运筹学第一次作业
运筹学作业及答案1

北京科技大学远程与成人教育学院 《 运筹学 》作业一2014.3姓名 学号 专业 教学点1、用图解法求解下列线性规划问题(15分)⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+=0x ,x 3 x 122x +3x 6 x -2x ..max 211212121t s x x Z2、用单纯形法求解以下线性规划问题(20分)⎪⎩⎪⎨⎧≥≤=++-=0 x ,x ,x 12 x -2x 124x 3x x ..2max 3213232132t s x x Z 解:3、已知某运输问题如下(单位:百元/吨):求:(1)使总运费最小的调运方案和最小运费。
(20分)(2)请以该问题的初始调运方案为例,说明非基变量检验数的经济含义。
(20分)5、求下图中从A到E的最短路线和最短路长(图中每条边上的数字为该条边的长度)。
(25分)《 运筹学 》作业一参考答案2014.3解2、用单纯形法求解以下线性规划问题(20分)解:⎪⎩⎪⎨⎧≥==++-=+0 x ,x ,x 12 x -2x 124x 3x x ..2max X43,214 3232132X t s x x Z迭代正确10分最优解为:x1=0 x2=4 x3=0 x4=4 (2分)最大值为z=4 (1分)3、已知某运输问题如下(单位:百元/吨):求:(1)使总运费最小的调运方案和最小运费。
(20分)(3)请以该问题的初始调运方案为例,说明非基变量检验数的经济含义。
(20分)用最小元素法得出初始运输方案为:X14=3; x21=1; x23=4; x24=1; x31=3;x32=3由位势法求检验数:U1+v4=1 u2+v1=10 u2+v3=5 u2+v4=4 U3+v1=7 u3+v2=6令u2=0得v1=10 v3=5 v4=4 u3=-3 v2=9 u1= -3所以检验数为:511-=σ;512=σ;013=σ;122-=σ;734=σ;433=σ 所以初始方案不是最优的5、求下图中从A 到E 的最短路线和最短路长(图中每条边上的数字为该条边的长度)。
运筹学1

16/10
若将目标函数变为max Z = 2x1 + 4x2 ,则表示目标函数的等值线与约束 条件x1 + 2x2 ≤8的边界线x1 + 2x2 = 8平行。当Z值由小变大时,与线段Q 2Q3重合,如图1.3所示,线段Q2Q3上任意一点都使Z取得相同的最大值, 即这个线性规划问题有无穷多最优解。
17/10
运筹学第一次作业指导
储宜旭
이 문서는 나눔글꼴로 작성되었습니다. 설치하 기
运筹学
2/10
3/10
4/10
5/10
实际问题线性规划模型的基本步骤: (1) 确定决策变量。这是很关键的一步,决策变量选取 得当,不仅会使线性规划的数学模型建得容易,而且 求解比较方便。 (2) 找出所有限制条件,并用决策变量的线性等式或不 等式来表示,从而得到约束条件。一般可用表格形式 列出所有的限制数据,然后根据所列出的数据写出相 应的约束条件,以避免遗漏或重复所规定的限制要求。 (3) 把实际问题所要达到的目标用决策变量的线性函数 来表示,得到目标函数,并确定是求最大值还是最小 值。
10/10
11/10
12/10
线性规划问题的图解法
为了给后面的线性问题的基本理论提供较直观的几何说明, 先介绍线性规划问题的图解法。 我们把满足约束条件和非负条件的一组解叫做可行解,所有 可行解组成的集合称为可行域。 图解法的一般步骤如下。 (1) 建立平面直角坐标系。 (2) 根据线性规划问题的约束条件和非负条件画出可行域。 (3) 作出目标函数等值线Z = c(c 为常数),然后根据目标函 数平移等值线至可行域边界,这时目标函数与可行域的交点 即最优解。
运筹学第一次作业

先用单纯形法求出最优解,然后分析在下列各种条件下,最优解分别有什么变化?(1)约束条件①的右端常数由20变为30;(2)约束条件②的右端常数由90变为70;(3)目标函数中X 3的系数由13变为8;(4) X 1的系数列向量由 变为; (5)增加一个约束条件③⎪⎩⎪⎨⎧≥≤++≤++-++-=0x ,x ,x )2(90x 10x 4x 12)1(20x 3x x .t .s x 13x 5x 5Z max 321321321321⎪⎪⎭⎫ ⎝⎛-121⎪⎪⎭⎫ ⎝⎛50)3(50x 5x 3x 2321≤++在上述线性规划问题的第①、②个约束条件中分别加入松弛变量X4,X5得列出此问题的初始单纯形表,并进行迭代计算,由表可知,线性规划问题的最优解X*=(0,20,0,0,10)T,目标函数最优值z*=5×20=100。
(1) 列出单纯形表,并利用对偶单纯形法求解,由表可知,线性规划问题的最优解变为X*=(0,0,9,3,0)T,目标函数最优值z*=13×9=117。
(2)列出单纯形表,并利用对偶单纯形法求解由表可知,线性规划问题的最优解变为X*=(0,5,5,0,0)T,目标函数最优值z*=5×5+13×5=90。
(3)x3为非基变量,其检验数变为σ3=8-5×3-0×(-2)=-7<0,所以线性规划问题的最优解不变。
(4) x1在最终单纯形表中的系数列向量变为P'1=B-1,从而x1在最终单纯形表中的检验数变为(X1X2X3)=(0200)f max=100所以线性规划问题的最优解不变(5)增加一个约束条件:2x1+3x2+5x3≤50。
在约束条件③中加入松弛变量x6,得2x1+3x2+5x3+x6=50,加入原单纯形表,并进行迭代计算。
由表中计算结果可知,目标函数最优值。
运筹学第1次及目标规划

第一次实验要求:建模并求解(excel规划求解)1、合理下料问题.现要做100套钢架,每套由长2.8米、2.2米和1.8米的元钢各一根组成,已知原材料长6.0米,问应如何下料,可以使原材料最省?如果每套钢架由2.8米的元钢1根、2.2米的元钢2根、1.8米的元钢3根,则如何修改数学模型?2、配料问题.某工厂要用三种原材料甲、乙、丙混合调配出三种不同规格的产品A、B、C.已知产品的规格要求、产品单价、每天能供应的原材料数量及原材料单价(分别见表1和表2),问该厂应如何安排生产,使利润收入为最大?表1表23、连续投资问题.某部门在今后五年内考虑给下列项目投资,已知:项目A,从第一年到第四年每年年初需要投资,并于次年末回收本利115%;项目B,第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;项目C,第二年初需要投资,到第五年末能回收本利140%,但规定最大投资额不超过3万元;项目D,五年内每年初可购买公债,于当年末归还,并加利息6%.该部门现有资金10万元,问它应如何确定给这些项目每年的投资额,使到第五年末拥有的资金的本利总额为最大?4、购买汽车问题.某汽车公司有资金600 000元,打算用来购买A、B、C三种汽车.已知汽车A每辆为10 000元,汽车B每辆为20 000元,汽车C每辆为23 000元.又汽车A每辆每班需一名司机,可完成2 100吨·千米;汽车B每辆每班需两名司机,可完成3 600吨·千米;汽车C每辆每班需两名司机,可完成3 780吨·千米.每辆汽车每天最多安排三班,每个司机每天最多安排一班.限制购买汽车不超过30辆,司机不超过145人.问:每种汽车应购买多少辆,可使每天的吨·千米总数最大?5、人员安排问题.某医院根据日常工作统计,每昼夜24小时中至少需要如下表所示数量的护士,护士们分别在各时段开始时上班,并连续工作8小时,向应如何安排各个时段开始上班工作的人数,才能使护士的总人数最少?目标规划实验要求:建模并求解(1-5选2个,6-12选3个)【案例6.1】升级调资问题.某高校领导在考虑本单位员工的升级调资方案时,依次考虑如下的目标:(1)年工资总额不超过900万元;(2)每级的人数不超过定编规定的人数;(3)副教授、讲师、助教级的升级面尽可能达到现有人数的20%;助教级不足编制的人数可直接聘用应届毕业研究生.教授级人员中有10%要退休.有关资料见表6.6,请为该领导拟定满意的方案.表6.6【案例6.2】农场生产计划问题.友谊农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为0.12吨、0.20吨、0.15吨.预计秋后玉米每亩可收获500kg,售价为0.24元/千克,大豆每亩可收获200千克,售价为1.20元/千克,小麦每亩可收获300千克,售价为0.70元/千克.农场年初规划时考虑如下几个方面:P1:销售收入不低于350万元;P2:总产量不低于1.25万吨;P3:小麦产量以0.5万吨为宜;P4:大豆产量不少于0.2万吨;P5:玉米产量不超过0.6万吨;P6:农场现能提供5 000吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好.试就该农场生产计划建立数学模型.【案例6.3】多目标运输问题.已知有三个产地给四个销地供应某种产品,产销地之间的供需量和单位运价,见表6.7有关部门在研究调运方案时依次考虑以下七项目标,并规定其相应的优先等级:P1:B4是重点保证单位,必须全部满足其需要;P2:A3向B1提供的产量不少于120;P3:每个销地的供应量不小于其需要量的80%;P4:所订调运方案的总运费不超过最小运费调运方案的20%;P5:因路段的问题,尽量避免安排将A2的产品运往B4;P6:给B1和B3的供应率要相同;P7:力求总运费最省.试求满意的调运方案.表6.7【案例6.4】电台节目安排问题.一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间.据有关规定,该台每天允许广播12小时,其中商业节目用以赢利,每分钟可收入250美元,新闻节目每分钟需支出40美元,音乐节目每播一分钟费用为17.50美元.根据规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目.问每天的广播节目该如何安排?优先级如下:P1:满足规定要求;P2:每天的纯收入最大.试建立该问题的目标规划模型.【案例6.5】混合配方问题.某酒厂用三种等级的原料酒I、II、III兑制成三种混合酒(A、B、C牌).这些原料酒的供应量受到严格限制,它们每日的供应量分别为1 500千克,2 000千克和1 000千克,供应价格分别为18元/千克,13.5元/千克和9元/千克.三种混合酒的配方及售价见表6.8.表6.8厂长确定:首先必须按规定比例兑制混合酒;其次是获利最大;再次是混合酒A每天至少生产2 000千克.试建立数学模型.6、公司决定使用100万元新产品开发基金开发A,B,C三种新产品.经预测估计,开发A,B,C三种新产品的投资利润率分别为5%,6%,8%.由于新产品开发有一定风险,公司研究后确定了如下优先顺序目标:第一,A产品至少投资30万元;第二,为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的35%;第三,应至少留有10%的开发基金,以备急用;第四,使总的投资利润最大.试建立投资方案的目标规划模型.7、某电子制造公司生产两种立体声耳机,一种为普及型,装配一个需1小时,另一种为豪华型,每个装配时间为2小时.正常的装配作业每周限定为40小时.市场调查表明,每周生产量普及型不超过30件,豪华型不超过15件.净利润普及型为每件40元,豪华型每件60元.已知公司经理对优先级的排序如下:P1:总利润最大;P2:装配线尽可能少加班;P3:销售耳机尽可能多;试建立此问题的目标规划模型.8、某工厂生产甲、乙两种产品,单位甲产品可获利6元,单位乙产品可获得4元.生产过程中每单位甲、乙产品所需机器台时数分别为2和3个单位,需劳动工时数分别为4和2个单位.该厂在计划期内可提供100个单位的机器台时数和120个劳动工时数,如果劳动力不足尚可组织工人加班.该厂制定了如下目标:第一目标:计划期内利润达180元;第二目标:机器台时数充分利用;第三目标:尽量减少加班的工时数;第四目标:甲产品产量达22件,乙产品产量达18件.上述四个目标分别为四个不同的优先等级.请列出该目标规划问题的数学模型,并用图解法、单纯形法(表格形式)分别求解之.9、已知单位牛奶、牛肉、鸡蛋中的维生素及胆固醇含量等有关数据如下表,如果只考虑三种食物,并且设立了下列三个目标:第一,满足三种维生素的每日最小需要量;第二,使每日摄入的胆固醇最少;第三,使每日购买食品的费用最少.要求建立问题的目标规划模型.10、某工厂生产白布、花布两种产品,其生产率皆为1 000米/小时;其利润分别为1.5元/米和2.5元/米;每周正常生产时间为80小时(加班时间不算在内).第一目标:充分利用正常生产时间进行生产;第二目标:每周加班时数不超过10小时;第三目标:销售花布要求达到70 000米,白布达45 000米;第四目标:每周利润达15万元.试建立上述问题的数学模型.11、某工厂生产唱机和录音机两种产品,每种产品均需经A、B两个车间的加工才能完成.表中给出了全部已知条件,要求尽可能实现的目标有以下六个:第一目标:仓库费用每月不超过4 600元;第二目标:唱机每月售出50台;第三目标:勿使A、B车间停工(权系数由两车间的生产费用决定);第四目标:车间A加班不超过20小时;第五目标:录音机每月售出80台;第六目标:车间A、B加班时数的总和要限制(权系数由两车间的生产费用决定).试列出该问题的目标规划数学模型.12、某公司下设三个工厂,生产同一种产品,现在要把三个工厂生产的产品运送给四个订户.工厂的供应量、订户的需求量以及从三个工厂到四个订户的单位运费如表所示(表格中方格内数字为单位运费).现在要作出一个产品调运计划,依次满足下列各项要求:p1:订户4的订货量首先要保证全部予以满足;p2:其余订户的订货量满足程度应不低于80%;p3:工厂3调运给订户1的产品量应不少于15个单位;p4:因线路限制,工厂2应尽可能不分配给订户4;p5:订户1和订户3的需求满足程度应尽可能平衡;p6:力求使总运费最小.试建立上述问题的目标规划模型.。
运筹学习题答案(第一章)

第一章习题解答
1.1 用图解法求解下列线性规划问题。并指出问
题具有惟一最优解、无穷多最优解、无界解还是无可 行解。
min Z 2x1 3x2
(1)
st
4 .2
x1 x1
6x2 2x2
6 4
x1, x2 0
max Z x1 x2
(3)
st
6 .
x1 10x2 5 x1
唯一最优解,x1 10, x2 6, Z 16
max Z 5x1 6x2
(4)
st.22xx11
x2 3x2
2
2
x1, x2 0
该问题有无界解
第一章习题解答
1.2 将下述线性规划问题化成标准形式。
min Z 3x1 4x2 2x3 5x4
4x1 x2 2x3 x4 2
max Z 10x1 5x2
(1)
st.35xx11
4 x2 2 x2
9 8
x1, x2 0
第一章习题解答
max Z 2x1 x2
(2)
st.63xx11
5x2 2x2
15 24
x1, x2 0
第一章习题解答
,讨论l.5c,上d的题值(1如)中何,变若化目,标使函该数问变题为可m行ax域Z的=每cx个1 +顶d点x2 依次使目标函数达到最优。
第一章习题解答
解:上界对应的模型如下(c,b取大,a取小)
max Z 3x1 6x2
st
.21xx1142xx22
12 14
x1, x2 0
最优值(上界)为:21
第一章习题解答
解:下界对应的模型如下( c,b取小,a取大)
2012年下半年运筹学第一次作业 试题与答案!

运筹学一、名词解释(每个5分,共20分)运筹学:运筹学主要运用数学方法研究各种系统的优化途径及方案。
为决策者提供科学的决策依据可行解:在线性规划问题的一般模型中,满足约束条件的一组12,,.........n x x x 值称为此线性规划问题的可行解 最优解:在线性规划问题的一般模型中,使目标函数f 达到最优值的可行解称为线性规划问题的最优解。
运输问题:将一批物资从若干仓库运往若干目的地,通过组织运输,使花费的费用最少,这类问题就是运输问题 二、填空题(每题3分,8题共24分)1. 运筹学的主要研究对象是各种有组织系统的管理问题及生产 经营活动,其主要研究方法是量化和模型化方法。
2. 线性规划试题中,如果在约束条件中出现等式约束,我们通常用增加 人工变量 的方法来产生初始可行基。
3. 线性规划问题的所有可行解构成的集合是___凸集_______,它们有有限个____顶点____,线性规划问题的每个基可行解对应可行域的______顶点_____,若线性规划问题有最优解,必在______顶点________得到。
4. 线性规划问题MaxZ=C X ;A X =b ,X ≥0(A 为k x l 的矩阵,且l >k )的基的最多个数为_Clk__,基的可行解的最多个数为__Clk___. 5.线性规划模型有三种参数,其名称分别为价值系数、__技术系数_和_限定系数__。
6. 在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。
7.目标规划总是求目标函数的 最小 信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的 优先因子(或权重) 。
8. “如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错的 三.选择题(每题4分,9题共36分) 1、最早运用运筹学理论的是( A )A 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B 美国最早将运筹学运用到农业和人口规划问题上C 二次世界大战期间,英国政府将运筹学运用到政府制定计划D 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上 2、下列哪些不是运筹学的研究范围( D )A 质量控制B 动态规划C 排队论D 系统设计3、使用人工变量法求解极大化线性规划问题时,当所有的检验数0j σ≤在基变量中仍含有非零的人工变量,表明该线性规划问题 ( D ) A .有唯一的最优解 B .有无穷多最优解 C .为无界解 D .无可行解4、关于线性规划的原问题和对偶问题,下列说法正确的是 ( B ) A .若原问题为元界解,则对偶问题也为无界解B .若原问题无可行解,其对偶问题具有无界解或无可行解 c .若原问题存在可行解,其对偶问题必存在可行解 D .若原问题存在可行解,其对偶问题无可行解5、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非零变量的个数( A ) A. 不能大于(m+n-1); B. 不能小于(m+n-1); C. 等于(m+n-1); D. 不确定。
运筹学考试复习资料

《运筹学课程》第一次作业 第一题:某工厂生产某一种型号的机床,每台机床上需要2.9m 、2.1m 、1.5m 的轴、分别为1根、2根、1根。
这些轴需用同一种圆钢制作,圆钢的长度为7.4m 。
如果要生产100台机床,问应如何安排下料,才能用料最省?试建立其线性规划模型。
第二题:用图解法求解,线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0,52426155..2max 212121221x x x x x x x t s x x Z 第一题:求以下各图的最小支撑树(1)(2)第二题:表1《运筹学课程》第二次作业第一题:用图解法求解下列线性规划问题,并指出问题是具有唯一最忧解、多重最优解、无界解或无可行解.第二题:将下列线性规划模型的一般形式转化为标准型(1)()⎪⎪⎩⎪⎪⎨⎧∞-∞∈≥≤++=+-≥+-+-=,321321321321321,0,1036345..32max x x x x x x x x x x x x t s x x x Z (2)()⎪⎩⎪⎨⎧-∞∞∈≥≤-≤-+--=++-+-=,,0,0824..22min 321321321321x x x x x x x x x t s x x x Z第三题:用单纯型法求解线性规划问题,并用图解法进行验证注:按照我上课所讲例题的求解步骤进行(参照课件),好好理解单纯型法的基本原理,做题时先不要使用单纯型法的表格形式。
第四题:自己亲自动手推到一下单纯型法中的检验数,参照课件中29-31页。
第一题:(1)求点v 1到图中个点的最短路;(2)指出v 1不可到达哪些点。
第二题:已知某地区的交通网络如图所示,图中点代表居民小区,边表示公路,l ij为小区间公路距离,问该地区中心医院应建在哪个小区较为合适。
第一题:用最简单方法求解该线性规划问题(提示:求出该问题的对偶问题,然后用单纯型法求解对偶问题,可减少计算量,从最后一张单纯形表获得原问题的最优解)第二题:表1第三题:已知产销平衡问题,见表2表2分别用“最小元素法”和“伏格尔法”求该问题的初始基可行解,并求出这两个基可行解的目标函数值。
运筹学第一次作业详解

1.1用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。
(1)⎪⎩⎪⎨⎧≥≥+≥++=0,42366432min 21212121x x x x x x x x z(2)⎪⎩⎪⎨⎧≥≥+≤++=0,12432223max 21212121x x x x x x x x z(3)⎪⎩⎪⎨⎧≤≤≤≤≤++=83105120106max 212121x x x x x x z(4)⎪⎩⎪⎨⎧≥≤+-≥-+=0,2322265max 21212121x x x x x x x x z1.2将下述线性规划问题化成标准形式。
(1)⎪⎪⎩⎪⎪⎨⎧≥≥-++-≤+-+-=-+-+-+-=无约束4,03,2,12321422245243min 4321432143214321x x x x x x x x x x x x x x x x x x x x z解:令z z -=',''4'44x x x -=⎪⎪⎩⎪⎪⎨⎧≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,232142222455243'max 65''4'43216''4'43215''4'4321''4'4321''4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z (2)⎪⎩⎪⎨⎧≥≤≤-+-=++-+-=无约束3,02,016324322min 21321321x x x x x x x x x x x x z解:令z z -=',1'1x x -=,''3'33x x x -=⎪⎩⎪⎨⎧≥=++-+=-+++-+=0,,,,6243322'max 4''3'32'14''3'32'1''3'32'1''3'32'1x x x x x x x x x x x x x x x x x x z1.3对下述线性规划问题找出所有基解,指出哪些是基可行解,并确定最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一1、 某厂接到生产A 、B 两种产品的合同,产品A 需200件,产品B 需300件。
这两种产品的生产都经过毛坯制造与机械加工两个工艺阶段。
在毛坯制造阶段,产品A 每件需要2小时,产品B 每件需要4小时。
机械加工阶段又分粗加工与精加工两道工序,每件产品A 需粗加工4小时,精加工10小时;每件产品B 需粗加工7小时,精加工12小时。
若毛坯生产阶段能力为1700小时,粗加工设备拥有能力为1000小时,精加工设备拥有能力为3000小时。
又加工费用在毛坯、粗加工、精加工时分别为每小时3元、3元、2元。
此外在粗加工阶段允许设备可进行500小时的加班生产,但加班生产时间内每小时增加额外成本4、5元。
试根据以上资料,为该厂制订一个成本最低的生产计划。
解:设正常生产A,B 产品数12,x x ,加班生产A,B 产品数34,x x13241324341324min 3(22444477)7.5(47)2(10101212)z x x x x x x x x x x x x x x =+++++++++++++.s t 13241212121220030024170047100010123000475000i x x x x x x x x x x x x x +≥⎧⎪+≥⎪⎪+≤⎪+≤⎨⎪+≤⎪+≤⎪⎪≥⎩且为整数,i=1,2,3,42、 对某厂I ,Ⅱ,Ⅲ三种产品下一年各季度的合同预订数如下表所示。
时为15000小时,生产I 、Ⅱ、Ⅲ产品每件分别需时2、4、3小时。
因更换工艺装备,产品I 在2季度无法生产。
规定当产品不能按期交货时,产品I ,Ⅱ每件每迟交一个季度赔偿20元,产品Ⅲ赔偿10元;又生产出来产品不在本季度交货的,每件每季度的库存费用为5元。
问:该厂应如何安排生产,使总的赔偿加库存的费用为最小(要求建立数学模型,不需求解)。
解:设x ij 为第j 季度产品i 的产量,s ij 为第j 季度末产品i 的库存量,d ij 为第j 季度产品i 的需求量。
()333123111min 2020105j j j ij j i j z d d d s ====+++∑∑∑.s t 123124411112431500001500j j j ij ij j j jj ik ij ij ikk k ijx x x x x d x d s d x ====⎧⎪++≤⎪⎪=⎪⎪=+⎨⎪⎪+-=⎪⎪⎪≥⎩∑∑∑∑且为整数,i=1,2,3,j=1,2,3,4 3、 某公司有三项工作需分别招收技工与力工来完成。
第一项工作可由一个技工单独完成,或由一个技工与两个力工组成的小组来完成。
第二项工作可由一个技工或一个力工单独去完成。
第三项工作可由五个力工组成的小组完成,或由一个技工领着三个力工来完成。
已知技工与力工每周工资分别为100元与80元,她们每周都工作48小时,但她们每人实际的有效工作小时数分别为42与36。
为完成这三项工作任务,该公司需要每周总有效工作小时数为:第一项工作10000小时。
第二项工作20000小时,第三项工作30000小时。
又能招收到的工人数为技工不超过400人,力工不超过800人。
请确定招收技工与力工各多少人,使总的工资支出为最少。
(建立数学模型,不需求解)解:设x ij 为第i 项工作采用第j 种方式雇佣的单位数()()1112213212312232min 480048*80253z x x x x x x x x =+++++++.s t ()()411121242122432313211122132122231324236*21042362*104236533*1040025380001,2,3,1,2ij x x x x x x x x x x x x x x x x x i j ⎧++≥⎪+≥⎪⎪++≥⎪⎨+++≤⎪⎪+++≤⎪≥==⎪⎩且为整数, 4、 某录音机生产厂在安排来年的生产。
D t就是预测第t 月的需求量,要求按月制定生产计划。
工厂现有500工人。
在现水平下,每月生产4000台录音机,平均每人每月生产8台。
由于设备条件,装配线每月最多生产7000台。
工厂打算在忙季雇用临时工,不过每月最多能雇50人,在淡季则解雇一些临时工人,政策要求每月最多能解雇上月总人数10%工人。
每台录音机成本(不包括工人工资)100元。
仓库储存一台每月成本7元。
工资每人每月100元。
新雇一个工人要多花成本(福利、训练)300元。
解雇一个工人则花成本500元。
年初与年末库存均为零,如何安排每月生产使总成本最小? 解:设t d 为第t 个月解雇的工人数,t R 为第t 个月新雇的工人数,t P 为第t 个月用于生产的工人数,t Q 为第t 个月月末的库存量121212121211111min 10087100300500t t t t t t t t t t z P Q P R d ======⨯++++∑∑∑∑∑0110121150000..8870005010%tt t t tt t t t t t t P P P P dQ Q s t Q Q P D P R d P ---=⎧⎪=+-⎪⎪=⎪=⎪⎨=+-⎪⎪≤⎪≤⎪⎪≤⨯⎩5、 某公司与供货商A 、B 、C 签订了长期的供货合同,按月为位于不同地区的三个下属工厂供应某种原料,三个供货商提供的原料品质基本相同,但由于所处的地理位置、人工成本等导致其实际供货成本有所不通。
由于一次生产事故,导致最大供货商A 下个月的供货量无法全部满足。
下个月供货商的供应量、工厂的需求量与供货商与工厂之间的供货成本如表所示。
公司经紧急协商,在工厂1所在地筹措到100吨的货源,供应成本为23百元/吨;工厂2所在地货源充足,供货成本为25百元/吨,但由于运力紧张两处货源均无法运到外地。
鉴于此种情况,公司决定要优先保证工厂1的全部需求,工厂3的需求至少要满足500吨。
该公司面临的问题就是应如何协调各供货商与工厂之间的供货关系,才能使总的供货成本最小。
(转化为供需平衡的运输问题)ij ij11min ij ij i j z c x ===∑∑.s t 4114214315114213315003004004005005000,1,2,3,4,1,2,3,4,5j j j j j j i i i i i i ij x x x x x x x i j ======⎧≤⎪⎪⎪≤⎪⎪⎪≤⎪⎪⎪⎪≥⎨⎪⎪≥⎪⎪⎪≥⎪⎪⎪≥==⎪⎪⎩∑∑∑∑∑∑ 练习二1、 某厂拟生产甲乙两种产品,每件利润分别为3,5百元,甲、乙产品的部件各自在A,B 两个车间分别生产,每件甲,乙产品的部件分别需要A,B 车间的生产能力3,4工时;两种产品最后都要在C 车间装配,装配每件甲,乙产品分别需要3,4工时。
A,B,C 三车间每天可用于生产两种产品的工时分别为15,16,25。
应如何安排生产这两种产品才能获利最多。
解:设生产甲乙的产量分别为x 1,x 2。
12max 300500z x x =+.s t 1212123154163425,0x x x x x x ≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩且为整数2、有两种化学产品A 与B,均需分别经过两个反应罐加工而成。
每一产品A 需在反应罐1中加工2小时,然后在反应罐2中加工3小时。
每一单位产品B 需在反应罐1中加工3小时,而后在反应罐2中加工4小时。
反应罐1的可供利用的时间160小时,反应罐2可供利用的时间为240 小时。
每生产1单位的产品B,同时可得到2个单位的副产品C 。
出售产品A 每单位能获利4元,产品B 每单位获利10元,副产品C 每单位能获利3元。
产品C 若卖不出去,那么每单位的销毁费为2元。
由市场预测知,最多能售出50个单位的产品C 。
试问如何安排生产计划,可使获得的利润最大?解:设生产A,B 数量为x 1,x 2,则C 的产量为2x 2、12max 46250z x x =++.s t 1212122316034240,0x x x x x x +≤⎧⎪+≤⎨⎪≥⎩且为整数 3、 现有4亿的资金用于投资,规定在未来的第二、三、四年年初各需要支付一亿元。
投资方案有四类:(1)A 方案:以一年为期,每期的预计收益率为2、5%;(2)B 方案:以二年为期,每期的预计收益率为5、2%;(3)C 方案:以三年为期,每期的预计收益率为8、5%;(4)D 方案:以四年为期,每期的预计收益率为10、5%。
问如何安排投资,可以满足条件,同时回报最大。
解:设第一年用于ABCD 方案的投资分别为1111,,,a b c d x x x x ,第二年用于ABC 方案的投资分别为222,,a b c x x x ,第三年用于AB 方案的投资为33,a b x x ,第四年用于A 方案的投资为4a x 。
4321max 1.025 1.052 1.085 1.105a b c d z x x x x =+++.s t 11112221332143141.02511.025 1.05211.025 1.08510,1,2,3,4,,,,a b c d a b c a a b a b a a cij x x x x x x x x x x x x x x x x i j a b c d⎧+++≤⎪++≤-⎪⎪+≤+-⎨⎪≤+-⎪≥==⎪⎩4.一贸易公司专门经营某种杂粮的批发业务。
公司现有库容为5000担的仓库。
一月一日,公司拥有库存1000担杂粮,并有资金20000元。
估计第一季度杂粮价格如表所示:季末库存为2000担,问应采取什么样的买进与卖出的策略使三个月总的获利最大?如何写出本问题的线性规划模型呢? 解:设三个月每月月末进货为i x ,出货为,1,2,3i y i = 分析可知20x =12331max 32500.15 3.25 2.95 2.9 2.85z y y y x x =-++--.s t 111112113112313122.8520000 3.1100010005000100010001000,0i i x y y x y y x y y x y yy x x y y x y ≤+⎧⎪≤⎪⎪+-≤⎪≤+-⎨⎪≤+--⎪=+---⎪⎪≥⎩且为整数5.某厂用原料A,B,C 生产三种不同的产品甲、乙、丙。
已知各种产品中A, B,C 的含量、原料成本、各种原料的每月限制用量、三种产品的加工费用以及售价如下。
(假设三种产品的生产过程中无任何损耗)问如何安排生产可使该厂利润最解:设第i 种产品里j 的分量为ij x 千克。
333333123123111111max 42332j j j i i i j j j i i i z x x x x x x =======++---∑∑∑∑∑∑.s t 31132133131111312113212132321333313000400020000.20.60.40.20.50,1,2,3,1,2,3i i i i i i jj jj jj j j j j ij x x x x x x x x x x x x x x i j ========⎧≤⎪⎪⎪≤⎪⎪⎪≤⎪⎪⎪≤⎪⎪⎪≥⎨⎪⎪≥⎪⎪⎪⎪≤⎪⎪⎪≤⎪⎪≥==⎪⎩∑∑∑∑∑∑∑∑。