高三数学专题复习----椭圆

合集下载

专题25 椭圆(解答题)(新高考地区专用)(解析版)

专题25 椭圆(解答题)(新高考地区专用)(解析版)

专题25 椭 圆(解答题)1.已知椭圆Γ:()22211y x a a+=>与抛物线C :()220x py p =>有相同的焦点F ,抛物线C 的准线交椭圆于A ,B 两点,且1AB =. (1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,过焦点F 的直线l 交椭圆Γ于M ,N 两点,求OMN 面积的最大值.【试题来源】陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试(文)【答案】(1)Γ的方程为2214y x +=,C的方程为2x =;(2)最大值为1. 【解析】(1)因为1AB =,所以不妨设A 的坐标为1(,)22p --,B 的坐标为1(,)22p-, 所以有:2222114414p a p a ⎧+=⎪⎪⎨⎪-=⎪⎩,所以24a =,p = 所以椭圆Γ的方程为2214y x +=,抛物线C的方程为2x =;(2)由(1)可知F的坐标为,设直线l的方程为y kx =O 到MN 的距离为d ,则d ==,联立2214y kx y x ⎧=⎪⎨+=⎪⎩, 可得()22410k x ++-=,则()22414k k MN +==+,1OMNS==≤=,当且仅当22k =时取等号,故OMN 面积的最大值为1.2.在平面直角坐标系xOy 中,已知椭圆C 1: 22221(0)x y a b a b+=>>的左焦点为F 1(-2,0),且点P (0,2)在椭圆C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=8x 相切,求直线l 的方程 【试题来源】宁夏固原市隆德县2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2)y =+y x =- 【解析】(1)因为椭圆1C 的左焦点为1(2,0)F -,所以2c =, 点(0,2)P 代入椭圆22221x y a b+=,得241b =,即2b =,所以2228a b c =+=,所以椭圆1C 的方程为22184x y +=;(2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,由22184x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4280k x kmx m +++-=, 因为直线l 与椭圆1C 相切,所以△2222164(12)(28)0k m k m =-+-=整理得22840k m -+=①,由28y x y kx m⎧=⎨=+⎩,消去y 并整理得222(28)0k x km x m +-+=,因为直线l 与抛物线2C 相切,所以△222(28)40km k m =--=,整理得2km =②,综合①②,解得k m ⎧=⎪⎨⎪=⎩或k m ⎧=⎪⎨⎪=-⎩,所以直线l的方程为y =+y x =- 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.3.已知椭圆C :22221(0)x y a b a b +=>>左、右焦点分别为1F 、2F .设P是椭圆C 上一点,满足2PF ⊥x 轴,212PF =. (1)求椭圆C 的标准方程;(2)过1F 且倾斜角为45°的直线l 与椭圆C 相交于A ,B 两点,求AOB 的面积. 【试题来源】江西省贵溪市实验中学2021届高三上学期一模考试数学(三校生)试题【答案】(1)2214x y +=;(2【分析】(1)根据条件列出关于,,a b c 的方程求解;(2)设直线x y =,与椭圆方程联立,11212AOBSOF y y =⨯⨯-,代入根与系数的关系,求三角形的面积. 【解析】(1)由条件可知2222212c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =所以椭圆C 的标准方程是2214x y +=;(2)设直线:l x y =-()11,A x y ,()22,B x y ,直线l 与椭圆方程联立2214x y x y ⎧=-⎪⎨+=⎪⎩,得2510y --=,125y y +=,1215y y -=,11212AOBSOF y y =⨯⨯-==4.椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ≠)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【试题来源】四川省凉山州2020-2021学年高三第一次诊断性检测(理)【答案】(1)2213x y +=;(2)证明见解析,定值为1. 【解析】(1)由题意得1c b ==,则2223a b c =+=,∴椭圆方程为2213xy +=;(2)解法一(常规方法):设()()1122,,,A x y B x y ,联立222113y kx k x y =+-⎧⎪⎨+=⎪⎩ 化简可得()()()22316211210k x k k x k k ++-+-=,直线1)20(y kx k k =+-≠与椭圆C 交于A B 、两点,0,∴∆>即()()()221231214810k k k k ⎡⎤+-=-⎣⎦-->,解得01k <<, 由根与系数关系()121222621121,3()311k k k k x x x x k k --+=-=++, ()121221121211PA PB y y k k x y x y x x x x --∴+=+=+-+()()121212222kx x k x x x x +-+= ()()226621121211211212k k k k kk k k k-+--===--,∴直线PA PB 、得斜率和为定值1. 解法二(构造齐次式):由题直线1)20(y kx k k =+-≠恒过定点()2,1-- ①当直线AB 不过原点时,设直线AB 为()()11*mx n y +-=, 则221mx n --=,即12m n +=-有12m n =--,由2213x y +=有()()2231610y x y +-+-=,则()()()22316110x y y mx n y +-⎡⎤⎣-+-⎦+=,整理成关于,1x y -的齐次式: ()()()2236161 0n y mx y x +-+-+=,进而两边同时除以2x ,则()21366110y m x n y x -⎛⎫+-⎛⎫++= ⎪⎝⎭⎪⎝⎭,令1y k x -=, 则121216116213636PA PBn y y m k k x x n n⎛⎫-- ⎪--⎝⎭∴+=+=-==++,②当直线AB 过原点时,设直线AB 的方程为()()00001,,,,2y x A x y B x y =--, 0000001121212PA PB y y y k k x x x --∴+=+==⨯=, 综合①②直线PA 与直线PB 的斜率之和为定值1.【名师点睛】该题考查的是有关直线与椭圆的问题,解题方法如下:(1)根据题中所给的条件,确定出,b c 的值,进而求得2a 的值,得到椭圆方程; (2)将直线方程与椭圆方程联立,根与系数关系求得两根和与两根积,利用斜率公式证得结果.5.已知椭圆()2222:10x y C a b a b +=>>()2,1A .(1)求C 的方程;(2)点,M N 在C 上,且AM AN ⊥,证明:直线MN 过定点.【试题来源】河南省郑州市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22163x y +=;(2)证明见解析. 【解析】(1)由题意得222222411a b c c e a a b⎧=+⎪⎪⎪==⎨⎪⎪+=⎪⎩,解得2263a b ⎧=⎨=⎩,∴椭圆C 的方程为22163x y+=.(2)设点()11,M x y ,()22,N x y ,AM AN ⊥,()()()()121222110AM AN x x y y ∴⋅=--+--=,整理可得()()12121212124y y y y x x x x -++=-++-…①当直线MN 斜率k 不存在时,显然AM AN ⊥不成立,则可设:MN y kx m =+,联立2226y kx m x y =+⎧⎨+=⎩得()222124260k x kmx m +++-=, 由()()222216412260k m km∆=-+->得22630k m -+>,则122412km x x k +=-+,21222612m x x k -=+,()121222212m y y k x x m k ∴+=++=+, ()()22221212122612m k y y k x x km x x m k-=++++=+, 代入①式化简可得()()2481310k km m m ++-+=,即()()212310k m k m +-++=,12m k ∴=-或213k m +=- 则直线方程为()1221y kx k x k =+-=-+或2121333k y kx x k +⎛⎫=-=-- ⎪⎝⎭, ∴直线过定点()2,1或21,33⎛⎫- ⎪⎝⎭,又()2,1和A 点重合,故舍去,∴直线MN 过定点21,33⎛⎫- ⎪⎝⎭. 【名师点睛】本题考查直线与椭圆综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量之间的关系,同时得到根与系数关系的形式; ③利用根与系数关系表示出已知的等量关系,化简整理得到所求定点.6.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且过点(2,3)A ,右顶点为B .(1)求椭圆C 的标准方程;(2)过点A 作两条直线分别交椭圆于点M ,N 满足直线AM ,AN 的斜率之和为3-,求点B 到直线MN 距离的最大值.【试题来源】江苏省常州市四校联考2020-2021学年高三上学期期末【答案】(1)2211612x y +=;(2)最大值为2. 【解析】(1)由题2222212491b c a c e a a b ⎧⎪+=⎪⎪==⎨⎪⎪+=⎪⎩,解得42a b c =⎧⎪=⎨⎪=⎩C 的标准方程为2211612x y +=;(2)若直线MN 斜率不存在,设0000(,),(,)M x y N x y -,则220000001161233322x y y y x x ⎧+=⎪⎪⎨---⎪+=-⎪--⎩,解得0040x y =⎧⎨=⎩,此时,M N 重合,舍去.若直线MN 斜率存在,设直线1122(,),(,)MN y kx t M x y N x y =+:,,联立2211612x y y kx t ⎧+=⎪⎨⎪=+⎩,得222(43)84480k x ktx t +++-=,所以21212228448,4343kt t x x x x k k -+=-=++, 由题意121233322y y x x --+=---,即121233322kx t kx t x x +-+-+=--- 化简得1212(23)(29)()4240.k x x t k x x t ++--+-+=因此2224488(23)(29)()4240.4343t ktk t k t k k -++----+=++ 化简得2286860k kt t k t ++---=,即(23)(42)0k t k t +-++= 若230k t +-=,则23t k =-+,直线MN 过点(2,3)A ,舍去, 所以420k t ++=,即42t k =--,因此直线MN 过点(4,2)P -. 又点(4,0)B ,所以点B 到直线MN 距离最大值即2BP =,此时2MN y =-:,符合题意.所以点B 到直线MN 距离最大值为2【名师点睛】易错点为需讨论直线MN 斜率是否存在,解题的关键是联立直线与曲线方程,根据根与系数关系,求得1212,x x x x +⋅的表达式,再代入题干条件,化简整理,才能求得答案,考查分析理解,计算化简的能力,属中档题.7.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左顶点为A ,右焦点F ,3AF =.过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12k k λ=恒成立?若存在,请求出λ的值,若不存在,请说明理由.【试题来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试(理)【答案】(1)22143x y +=,(2)3λ= 【解析】(1)因为离心率为12,所以12c e a ==,又3AF =,所以3a c +=,解得2a =,1c =,又222c a b =-,所以23b =,所以椭圆方程为22143x y +=;(2)由(1)知()1,0F ,()2,0A -,设直线PN 的方程为1x my =+,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,M x y --,所以1112y x k =-,2222y k x =+,若存在λ,使得12k k λ=恒成立,所以121222y y x x λ=-+, 所以()()122122y x y x λ+=-,两边同乘1y 得()()21221122y x y y x λ+=-,因为()11,P x y 在椭圆上,所以2211143x y +=,所以()()2112113223144x x x y -+⎛⎫=-=⎪⎝⎭, 所以()()()()112211322224x x x y y x λ-++=-,当12x ≠时,则()()12213224x x y y λ-++=,所以()21212136124x x x x y y λ--+-=①;当12x =时,M 与A 重合,联立方程221143x my x y =+⎧⎪⎨+=⎪⎩,消元得()2234690m y my ++-=,所以212212934634y y m my y m -⎧=⎪⎪+⎨-⎪+=⎪+⎩,所以()212128234x x m y y m +=++=+, ()222121212412134m x x m y y m y y m -=+++=+, 代入①得22221236489124343434m m m m λ-+--+-=+++,整理得10836λ-=-,解得3λ=8.已知椭圆()2222:10x y E a b a b +=>>1F 、2F分别为椭圆E 的左、右焦点,M 为E 上任意一点,12F MF S △的最大值为1,椭圆右顶点为A . (1)求椭圆E 的方程;(2)若过A 的直线l 交椭圆于另一点B ,过B 作x 轴的垂线交椭圆于C (C 异于B 点),连接AC 交y 轴于点P .如果12PA PB ⋅=时,求直线l 的方程. 【试题来源】天津市滨海七校2020-2021学年高三上学期期末联考【答案】(1)2212x y +=;(2):22x l y =-或22x y =-+.【解析】(1)当M 为椭圆的短轴端点时,12F MF S △取得最大值即1212S c b =⨯⨯=,因为c a =,222a b c =+,解得a =1b =,1c =,所以椭圆方程为2212x y +=.(2))A,根据题意,直线l 斜率存在且不为0,设直线(:l y k x =,()00,B x y,联立(2212y k x x y ⎧=⎪⎨⎪+=⎩,得()222212420kxx k +-+-=,20212x k =+2204212k k -=+即)22221,1212k B k k ⎛⎫-- ⎪ ⎪++⎝⎭,由题意得)222112k C k ⎛- +⎝⎭,又直线(:AC y k x =-,故()P ,())22212,12k PA PB k ⎛⎫- ⎪⋅=⋅ ⎪+⎝⎭42241021122k k k +-==+, 即4281850k k +-=解得252k =-(舍)214k =,故12k =±,直线:2x l y =或2x y =-+. 9.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,且离心率为12.(1)求椭圆C 的方程;(2)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A B ,两点,线段AB 的垂直平分线交x 轴于点D ,判断AB DF是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.【试题来源】北京市昌平区2021届高三年级上学期期末质量抽测【答案】(1)22143x y +=;(2)是,4. 【解析】(1)依题意得22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =,故椭圆C 的方程为22143x y+=; (2)AB DF是定值.由已知得直线:(1)l y k x =-. 由22(1)34120y k x x y =-⎧⎨+-=⎩,消去y , 整理得()22224384120k x k x k +-+-=. 所以()()()2222284434121441440k k k k ∆=--+-=+>,设()()1122,,,A x y B x y ,则2122843k x x k +=+,212241243k x x k -=+, 所以()()()()222222121121214AB x x y y kx x x x ⎡⎤=-+-=++-⎣⎦()()()222222222441212181434343k k k k k k k ⎡⎤⎛⎫-+⎛⎫ ⎪⎢⎥=+-= ⎪ ⎪+++⎢⎥⎝⎭⎣⎦⎝⎭, 则()2212143k AB k +=+,因为()212122286224343k ky y k x x k k k ⎛⎫-+=+-=-= ⎪++⎝⎭,所以线段AB 的中点为22243,4343k k k k ⎛⎫- ⎪++⎝⎭. (1)当0k =时,AB 4=,1DF =.所以4AB DF=.(2)当0k ≠时,线段AB 的垂直平分线方程为2223144343k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2243k x k =+,即22,043k D k ⎛⎫ ⎪+⎝⎭,所以()22223114343k k DF k k +=-=++, 所以()()22221214343143k AB k DF k k ++==++,综上所述,AB DF 为定值4.【名师点睛】求解本题第二问的关键在于联立直线l 与椭圆方程,根据根与系数关系以及弦长公式表示出AB ,再由题中条件,求出DF ,即可得出AB DF的值.(求解时要注意讨论斜率k 的取值)10.已知椭圆C :22221x y a b+=(0a b >>)过点()2,0A -,()2,0B ,且离心率为12.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点G (E ,G 不重合),ET x ⊥轴,垂足为T ,求证:TA GA TBGB=.【试题来源】北京市东城区2021届高三上学期期末考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)由题意可得,222212a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,解得24a =,23b =,所以椭圆C 的方程为22143x y +=;(2)由题设知直线l 的斜率存在且不为零,设直线l 的方程为y kx m =+(0k ≠).由22143y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()()2223484120k x kmx m +++-=.依题意,有()()222264163430k m k m∆=-+-=,解得2234m k =+.设()1,0G x ,()00,E x y ,则1m x k =-,024434km kx k m-==-+. 因为ET x ⊥轴,所以4,0k T m ⎛⎫- ⎪⎝⎭,所以4242224242kTA k m m k m TB m k m k k m -+-+-===++⎛⎫-- ⎪⎝⎭, 因为2222mGA m k km GB m k k-+-==++,所以TA GA TB GB =.【名师点睛】求解直线与圆锥曲线相关问题时,一般需要联立直线与圆锥曲线方程,消元后得到关于x (或y )的一元二次方程,结合根与系数关系与判别式,以及题中条件,利用圆锥曲线的相关性质,即可求解.11.如图,在平面直角坐标系xoy 中,已知椭圆C :22221x ya b+=(0)a b >>的离心率1,2e =左顶点为(2,0)A -,过点A 作斜率为(0)k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的(0)k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(3)若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AEOM+的最小值.【试题来源】上海市高考压轴【答案】(1)22143x y +=;(2)存在,3(,0)2-;(3) 【解析】(1)因为椭圆C :22221x y a b+=0a b >>()的离心率1,2e =左顶点为(2,0)A -, 所以2a =,又12e =,所以1c =,可得2223b a c =-=, 所以椭圆C 的标准方程为22143x y +=;(2)直线l 的方程为(2)y k x =+,由22143(2)x y y k x ⎧+=⎪⎨⎪=+⎩,可得22(2)(43)860x k x k ⎡⎤+++-=⎣⎦,所以12x =-,2228643k x k -+=+,当 228643k x k -+=+时,2228612(2)4343k ky k k k -+=+=++, 所以2228612(,)4343k k D k k -+++,因为点P 为AD 的中点,所以P 点坐标为22286(,)4343k kk k -++, 则3(0)4OP k k k-=≠,直线l 的方程为(2)y k x =+,令0x =,得E 点坐标为(0,2)k , 假设存在定点(,)(0)Q m n m ≠使得OP EQ ⊥,则1OP EQ k k ⋅=-, 即3214n kk m -⎛⎫-⋅=- ⎪⎝⎭恒成立,所以(46)30m k n +-=, 所以46030m n +=⎧⎨-=⎩,即320m n ⎧=-⎪⎨⎪=⎩,所以定点Q 的坐标为3(,0)2-.(3)因为//OM l ,所以OM 的方程可设为y kx =,和22143x y +=联立可得M点的横坐标为x =, 由//OM l可得22D A E A D A M M x x x x x x AD AE OM x x -+--+===≥=,即2k=±时取等号,所以当2k=±时,AD AEOM+的最小值为.【名师点睛】解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y,,()22B x y,;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出根与系数关系;(4)将所求问题或题中关系转化为1212,x x x x+形式;(5)代入根与系数关系求解.12.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且椭圆C过点3,22⎛⎝⎭.(1)求椭圆C的标准方程;(2)过椭圆C右焦点的直线l与椭圆C交于,A B两点,且与圆22:2O x y+=交于E F、两点,求2||||AB EF⋅的取值范围.【试题来源】云南省曲靖市第二中学、大理新世纪中学2021届高三第一次模拟考试(理)【答案】(1)22132x y+=;(2)3⎡⎢⎣.【分析】(1)先利用离心率得到,a b的关系,再利用点在椭圆上得到,a b另一个关系,解方程即得椭圆方程;(2)先讨论斜率不存在时2||||AB EF⋅的值,再设斜率存在时的直线方程,联立椭圆方程,利用根与系数关系求弦长||AB,再利用几何法求圆中的弦||EF的长,最后计算2||||AB EF⋅的取值范围即可.【解析】(1)由已知可得ca=,所以2213c a=,故222223b ac a=-=,即2232a b=,所以椭圆的方程为2222132x ybb+=,将点32⎛⎝⎭带入方程得22b=,即23a=,所以椭圆C 的标准方程为22132x y +=;(2)由(1)知,21c =,故椭圆的右焦点为(1,0), ①若直线l 的斜率不存在,直线l 的方程为1x =,则,1,,(1,1),(1,1)A B E F ⎛⎛- ⎝⎭⎝⎭,所以22|||4,||||AB EF AB EF ==⋅=②若直线l 的斜率存在,设直线l 方程为(1)y k x =-,设()()1122,,,A x y B x y ,联立直线l 与椭圆方程()221321x y y k x ⎧+=⎪⎨⎪=-⎩,可得()2222236360k x k x k +-+-=, 则2122623k x x k+=+,21223623k x x k -=+, 所以)22123k AB k +===+, 因为圆心()0,0到直线l的距离d =所以在圆22:2O x y +=中由21||2EF ⎛⎫= ⎪⎝⎭()()222222242||44211k k EF r dk k +⎛⎫=-=-= ⎪++⎝⎭,所以)())2222222142223123k k k AB EF k k k +++⋅=⋅=+++2431233k ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭, 因为[)20k ∈+∞,,则222,33k ⎡⎫+∈+∞⎪⎢⎣⎭,230,2213k ⎛⎤∈ ⎥⎝⎦+,故(]20,22433k ∈+,(]24311,323k +∈+,故24312333k ⎫⎪⎛+∈ ⎪ ⎝ ⎪+⎝⎭,即2||3AB EF ⎛⋅∈ ⎝,综上,2||3AB EF ⎡⋅∈⎢⎣.13.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,右顶点、上顶点分别为A 、B ,原点O 到直线AB. (1)求椭圆C 的方程;(2)若P ,Q 为椭圆C 上两不同点,线段PQ 的中点为M . ①当M 的坐标为()1,1时,求直线PQ 的直线方程 ②当三角形OPQOM 的取值范围.【试题来源】江苏省连云港市新海高级中学2020-2021学年高三上学期期末【答案】(1)22142x y +=(2)①230x y +-=,②OM ⎡∈⎣. 【解析】(1)设直线:1x yAB a b+=,即0bx ay ab +-=, 所以O 到直线AB==,所以226a b +=,因为2222226c e a a b c a b ⎧==⎪⎪⎪=+⎨⎪+=⎪⎪⎩,所以2242a b ⎧=⎨=⎩,所以椭圆C 的方程为22142x y +=;(2)①因为PQ 的中点为()1,1M ,且PQ 的斜率存在,设()()1122,,,P x y Q x y ,所以221122222424x y x y ⎧+=⎨+=⎩,所以()()222212122x x y y -=--,所以121212122x x y y y y x x +-=-+-, 因为12122,2x x y y +=+=,所以121212PQ y y k x x -==--,所以PQ 的直线方程为()1112y x -=--,即230x y +-=; ②若直线PQ 垂直于x轴,则2221222222p p p p p x x y x x ⎛⎫⨯=-=⇒= ⎪ ⎪⎝⎭ 22M x ⇒=,0M y =,所以OM =若直线PQ 不垂直于x 轴,设直线PQ 方程:()0y kx m m =+≠,()()1122,,,P x y Q x y ,()22222124240142y kx mk x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 所以122412km x x k +=-+,21222412-⋅=+m x x k,()()()2224412240km k m∆=-+->,即2242k m +>,因为O 到PQ的距离为d =所以12OPQS===,()()()2222222222241212012m k m k k m k m ⎡⎤⇒+-=+⇒+-=⇒+=⎣⎦, 且此时2242k m +>,即0∆>满足,而12222212M x x km k x k m+-===-+, 1M M y kx m m =+=,所以OM ===,因为2212k m +=,所以21m ≥,所以21122m ≤-<,所以1OM ≤<综上可知OM ⎡∈⎣.14.已知椭圆2222:1(0)x y C a b a b +=>>的离心率2e =,且经过点(0,1)D .(1)求椭圆C 的方程;(2)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于,M N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由. 【试题来源】北京市石景山区2021届高三上学期数学期末试题【答案】(1)2214x y +=;(2)BAM ∠=OAN ∠,理由见解析. 【解析】(1)由已知1b =,c e a ==, 又222a b c =+,解得2,1a b ==. 所以椭圆C 的方程为2214x y +=.(2)依题意设直线l 的方程为(4)y k x =+,设1122(,),(,)M x y N x y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则216(112)0k ∆=->,解得k <<. (*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =k =±与(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为1212121212(4)(4)332111111AM AN y y k x k x k k k k k x x x x x x +++=+=+=++++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++22222222323(2)3(242)142206443236311414k k k k k k k k k k k k -+-++=+=+=---++++,所以AM AN k k =-.所以BAM ∠=OAN ∠.15.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(.(1)求椭圆C 的方程;(2)若直线y x m =+与椭圆C 交于不同的两点,A B ,且线段的中点M 在圆221x y +=上,求m 的值.【试题来源】宁夏平罗中学2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2). 【解析】(1)因为椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(,所以222421a b=⎨+=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩,因此椭圆C 的方程为22184x y +=; (2)设()11,A x y ,()22,B x y ,由22184y x m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得2234280x mx m ++-=,由()221612280m m ∆=-->解得212m <, 又1243mx x +=-,则1212422233m m y y x x m m +=++=-+=,所以AB 的中点坐标为2,33m m M ⎛⎫-⎪⎝⎭, 又点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得295m =满足212m <,所以m =. 【名师点睛】求解本题的关键在于用m 表示出点M 的坐标;利用题中条件,联立直线与椭圆方程,消去x (y )得到关于y (或x )的一元二次方程,根据根与系数关系及中点坐标公式,求出M 坐标,即可求解.16.已知椭圆22:142x y C +=.(1)求椭圆C 的离心率和长轴长;(2)已知直线2y kx =+与椭圆C 有两个不同的交点,A B ,P 为x 轴上一点. 是否存在实数k ,使得PAB △是以点P 为直角顶点的等腰直角三角形?若存在,求出k 的值及点P 的坐标;若不存在,说明理由.【试题来源】北京市西城区2021届高三上学期数学期末试题 【答案】(1)2,4;(2)存在,当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-.【解析】(1)由题意:24a =,22b =,所以2a =. 因为222a b c =+,所以22c =,c =c e a ==. 所以椭圆C,长轴长为4. (2)联立222,142y kx x y =+⎧⎪⎨+=⎪⎩ 消y 整理得22(21)840k x kx +++=. 因为直线与椭圆交于,A B 两点,故0>,解得212k >. 设()()1122,,,A x y B x y ,则122821k x x k -+=+,122421x x k =+. 设AB 中点00(,)G x y ,则12024221x x k x k +-==+,0022221y kx k =+=+,故2242(,)2121k G k k -++. 假设存在k 和点(,0)P m ,使得PAB △是以P 为直角顶点的等腰直角三角形,则PG AB ⊥,故1PG AB k k ⋅=-,所以222211421k k k m k +⨯=--+,解得2221k m k -=+,故22(0)2+1kP k -,.因为2APB π∠=,所以0PA PB ⋅=. 所以1122(,)(,)0x m y x m y -⋅-=,即1112()()0x m x m y y --+=.整理得 221212(1)(2)()40k x x k m x x m ++-+++=.所以222248(1)(2)402121k k k m m k k +⋅--⋅++=++, 代入2221km k -=+,整理得41k =,即21k =. 当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-. 此时,PAB △是以P 为直角顶点的等腰直角三角形. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.17.已知椭圆()2222:10x y C a b a b +=>>过点⎛ ⎝⎭,且C的离心率为2. (1)求椭圆C 的方程;(2)过点()1,0P 的直线l 交椭圆C 于A 、B 两点,求PA PB ⋅的取值范围. 【试题来源】北京市朝阳区2021届高三上学期期末数学质量检测试题【答案】(1)2214x y +=;(2)3,34⎡⎤⎢⎥⎣⎦. 【解析】(1)由题意得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得21a b =⎧⎨=⎩.所以椭圆C 的方程为2214xy +=;(2)分以下两种情况讨论:①若直线l 与x 轴重合,则()()21113PA PB a a a ⋅=-⋅+=-=;②若直线l 不与x 轴重合,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,联立22114x my x y =+⎧⎪⎨+=⎪⎩,消去x 可得()224230m y my ++-=,则()()22241241630m m m ∆=++=+>恒成立, 由根与系数关系可得12224m y y m +=-+,12234y y m =-+, 由弦长公式可得()()22121223114m PA PB y y m y y m +⋅==+⋅=+()2223499344m m m +-==-++,244m +≥,则299044m <≤+,所以,2393344m ≤-<+. 综上所述,PA PB ⋅的取值范围是3,34⎡⎤⎢⎥⎣⎦.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【试题来源】北京通州区2021届高三上学期数学摸底(期末)考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩ 消去y ,整理得()2223484120kx kx k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k -⋅=+. 所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+yy x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.【名师点睛】本题第二问解题的关键在于分类讨论直线斜率不存在和存在两种情况,当直线斜率存在时,设()11,M x y ,()22,N x y ,写出直线AM 的方程是()1122y y x x =++和直线BN 的方程是()2222y y x x =--,进而计算得4x =时的纵坐标相等即可.考查运算求解能力,是中档题.19.椭圆C :22221x y a b +=(0)a b >>的左、右焦点分别为F 1、2F ,过1F 向圆2F :22(2)1x y -+=引切线F 1T (T 为切点),切线F 1T23, (1)求椭圆C 的方程;(2)设(,)M x y 为圆2F 上的动点,O 为坐标原点,过F 2作OM 的平行线,交椭圆C 于G ,H 两点,求MGH 的面积的最大值.【试题来源】江西省新余市2021届高三上学期期末统考(理)【答案】(1)22195x y +=;(2)52. 【解析】(1)连接2F T ,则F 1T ⊥2F T,由题意得12||4F F =,所以c =2. 因为23c e a ==,则a =3,b ==C 的方程为22195x y+=;(2)设1122(,),,()G x y H x y ,直线GH 的方程为x =my +2,由222,1,95x my x y =+⎧⎪⎨+=⎪⎩可得22(902)5250m y my ++-=,222(20)4(59)(25)900(1)0m m m ∆=-+-=+>则1222059m y y m +=-+,1222559y y m =-+.所以12||y y -===所以12||GH y y ===-2223030(1)5959m m m +==++. 因为//GH OM ,所以点M 到直线GH 的距离等于原点O 到直线GH的距离,距离为△MGH的面积为22130(1)259m S m +==+ 因为//GH OM ,所以直线OM :x my =,即0x my -=, 因为点(,)M x y 为圆2F 上的动点,所以点2F 到直线OM的距离1d =≤,解得23m ≥t =,则221(2)m t t =-≥,所以2230303045(1)9545t t S t t t t===-+++,因为4()5f t t t=+在[2,)+∞上单调递增,所以当t =2时,()f t 取得最小值,其值为12,所以△MGH 的面积的最大值为52.20.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =直线10x +-=被以椭圆C(1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.【试题来源】吉林省长春外国语学校2021届高三上学期期末考试(文)【答案】(1)2214x y +=;(2)2]3.【解析】(1)因为原点到直线10x -=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =.又22222314c b e a a ==-=,得2a = 所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=, 所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >, 所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y +==+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<.综上可得2133λ<≤,即2(]133. 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.如图,点()0,1P -是椭圆1C :22221x y a b+=(0a b >>)的一个顶点,1C 的长轴是圆2C :224x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交椭圆1C 于另一点D ,2l 交圆2C 于A ,B 两点.(1)求椭圆1C 的方程;(2)当ABD △的面积取得最大值时,求直线1l 的方程.【试题来源】上学期江西省新余市2021届高三上学期期末质量检测(文)【答案】(1)2214x y +=;(2)1012y x =±- 【解析】(1)由题意可得1b =,24a =,即2a =.∴椭圆1C 的方程为2214xy +=;(2)设1(A x ,1)y ,2(B x ,2)y ,0(D x ,0)y .由题意可知直线1l 的斜率存在,设为k ,则直线1l 的方程为1y kx =-.又圆222:4C x y +=的圆心(0,0)O 到直线1l 的距离21d k =+.22243||2421k AB d k +∴=-+21l l ⊥,故直线2l 的方程为0x ky k ++=, 联立22044x ky k x y ++=⎧⎨+=⎩,消去y 得到22(4)80k x kx ++=,解得0284k x k =-+, 281||k PD +∴=.∴三角形ABD 的面积21843||||2ABDk S AB PD +==令244k t +=>,则24k t =-,224(4)34131244()13()131313t t f t t t -+-===--+,16S ∴=,当且仅132t =,即252k=,当k = 故所求直线1l 的方程为12y x =±-. 22.已知椭圆2222:1(0)x y C a b a b+=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为 (1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ 的交点为T ,求证:点T 横坐标为定值.【试题来源】陕西省西安市2020-2021学年高三上学期第一次质量检测(文)【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【解析】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩32a b c =⎧⎪=⎨⎪=⎩故C 的标准方程为22195x y +=.(2)由(1)知()30A -,,()3,0B ,()2,0F ,设00,,()T x y ,11(,)P x y ,()22,Q x y , 由010133TA PA y y k k x x =⇒=++'①,020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++,又2211195x y +=,故2211195x y -=-, 所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+. 所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点,所以设直线PQ 的方程为2x my =+,代入22195x y +=,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅,所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=,解得092x =. 所以点T 横坐标为定值92. 【名师点睛】解题的关键是根据A 、P 、T 和B 、Q 、T 共线得到TA PA k k =,TB QB k k =,化简整理,结合根与系数关系求解,直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率,考查分析理解,计算化简的能力,属中档题.23.已知椭圆2222:1(0)x y C a b a b+=>>倍,且过点.(1)求椭圆C 的标准方程;(2)点P 是圆心在原点OO 上的一个动点,过点P 作椭圆的两条切线,且分别交其圆O 于点E 、F ,求动弦EF 长的取值范围.【试题来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22184x y +=;(2). 【解析】(1)由22a c =得a =,把点代入椭圆方程得22421a b +=, 又222a b c =+,所以228,4a b ==,椭圆的标准方程为22184x y +=.(2)设过点P 作椭圆的两条切线分别为12,l l .①当12,l l 中有一条斜率不存在时,不妨设1l 斜率不存在,因为1l与椭圆只有一个公共点,则其方程为x =x =-, 当1l方程为x =1l 与圆O交于点和2)-,此时经过点,2)-且与椭圆只有一个公共点的直线是2y =或2y =-, 即2l 为2y =或122,y l l =-⊥,由题目知,圆O 的方程为2212x y +=, 所以线段EF 应为圆O的直径,所以||EF =.②当12,l l 斜率都存在时,设点()00,P x y ,其中220012x y +=,且22008,4x y ≠≠,设经过点()00,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+,则()0022184y t x x y x y ⎧=-+⎪⎨+=⎪⎩,消去y 得到()()()2220000124280t x t y tx x y tx ++-+--=, 所以()2220000648163280x t x y t y ∆=-++-=,()2200122200328123281648648x y t t x x ---===---, 所以121t t =-,满足条件的两直线12,l l 垂直. 所以线段EF 应为圆O的直径,所以||EF =,综合①②知因为12,l l 经过点()00,P x y ,又分别交圆于点E ,F ,且12,l l 垂直,所以线段EF 为圆220012x y +=的直径,所以||EF =为定值.故EF的取值范围.24.椭圆()2222:10x y C a b a b+=>>的右焦点为F ,离心率为12,过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =. (1)求C 的方程;(2)若直线:4m x =与x 轴交于M 点,AD ⊥直线m ,垂足为D (不与M 重合),求证:直线BD 平分线段FM .【试题来源】贵州省贵阳市普通中学2021届高三上学期期末监测考试(文)【答案】(1)22143x y +=;(2)证明见详解. 【解析】(1)记椭圆()2222:10x y C a b a b+=>>的右焦点为(),0F c ,因为椭圆的离心率为12,即12caa ==,所以2234b a =;又过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =,将x c =代入22221x y a b +=可得2422221c b y b a a ⎛⎫=-= ⎪⎝⎭,则2b y a =±,所以223b a =,由2223423b a b a==解得2243a b ⎧=⎨=⎩,即椭圆C 的方程为22143x y +=;(2)因为直线:4m x =与x 轴交于M 点,则()4,0M ;又AD ⊥直线m ,垂足为D (不与M 重合),所以直线AB 斜率不为0, 不妨设直线AB 的方程为1x my =+,设()11,A x y ,()22,B x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩消去x 可得()22314120my y ++-=,整理得()2234690m y my ++-=,则122122634934m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩,2334234m y m m -±==++, 不妨令1y=,2y =, 因为AD ⊥直线m ,垂足为D ,所以()14,D y , 因此直线BD 的方程为()211244y y y x y x -=-+-, 令0y =,则()()1212121212121433444y x y my my y y x y y y y y y ---=-=-=----293544422m-===-=;即直线BD与x轴的交点为5,02⎛⎫⎪⎝⎭,因为()1,0F,()4,0M,所以5,02⎛⎫⎪⎝⎭是FM中点,即直线BD平分线段FM.【名师点睛】求解本题第二问的关键在于求出直线BD与x轴交点的横坐标;解题时,需要先设AB的方程,联立直线与椭圆方程,结合根与系数关系,以及题中条件,表示出直线BD 的方程,即可求出与x轴交点的横坐标.25.椭圆()2222:10x yC a ba b+=>>过点()2,3M,其上、下顶点分别为点A,B,且直线AM,MB的斜率之积为34AM BMk k⋅=-.(1)求椭圆C的方程;(2)过椭圆C的左顶点(),0Q a-作两条直线,分别交椭圆C于另一点S,T.若2QS QTk k+=,求证:直线ST过定点.【试题来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考(理)【答案】(1)2211612x y+=;(2)证明见解析.【解析】(1)因为()0,A b,()0,B b-,所以333224MA MBb bk k-+⋅=⋅=-,解得212b=,将212b=,()2,3M都代入椭圆方程,得216a=,所以椭圆方程为2211612x y+=;(2)证明:设()11,S x y,()22,T x y,直线ST的方程为y kx t=+.将y kx t=+代入椭圆方程,整理得()2223484480k x ktx t+++-=,122843ktx xk+=-+,212244843tx xk-=+,由1212244y yx x+=++,得1212244kx t kx tx x+++=++.。

椭圆及其几何性质课件-高三数学一轮复习

椭圆及其几何性质课件-高三数学一轮复习

B 分别为 C 的左,右顶点.P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l
与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C
的离心率为( A )
A.13
B.12
C.23
D.34
[解析] 设点 M(-c,y0),OE 的中点为 N,则直线 AM 的斜率 k=a-y0 c, 从而直线 AM 的方程为 y=a-y0 c(x+a), 令 x=0,得点 E 的纵坐标 yE=aa-y0c.同理,OE 的中点 N 的纵坐标 yN=aa+y0c. 因为 2yN=yE,所以a+2 c=a-1 c,即 2a-2c=a+c,所以 e=ac=13.故选 A.
(2)已知椭圆xa22+by22=1(a>b>0)上有一点 A,它关于原点的对称点为 B,点 F
为椭圆的右焦点,且 AF⊥BF.设∠ABF=α,且 α∈1π2,π6,则该椭圆的离 心率 e 的取值范围为( A )
A.
3-1,
6
3
B.[ 3-1,1)
C.
46,
6
3
D.0,
6
3
[解析] 如图所示,设椭圆的左焦点为 F′,连接 AF′,BF′,则四边形 AFBF′
为矩形,因此|AB|=|FF′|=2c,|AF|+|BF|=2a,|AF|=2csin α,|BF|=2ccos
α,∴2csin α+2ccos α=2a,
∴e=sin
1 α+cos
α=
2sin1α+π4.∵α∈1π2,π6,∴α+π4∈π3,51π2,
∴sinα+π4∈ 23,
2+ 4
6,∴
2sinα+π4∈ 26,1+2

椭圆的几何性质课件-2025届高三数学一轮复习

椭圆的几何性质课件-2025届高三数学一轮复习

微思考 椭圆的范围经常在什么情况下使用?
提示:在解答求值域、最值范围是否存在等题目时,使用范围这个性质.
微点拨
(1)椭圆焦点位置与x2,y2的系数有关.
(2)离心率表示椭圆的扁平程度,e越接近0,椭圆越接近于圆;e越接近1,椭圆越扁平.
常用结论
1.设P为椭圆上不同于长轴两端点的点,F1,F2为椭圆的两个焦点,则
【解析】(1)由题意得:2a=8,2b=6,所以a=4,b=3,结合焦点在x轴上,
2 2
故椭圆方程为 + =1.
16 9
求适合下列条件的椭圆的标准方程:
(2)中心在原点,一个焦点坐标为(0,5),短轴长为4;
【解析】(2)由题意得:c=5,2b=4,故a2=b2+c2=4+25=29,因为焦点在y轴上,故椭圆方程
16 4
2 2
2 2
综上所述:椭圆的标准方程为 +y =1或 + =1.
4
16 4
1
(2)(2024·南昌模拟)已知椭圆的离心率为 ,焦点是(-3,0),(3,0),则椭圆方程为(
2
2 2
A. + =1
36 27
2 2
B. - =1
36 27
2 2
C. + =1
27 36
2 2
(负值舍去).
2
(2)(2024·成都模拟)已知F1,F2是椭圆的两个焦点,满足1 ·2 =0的点M总在椭圆
内部,则椭圆离心率的取值范围是(
A. (0,
2
)
2
B.
1
(0, ]
2
C.(0,1)
)
D.[
2
,1)

高三椭圆相关知识点总结

高三椭圆相关知识点总结

高三椭圆相关知识点总结在高三数学学习中,椭圆是一个十分重要且常见的几何图形。

它具有许多独特的性质和特点,对于理解和解决相关题目至关重要。

本文将对高三椭圆的相关知识点进行总结,旨在帮助同学们更好地理解椭圆的性质和应用。

1. 椭圆的定义及公式椭圆是平面上到两个定点F₁和F₂距离之和等于常数2a的动点P的轨迹。

定点F₁和F₂称为椭圆的焦点,两焦点之间的距离为2c,且c²=a²-b²。

椭圆的离心率e=c/a。

椭圆的标准方程为,(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标。

2. 椭圆的性质- 长轴和短轴:椭圆的两焦点距离为2c,且c²=a²-b²,所以椭圆的长轴为2a,短轴为2b。

- 离心率:椭圆的离心率e=c/a,离心率越接近0,椭圆的形状越接近于圆;离心率越接近1,椭圆的形状越扁平。

- 对称性:椭圆关于x轴和y轴都具有对称性,中心对称。

3. 椭圆的方程变形椭圆的方程在数学上经常需要进行变形和化简。

以下是几种常见的椭圆方程变形形式:- 标准方程变形:将标准方程进行代数变形和化简,可以得到不同形式的椭圆方程,如正方形椭圆、长轴平行于y轴的椭圆等。

- 参数方程:将椭圆的方程用参数表示,例如x=a*cosθ,y=b*sinθ,其中θ为参数。

- 三角方程:利用三角函数的性质,将椭圆的方程变形为三角函数的方程,如x²/a²+ y²/b² = 1可以变形为sin²θ/a² + cos²θ/b² = 1。

4. 椭圆的性质与应用- 焦点定理:椭圆上任意一点P到两焦点F₁和F₂的距离之和等于椭圆的长轴长度,即PF₁ + PF₂ = 2a。

- 弦焦定理:椭圆上任意一条弦的两个焦点到弦的距离之和等于常数2a。

- 切线性质:椭圆上的点P处的切线斜率为y/x=-b²x/a²y。

高三椭圆的知识点

高三椭圆的知识点

高三椭圆的知识点椭圆是高中数学中重要的几何图形之一,它在解决实际问题中具有广泛的应用。

下面将介绍高三椭圆的相关知识点,包括定义、性质以及常见的解题方法。

一、椭圆的定义椭圆可由平面上到两个定点(焦点)F1和F2的距离之和等于常数2a,确定的点P的轨迹得到。

椭圆的中心为焦点连线中点O,以及焦点连线的中垂线l。

离心率e小于1,表明椭圆是一个封闭图形。

二、椭圆的性质1. 焦距性质:椭圆上的每一点到两个焦点的距离之和等于常数2a。

2. 几何定义椭圆:直角坐标系中,椭圆的方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)为椭圆的中心坐标,a为横半轴长,b为纵半轴长。

椭圆的右右焦点F(h+c,k)和左焦点(h-c,k)。

3. 参数方程椭圆:通过参数方程x = h + a*cosθ,y = k + b*sinθ,其中θ为参数。

4. 离心率与半轴关系:离心率e的定义为e = c/a,离心率与半轴关系式为c^2 = a^2 - b^2。

5. 曲线方程性质:椭圆是一个二次曲线,代数方程为Ax^2 + By^2 + Cx + Dy + E = 0。

三、椭圆的重要定理1. 线性方程:椭圆的一般方程Ax^2 + By^2 + Cx + Dy + E = 0可以通过平行于坐标轴的两条直线进行化简,并找到方程相应的参数。

2. 切线与法线:过椭圆上任一点的切线与法线斜率的关系式分别为k1 = -x0b^2 / (y0a^2),k2 = y0b^2 / (x0a^2)。

3. 曲线的切线方程:切线方程的一般形式为y = kx + b,切线与椭圆交点的坐标可通过求解方程得到。

4. 曲线的法线方程:法线方程的一般形式为y = -kx + c,法线与椭圆交点的坐标可通过求解方程得到。

四、椭圆的解题方法在解题过程中,可以运用椭圆的基本定义、性质和定理来求解与椭圆相关的各种问题。

具体方法如下:1. 已知椭圆方程求解:将已知的椭圆方程转化为标准方程,找出椭圆的参数,并求解各属性,如中心坐标、焦点坐标、离心率等。

高三数学椭圆常考题型

高三数学椭圆常考题型

高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。

3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。

4. 椭圆的准线方程为:x = ±a^2/c。

二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。

(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。

【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

由离心率的定义,我们有e = c/a = 1/2。

再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。

由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。

所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。

(2) 设AB的方程为y = kx + t。

代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。

设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。

由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。

将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件
答案 6
抛物线的方程及几何性质
(5分)(2011·山东)设M(x0,y0)为抛物线C: x2=8y上一点,F为抛物线C的焦点,以F为 圆心、|FM|为半径的圆和抛物线C的准线相交, 则y0的取值范围是
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
【标准解答】 ∵x2=8y, ∴焦点F的坐标为 (0,2), 准线方程为y=-2.
∴c2=a2-b2=8.∴e=ac=2 4 2=
2 2.
答案 D
4.(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该
抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的 距离为
3 A.4
B.1
5
7
C.4
D.4
解析 ∵|AF|+|BF|=xA+xB+12=3,∴xA+xB=52.
解析 由于直线AB的斜率为-ba,故OP的斜率为-ba,
直线OP的方程为y=-bax.
与椭圆方程ax22+by22=1联立,解得x=±
2 2 a.
因为PF1⊥x轴,所以x=- 22a,
从而- 22a=-c,即a= 2c. 又|F1A|=a+c= 10+ 5, 故 2c+c= 10+ 5,解得c= 5, 从而a= 10.所以所求的椭圆方程为1x02 +y52=1. 答案 1x02 +y52=1
又双曲线的离心率e= a2a+b2= a7,所以 a7=247, 所以a=2,b2=c2-a2=3, 故双曲线的方程为x42-y32=1.
答案 x42-y32=1
圆锥曲线是高考考查的重点,一般会涉及到 圆锥曲线的定义、离心率、圆锥曲线的几何 性质及直线与圆锥曲线的位置关系等. 在命题 中体现知识与能力的综合,一般地,选择题、 填空题的难度属中档偏下,解答题综合性较 强,能力要求较高,故在复习的过程中,注 重基础的同时,要兼顾直线与圆锥曲线的综 合问题的强化训练,尤其是对推理、运算能 力的训练.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学专题复习----椭圆
一 基础知识
(1)椭圆的第一定义第二定义,(2)椭圆的标准方程,(3)椭圆的性质,(4)椭圆和直线的位置关系
二 例题
1、方程m
y x ++16m -252
2=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) (A)-16<m<25 (B)-16<m<
29 (C)29<m<25 (D)m>2
9 2、已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )
(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9
x 2+25y 2
=1
3、椭圆5x 2
+4
y 2=1的两条准线间的距离是( )
(A )52 (B )10 (C )15 (D )
3
50
4、以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )
(A )
2
1
(B )22(C )23(D )33
5、若椭圆
19822=++y k x 的离心率是2
1,则k 的值等于 ( ) (A)-
45 (B)45 (C)-45或4 (D)4
5
或4 6、椭圆mx 2+y 2=1的离心率是
2
3
,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )
2
1
或1 7、已知椭圆的对称轴是坐标轴,离心率e=
3
2
,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36
y 2
=1
(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5
x 2+9y 2
=1
8、椭圆22a x +22
b y =1的两个焦点F 1, F 2三等分它的两条准线间的距离,那么它的离
心率是( )。

(A )32 (B )33 (C )63 (D )6
6
9、椭圆100x 2+36
y 2
=1上的一点P 到它的右准线的距离是10,那么P 点到它的左焦
点的距离是( )。

(A )14 (B ) 12 (C )10 (D )8
10、F 1、F 2是椭圆x 29+y 2
25
=1的两个焦点,AB 是过点F 1的弦,则∆ABF 2的周长是
( )
(A)10 (B)12 (C)20 (D)不能确定
11、过椭圆x 29+y 2=1的一个焦点且倾角为6
π
的直线交椭圆于M 、N 两点,则|
MN |等于( )。

(A )8 (B )4 (C )2 (D )1
12、短轴长为5,离心率为
3
2
的椭圆的两个焦点分别为F 1,F 2,过F 1作直线交椭圆于A ,B 两点,则△ABF 2的周长为( )。

(A )24 (B )12 (C )6 (D )3
13、设A(-2, 3),椭圆3x 2+4y 2=48的右焦点是F ,点P 在椭圆上移动,当|AP|+2|PF|取最小值时P 点的坐标是( )。

(A )(0, 23) (B )(0, -23) (C )(23, 3) (D )(-23, 3)
14、直线y=x +1被椭圆x 2+2y 2=4截得的弦的中点坐标是 ( )
(A)(
32,-31) (B)(31,-32) (C)(-32,31) (D)(-31,3
2) 15、设F 1、F 2是椭圆
116
252
2=+y x 的两个焦点,P 是椭圆上不与长轴两个端点重合的一点,则 ( )
(A)△PF 1F 2的面积是定值 (B)∠F 1PF 2是定角
(C)△PF 1F 2的周长是定值 (D)△PF 1F 2中边F 1F 2的中线长为定值
16、椭圆122
22=+b
y a x 上有两点A 、B ,O 是椭圆中心,若OA ⊥OB ,|OA|=m ,
|OB|=n ,则
2
21
1n
m +等于 ( ) (A)ab b a 22+ (B)2
2b a b a ++ (C)ab b
a + (D)2222
b a b a +
17、、M 是椭圆22
y 2
x +=1上的一点,F 1、F 2是两个焦点,满足MF 1⊥MF 2的点M 有 ( )
(A)0个 (B)2个 (C)4个 (D)1个
18、设F 1、F 2是椭圆的两个焦点,|F 1F 2|=8,P 是椭圆上的点,|PF 1|+|PF 2|=10,且PF 1⊥PF 2,则点P 的个数是 ( ) (A)4 (B)3 (C)2 (D)1 19、椭圆上对两焦点张角为90°的点有 ( )
(A)4个 (B)2或4个 (C)0或4个 (D)0或2或4个
20、斜率-2的椭圆x 2+2y 2=2的动弦中点轨迹方程是 ( )
(A)y=x (B)y=x(x <
63) (C)y=-x (D)y=2x(x <23
) 21、椭圆ax 2+by 2=1与直线y=1-x 交于A 、B 两点,过原点与弦AB 中点的直线
的斜率为
22,则b
a
的值为 ( ) (A)
22 (B)332 (C)229 (D)27
32 22、设P 为椭圆
1162522=+y x 上的点,F 1、F 2为椭圆的焦点,∠F 1PF 2=6
π
,则△PF 1F 2的面积等于 ( )
(A)
3
3
16 (B)32(16+) (C)32(16-) (D)16 23、过点(2,2)引椭圆x 2+4y 2=4的切线,则切线方程为 ( )
(A)3x-8y+10=0 (B)5x+8y-2=0
(C)3x-8y+10=0或x-2=0 (D)5x+8y-2=0或3x+10=0
24、已知直线y=kx+2和椭圆2x 2+3y 2=6有两个公共点,则k 的取值范围是 ( )
(A)k <-36或k >36 (B)-36<k <3
6
(C)k ≤-
36 或k ≥36 (D)-36≤k ≤3
6 25、AB 是过椭圆
x y 22
4913
1+=的左焦点的弦,且两端点A 、B 的横坐标之和为-7,则AB =____________。

26、已知椭圆
()x y b -+=19122的一条准线方程是x=11
2
,则b= 。

27、已知椭圆的两焦点为F 1(0,1),F 2(0,-1),P 是椭圆上任一点,F F 12是PF 1与PF 2的等差中项,则椭圆的方程为_________________。

28、已知一直线与椭圆4x 2+9y 2=36相交于两点A 、B ,弦AB 的中点坐标是(1,1),则直线AB 的方程是__________。

29、已知椭圆b 2x 2+a 2y 2=a 2b 2(a>b>c),其长轴两端点是A 、B ,若椭圆上存在点Q ,使∠AQB=1200,求椭圆离心率e 的变化范围。

30、长、短轴都在坐标轴上的椭圆与直线x +y -1=0交于A 、B 两点,已知
22=AB ,AB 的中点M 与椭圆中心O 的连线的斜率为2,求此椭圆的方程.
31、过椭圆x 2+3y 2=6上一点A (-3,1),任作两条倾斜角互补的直线,与椭圆相交于
B 、
C 两点,
(1)求证直线BC 的斜率为定值;
(2)求△ABC 的面积S 的最大值.
32、已知椭圆,12
222=+b y a x 其长轴是短轴长的2倍,右准线方程为.334
=
x (1) 求此椭圆的方程; (2)
如过点),0(m 且倾角为
4
π
的直线l 与椭圆交于A 、B 两点,当△AOB (O 为
原点)面积最大时,求m 的值。

相关文档
最新文档