si要付交易费,费率已知,并且当购买额不超过最低限 额时,交易费按购买最低限额计算(不买当然无须付费)。 另外,假定同期银行存款年利率是1%, 且既无交易费又无风 险。试给该公司设计一种投资组合方案 目标一:使净收益尽可能大; 目标二:而总体风险尽可能小。
课程最少
9
Min Z = ∑ xi i =1
学分最多
Max W = 5x1 +4x2 +4x3 +3x4 +4x5 +3x6 +2x7 +2x8 +3x9
两目标(多目标)规划 Min {Z , −W }
多目标优化的处理方法:化成单目标优化。
• 以课程最少为目标, 不管学分多少。
最优解如上,6门课 程,总学分21 。
以学分最多为目标求解。
最优解: x1 = x2 = x3 = x5 = x7 = x9 =1, 其它为0;总 学分由21增至22。
注意:最优解不唯一!
可将x9 =1 易为x6 =1 LINDO无法告诉优化 问题的解是否唯一。
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7Z − 0.3W
约束条件 先修课程要求 x3=1必有x1 = x2 =1
x3 ≤ x1, x3 ≤ x2
2x3 − x1 − x2 ≤ 0 x4 ≤ x7 x4 − x7 ≤ 0
2x5 − x1 − x2 ≤ 0 x6 − x7 ≤ 0
x8 − x5 ≤ 0
2x9 − x1 − x2 ≤ 0
讨论:选修课程最少,学分尽量多,应学习哪些课程?
0-1规划模型
课号
课名
先修课要求
∗1
微积分
∗2
线性代数
∗3
最优化方法 微积分;线性代数
4
数据结构
计算机编程
5
应用统计 微积分;线性代数
∗6
计算机模拟
计算机编程
∗7
计算机编程
8
预测理论
应用统计
∗9
数学实验 微积分;线性代数
模型求解(LINDO)
最优解: x1 = x2 = x3 = x6 = x7 = x9 =1, 其它为0;6门课程,总学分21
7 计算机编程
计算机
8
预测理论
运筹学
9
数学实验 运筹学;计算机
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
9
Min Z = ∑ xi i =1
x1 + x2 + x3 + x4 + x5 ≥ 2
x3 + x5 + x6 + x8 + x9 ≥ 3 x4 + x6 + x7 + x9 ≥ 2
每条线路中的景点可以全部参观,也可以参观其中之一。 不仅如此,一起参观景点的人数越多,每人承担的费用也会越 小。车费与车型、乘客人数、路程种类及公里数有关。
主办方在会议开始前对所有参会的100位代表 旅游意向进行了调查,充分考虑这些代表的意愿, 为主办方设计代表们合适的旅游路线,使他们在会 议结束后的10天时间内花最少的钱游尽可能多的地 方。 目标一:宾客参观意愿满意度尽可能高 目标二:宾客所花费用尽可能少 目标三:宾客游尽可能多的景点
d + ---- 超出目标的差值,称为正偏差d变+ 量
d − ---- 未达到目标的差值,称为负偏差变量 其中d + 与 d −至少有一个为0
约定如下: •当实际值超过目标值时,有 d − = 0, d + > 0; •当实际值未达到目标值时,有 d + = 0, d − > 0; •当实际值与目标值一致时,有 d − = 0, d + = 0.
从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
目标规划的数学模型
目标规划的基本概念
为了克服线性规划的局限性,目标规划采用如下手段: 1. 设置偏差变量; 2. 统一处理目标与约束; 3. 目标的优先级与权系数。
1. 设置偏差变量
用偏差变量(Deviational variables)来表示实际值与目标值 之间的差异,令
2x1 + 2x2 ≤ 12 , 4x1 ≤ 16, 5x2 ≤ 15, x1, x2 ≥ 0.
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2
• 设备A为贵重设备,严格禁止超时使用
• 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍
线性多目标规划模型---线性加权和法
例: 一个生产问题,有关数 据如表。问如何安排生产可 使总利润最大,产量之和最
品产
原单料耗 甲
A4
B4
乙 总量
5 80
2 48
小。要求第二种原料用完。
C1
06
单位利润 80 100
解 设 x1, x2为甲,乙的产量 矛
则
min z1 = x1 + x2 max z2 = 80 x1 + 100 x2
F(X) = M
X ≥O
max R( X ) s.t. Q( X ) ≤ b
F(X) = M
X ≥O
min {ρ Q( X ) − (1 − ρ ) R( X )}
Байду номын сангаас
s.t. F ( X ) = M
X ≥O
ρ 为目标权重或偏好系数。
a,b, ρ 均可看成参数,对不同的参数值求出
最优解,然后加以讨论,选出满意解。
求解算法
转化为单目标
实例2:旅游路线设计
今年暑假,我校要召开“××学术会议”,届时来自国内外 的许多著名学者都会相聚成都。在会议结束后,主办方希望能 安排这些远道而来的贵宾参观四川省境内的著名自然和人文景 观,初步设想有如下线路可供选择: 一号线:九寨沟、黄龙; 二号线:乐山、峨嵋; 三号线:四姑娘山、丹巴; 四号线:都江堰、青城山; 五号线:海螺沟、康定;
要求至少选两门数学课、三门运筹学课和两门计算机课
为了选修课程门数最少,应学习哪些课程 ?
选修课程最少,且学分尽量多,应学习哪些课程 ?
0-1规划模型
决策变量
课号
课名
所属类别
1
微积分
数学
2
线性代数
数学
3 最优化方法 数学;运筹学
4
数据结构
数学;计算机
5
应用统计
数学;运筹学
6 计算机模拟 计算机;运筹学
盾 的
s.t. 4 x1 + 5x2 ≤ 80
4 x1 + 2 x2 = 48
x1
≤6
x1, x2 ≥ 0
一般形式: min Q( X ) max R( X ) s.t. F ( X ) = M