2016年高考文数热点题型和提分秘籍专题01集合概要

合集下载

2016高考数学提分和抢分的攻略

2016高考数学提分和抢分的攻略

2016年高考数学提分和抢分的攻略无论是参照《考试说明》,还是同学们实际做题与考试,都能发现数学这个学科单纯复习课本是远远不够的,往往考查学生多方面的因素。

这里高考专家谢云峰老师给大家归结一下高考数学考查学生三个方面:基础知识、逻辑推导能力、想象能力。

至于计算能力,由于高考新课标有趋于降低计算量、有意提升学生能力培养的趋势,计算能力要求有所降低,相信绝大多数学生都能够应对。

很多同学数学学不好,但是却无从下手,我们今天根据数学学科考试命题的特点,来阐述一下距离高考50余天,如何全面的攻破数学学科,从而获取高分。

数学学科非常严谨,但却要求学生具备一定的想象能力,但不能主观想象,而是要求学生根据数学试题的环境进行客观的思考,如图形想象、空间想象、函数式转化方向等,都需要具备针对性和客观性。

数学考不好的同学,一是基础知识不牢固,二是没有形成一定的数学思想,三是容易被自己的主观意识所左右,至于粗心、马虎之类的,基本上属于主观意识主导所致。

先说数学学科命题特点,与以往略有不同,现今数学考查更多灵活性和综合性。

考查的手段也翻新。

但是基本内涵是不会变的。

基础知识考查部分,基本上不纯考知识点,多是考查知识点的简单应用或图形图像意义,或同类型、近似知识点比较。

并且小题思维跳脱性较大,解法多样。

因此同学们备考时要注意以下一点:凡是有涉及到几何图形的,一定要掌握图形变化趋势,特殊点的几何意义以及立体几何中点、线、面之间的关系,有些地区还要注重向量坐标、极坐标的意义。

只要抓住这些,能解决大部分数学问题。

一、高考数学应避免的三大失误:无谓失误1:计算出错计算能力是高考数学考查的一项基本能力,但目前反映出来的问题是,很多考生计算能力非常不足。

“在评卷过程中,我们经常看到考生解题的方法和思路都正确,但就是计算出错。

很多解答题都是多步计算,中间步骤的计算出错会直接导致后续解答相应出错,造成严重丢分。

一句话:不是不会做,而是计算错!”在这些错误中,最常见的是“代数式的恒等变形(含纯数字运算)”出错,包括整式、分式和二次根式的运算,因式分解等内容;其次是求解方程(组)与不等式(组)计算出错,这是很容易预防的错误。

2016年高考文数热点题型和提分秘籍专题10函数模型及其应用剖析.

2016年高考文数热点题型和提分秘籍专题10函数模型及其应用剖析.

【高频考点解读】1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【热点题型】题型一二次函数模型【例1】A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?【提分秘籍】实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.【举一反三】某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N,所以当x =10或11时,总利润取得最大值43万元.答案 C题型二 指数函数、对数函数模型【例2】世界人口在过去40年翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%解析 设每年人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40 lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.答案 C 【提分秘籍】在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x(其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【举一反三】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析 设该股民购这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n=a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n·a <a ,故该股民这支股票略有亏损.答案 B题型三 分段函数模型【例3】 某旅游景点预计2015年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x (x ∈N *,且1≤x ≤6),160x(x ∈N *,且7≤x ≤12). (1)写出2015年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问2015年第几个月旅游消费总额最大?最大月旅游消费总额为多少元? 解 (1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x , 验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).【提分秘籍】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数. (2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【举一反三】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.某人在此商场购物总金额为x 元,可以获得的折扣金额为y 元,则y 关于x 的解析式为 y =⎩⎪⎨⎪⎧0,0<x ≤800,5%(x -800),800<x ≤1 300,10%(x -1 300)+25,x >1 300.若y =30元,则他购物实际所付金额为________元.解析 若x =1 300元,则y =5%(1 300-800)=25(元)<30(元),因此x >1 300. ∴由10%(x -1 300)+25=30,得x =1 350(元). 答案 1 350 【高考风向标】【2015高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米.【2015高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx by e+=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时 【答案】C【解析】由题意,2219248bk b e e +⎧=⎪⎨=⎪⎩得1119212bke e⎧=⎪⎨=⎪⎩,于是当x =33时,y =e 33k +b =(e 11k )3·e b=31()2×192=24(小时)(2014·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1­2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1­2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 【答案】B【解析】由题意得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值. (2014·陕西卷)如图1­2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1­2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x【答案】A【解析】由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .【高考押题】1.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是 ( )A .一次函数模型B .幂函数模型C .指数函数模型D .对数函数模型解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 A2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.答案 A3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 ( )A.p +q2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =(1+p )(1+q )-1,故选D.答案 D4.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( ) A .10B .11C .13D .21答案 A5.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( )A .10元B .20元C .30元 D.403元解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 A6. A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 kmh ,经过________小时,AB 间的距离最短.解析 设经过x h ,A ,B 相距为y km ,则y =(145-40x )2+(16x )2(0≤x ≤298),求得函数的最小值时x 的值为258.答案2587.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =a e-bt(cm 3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.8.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析设内接矩形另一边长为y,则由相似三角形性质可得x40=40-y40,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400.答案209.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?10.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t +21-t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤ 20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).解析 当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *). 当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案 y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *) 16 14.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB 长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h ≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴,CB 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.解 (1)由题意知最高点为(2+h ,4),h ≥1,设抛物线方程为y =a [x -(2+h )]2+4,当h =1时,最高点为(3,4),方程为y =a (x -3)2+4,将A (2,3)代入,得3=a (2-3)2+4,解得a =-1.∴当h =1时,跳水曲线所在的抛物线方程为 y =-(x -3)2+4.(2)将点A (2,3)代入y =a [x -(2+h )]2+4得ah 2=-1,所以a =-1h 2. 由题意,得方程a [x -(2+h )]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h 2[x -(2+h )]2+4, 则f (5)=-1h 2(3-h )2+4≥0,且f (6)=-1h 2(4-h )2+4≤0.解得1≤h ≤43. 达到压水花的训练要求时h 的取值范围为[1,43].。

高考数学(理)热点型和提分秘籍(解析版)

高考数学(理)热点型和提分秘籍(解析版)

专题01 集合1.了解集合的含义,元素与集合的属于关系;能用列举法或描述法表示集合. 2.理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义. 3.理解并会求并集、交集、补集;能用Venn(韦恩)图表达集合的关系与运算.集合的概念及运算一直是高考热点,同时近两年新课标高考试题加强了对以集合为工具与其他知识的结合的考查,一般为基础题,解题时要充分利用韦恩图、数轴等直观性迅速得解,预计今后这种考查方式不会变.热点题型一 集合的基本概念例1、【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .0【答案】B【提分秘籍】与集合中的元素有关问题的求解策略 (1)确定集合的元素是什么,即集合是数集还是点集。

(2)看这些元素满足什么限制条件。

(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性。

【举一反三】已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则2015a 的值为________。

解析:①若a +2=1,即a =-1,则(a +1)2=0,a 2+3a +3=1,不满足集合元素的互异性。

②若(a +1)2=1即a =-2或a =0。

当a =-2时,a +2=0,a 2+3a +3=1, 不满足集合元素的互异性;当a =0时,a +2=2,a 2+3a +3=3,满足题意。

③若a 2+3a +3=1,即a =-1或-2,由①,②可知均不满足集合元素的互异性。

综上知实数a 的取值集合为{0}, 则2015a 的值为1。

答案:1热点题型二 集合间的基本关系例2、 【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.【提分秘籍】1.根据集合的关系求参数的关键点及注意点(1)根据两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且常要对参数进行讨论。

2016年普通高等学校招生全国统一考试(新课标全国卷2)文数

2016年普通高等学校招生全国统一考试(新课标全国卷2)文数

2016年普通高等学校招生全国统一考试(课标全国卷2)文数一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1.(5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{﹣2,﹣1,0,1,2,3} B.{﹣2,﹣1,0,1,2}C.{1,2,3} D.{1,2}2.(5分)设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i3.(5分)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣) B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)4.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π5.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=()A.B.1 C.D.26.(5分)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.27.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π8.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.9.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.3410.(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y=11.(5分)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.712.(5分)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x i=()A.0 B.m C.2m D.4m二、填空题:本题共4小题,每小题5分.13.(5分)已知向量=(m,4),=(3,﹣2),且∥,则m=.14.(5分)若x,y满足约束条件,则z=x﹣2y的最小值为.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.16.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.18.(12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度的平均保费估计值.19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(Ⅰ)证明:AC⊥HD′;(Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积.20.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.21.(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E与A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选项4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试(课标全国卷2)文数参考答案与试题解析一、1.D【分析】先求出集合A和B,由此利用交集的定义能求出A∩B的值.【解答】解:∵集合A={1,2,3},B={x|x2<9}={x|﹣3<x<3},∴A∩B={1,2}.故选:D.2.C【分析】根据已知求出复数z,结合共轭复数的定义,可得答案.【解答】解:∵复数z满足z+i=3﹣i,∴z=3﹣2i,∴=3+2i,故选:C3.A【分析】根据已知中的函数y=Asin(ωx+φ)的部分图象,求出满足条件的A,ω,φ值,可得答案.【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.4.A【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积.【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故选:A.5.D【分析】根据已知,结合抛物线的性质,求出P点坐标,再由反比例函数的性质,可得k 值.【解答】解:抛物线C:y2=4x的焦点F为(1,0),曲线y=(k>0)与C交于点P在第一象限,由PF⊥x轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D6.A【分析】求出圆心坐标,代入点到直线距离方程,解得答案.【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.7.C【分析】空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.8.B【分析】求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率.【解答】解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为=.故选:B.9.C【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C10.D【分析】分别求出各个函数的定义域和值域,比较后可得答案.【解答】解:函数y=10lgx的定义域和值域均为(0,+∞),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+∞),值域为R,不满足要求;函数y=2x的定义域为R,值域为R(0,+∞),不满足要求;函数y=的定义域和值域均为(0,+∞),满足要求;故选:D11.B【分析】运用二倍角的余弦公式和诱导公式,可得y=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1,配方,结合二次函数的最值的求法,以及正弦函数的值域即可得到所求最大值.【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.12.B【分析】根据已知中函数函数f(x)(x∈R)满足f(x)=f(2﹣x),分析函数的对称性,可得函数y=|x2﹣2x﹣3|与y=f(x)图象的交点关于直线x=1对称,进而得到答案.【解答】解:∵函数f(x)(x∈R)满足f(x)=f(2﹣x),故函数f(x)的图象关于直线x=1对称,函数y=|x2﹣2x﹣3|的图象也关于直线x=1对称,故函数y=|x2﹣2x﹣3|与y=f(x)图象的交点也关于直线x=1对称,故x i=×2=m,故选:B二、.13.﹣6.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.14.﹣5.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,4).化目标函数z=x﹣2y为y=x﹣z,由图可知,当直线y=x﹣z过A(3,4)时,直线在y轴上的截距最大,z有最小值为:3﹣2×4=﹣5.故答案为:﹣5.15..【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.16.1和3.【分析】可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.三、17.【分析】(Ⅰ)设等差数列{a n}的公差为d,根据已知构造关于首项和公差方程组,解得答案;(Ⅱ)根据b n=[a n],列出数列{b n}的前10项,相加可得答案.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴a n=;(Ⅱ)∵b n=[a n],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{b n}的前10项和S10=3×1+2×2+3×3+2×4=24.18.【分析】(I)求出A为事件:“一续保人本年度的保费不高于基本保费”的人数.总事件人数,即可求P(A)的估计值;(Ⅱ)求出B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”的人数.然后求P(B)的估计值;(Ⅲ)利用人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值.【解答】解:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.事件A的人数为:60+50=110,该险种的200名续保,P(A)的估计值为:=;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B的人数为:30+30=60,P(B)的估计值为:=;(Ⅲ)续保人本年度的平均保费估计值为=.=1.1925a.19.【分析】(1)根据直线平行的性质以及线面垂直的判定定理先证明EF⊥平面DD′H即可.(2)根据条件求出底面五边形的面积,结合平行线段的性质证明OD′是五棱锥D′﹣ABCFE 的高,即可得到结论.【解答】(Ⅰ)证明:∵菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,∴EF∥AC,且EF⊥BD,又D′H⊥EF,D′H∩DH=H,∴EF⊥平面DD′H,∵HD′⊂平面D′HD,∴EF⊥HD′,∵EF∥AC,∴AC⊥HD′;(Ⅱ)若AB=5,AC=6,则AO=3,B0=OD=4,∵AE=,AD=AB=5,∴DE=5﹣=,∵EF∥AC,∴====,∴EH=,EF=2EH=,DH=3,OH=4﹣3=1,∵HD′=DH=3,OD′=2,∴满足HD′2=OD′2+OH2,则△OHD′为直角三角形,且OD′⊥OH,即OD′⊥底面ABCD,即OD′是五棱锥D′﹣ABCFE的高.底面五边形的面积S=+=+=12+=,则五棱锥D′﹣ABCFE体积V=S•OD′=××2=.20.【分析】(I)当a=4时,求出曲线y=f(x)在(1,f(1))处的切线的斜率,即可求出切线方程;(II)先求出f′(x)>f′(1)=2﹣a,再结合条件,分类讨论,即可求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.21.【分析】(I)依题意知椭圆E的左顶点A(﹣2,0),由|AM|=|AN|,且MA⊥NA,可知△AMN 为等腰直角三角形,设M(a﹣2,a),利用点M在E上,可得3(a﹣2)2+4a2=12,解得:a=,从而可求△AMN的面积;(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),联立消去y,得(3+4k2)x2+16k2x+16k2﹣12=0,利用韦达定理及弦长公式可分别求得|AM|=|x M﹣(﹣2)|=,|AN|==,结合2|AM|=|AN|,可得=,整理后,构造函数f(k)=4k3﹣6k2+3k﹣8,利用导数法可判断其单调性,再结合零点存在定理即可证得结论成立.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(﹣2,0),∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a=或a=0(舍),∴S△AMN=a×2a=a2=;(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),由消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴x M﹣2=﹣,∴x M=2﹣=,∴|AM|=|x M﹣(﹣2)|=•=∵k>0,∴|AN|==,又∵2|AM|=|AN|,∴=,整理得:4k3﹣6k2+3k﹣8=0,设f(k)=4k3﹣6k2+3k﹣8,则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,又f()=4×3﹣6×3+3﹣8=15﹣26=﹣<0,f(2)=4×8﹣6×4+3×2﹣8=6>0,∴<k<2.22.【分析】(Ⅰ)证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF=CD=GC,因此可得△GFB≌△GCB,则S四边形BCGF=2S△BCG,据此解答.【解答】(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=,∴在Rt△DFC中,GF=CD=GC,连接GB,Rt△BCG≌Rt△BFG,∴S四边形BCGF=2S△BCG=2××1×=.23.【分析】(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.【解答】解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(﹣6,0),半径r=5,∴圆心C(﹣6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.24.【分析】(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,配方后,可证得结论.【解答】解:(I)当x<时,不等式f(x)<2可化为:﹣x﹣x﹣<2,解得:x>﹣1,∴﹣1<x<,当≤x≤时,不等式f(x)<2可化为:﹣x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:﹣+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(﹣1,1);证明:(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.。

2016年高考语文热点题型和提分秘籍 专题09 图文转换(解析版)

2016年高考语文热点题型和提分秘籍 专题09 图文转换(解析版)

【高频考点解读】图表题综合考查学生对图表的分析能力,要求考生根据图表中的有关内容,分析有关材料,辨别或挖掘某些隐含性的信息,或对材料进行综合性评价。

这类题型属于语言应用能力的考查。

【热点题型】题型一图表类转换例1、阅读下面的问卷调查统计表,回答后面的问题。

志愿者对其志愿行为意义的认识(多项选择)请用简明的语言概括两个年龄段的人对其志愿行为意义认识的同与异。

答:______________________________________________答案:同:两个年龄段中多数人认为志愿行为对职业履历有帮助,能让自身才干充分发挥,对职业发展有益。

异:18~25岁的多数人更认同在志愿服务中获得技能而不是拓展社会关系;26~40岁的多数人则更认可在志愿服务中拓展社会关系而不是获得技能。

【提分秘籍】“表文转换”题是一种综合性、技巧性强,具有创新特色的新题型。

它要求我们根据图或表中的有关内容,分析材料,辨别或挖掘出某些隐含的信息,对材料进行综合性评价或推断,然后用恰当的语言表述出来。

“表文转换”题表面上看来是“看表说话”,实际上它综合了“扩展语句,压缩语段”“选用、仿用、变换句式”等多种题型,说到底这类题是在考查我们综合的语言表达能力,正因为如此,近年来此类题已成为高考题中的新宠。

(1)一定要扣住题干要求作答,因为题干要求往往对内容有一定的提示性,最好能利用题干要求甚至图表标题用语作答。

如题点例中横向主要是年龄段和各项目数据变化,纵向主要是各项目数据不同,横向则是考生回答此题的重要依据。

(2)对复杂的表格,组织答案不能只就一个方面来展开,要善于从横向、纵向、斜向等角度综合分析。

(3)把握数据表述分寸。

在解答表述中,特别是在反映事物变化或规律时,选用词语要准确。

如表明增长趋势,可用的词语有:“增加了”“增加到”“增长了××倍”等。

表明下降趋势,可用的词语有:“减少了”“减少到”“减少了(百分数、分数,不能用倍数)”等。

专题04 函数及其表示-2016年高考文数热点题型和提分秘籍(解析版)

专题04 函数及其表示-2016年高考文数热点题型和提分秘籍(解析版)

【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f (x )= 1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,- 3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎪⎫1+1x + 1-x 2的定义域为________.【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f (x )的定义域,求f (g (x ))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出. 【举一反三】已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域.题型二 考查函数的解析式例2、(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).【举一反三】已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3题型三 考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f (x ),y =g (x ),定义函数h (x )=⎩⎪⎨⎪⎧f x ,f x ≤g x ,gx ,f x >g x .对于函数y =h (x ),下列结论正确的个数是( )①h (4)=10;②函数h (x )的图象关于直线x =6对称;③函数h (x )的值域为[0,13 ];④函数h (x )的递增区间为(0,5).A .1B .2C .3D .4【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求的变量值或自变量的取值范围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值范围.【举一反三】已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于________.【高考风向标】1.【2015高考湖北,文6】函数256()lg 3x x f x x -+=-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-3.【2015高考重庆,文3】函数22(x)log (x 2x 3)f =+-的定义域是( ) (A) [3,1]- (B) (3,1)- (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.【2015高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时1.(2014·安徽卷)若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=______.2.(2014·北京卷)下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |3.(2014·江西卷)将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.4.(2014·山东卷)函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)5.(2013·安徽卷)定义在R 上的函数f(x)满足f(x +1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.6.(2013·安徽卷)函数y =ln1+1x +1-x 2的定义域为________.7.(2013·福建卷)已知函数f(x)=⎩⎪⎨⎪⎧2x 3,x<0,-tanx ,0≤x<π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.8.(2013·江西卷)设函数f(x)=⎩⎪⎨⎪⎧1ax ,0≤x≤a,11-a (1-x ),a<x≤1.a 为常数且a∈(0,1).(1)当a =12时,求f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13; (2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x 1,x 2;(3)对于(2)中的x 1,x 2,设A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(a 2,0),记△ABC 的面积为S(a),求S(a)在区间⎣⎢⎡⎦⎥⎤13,12上的最大值和最小值.9.(2013·辽宁卷)已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2 (a -2)x -a 2+8.设 H 1(x)=max{f(x),g(x)},H 2(x)=min{f(x),g(x)}(max{p ,q}表示p ,q 中的较大值,min{p ,q}表示p ,q 中的较小值),记H 1(x)的最小值为A ,H 2(x)的最大值为B ,则A -B =( )A .a 2-2a -16 B .a 2+2a -16 C .-16 D .1610.(2013·辽宁卷)已知函数f(x)=ln(1+9x 2-3x)+1,则f(lg 2)+flg 12=( )A .-1B .0C .1D .211.(2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图1-9(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.11.(2013·山东卷)函数f(x)=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]12.(2013·四川卷)已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数.13.(2013·浙江卷)已知函数f(x)= x -1.若f(a)=3,则实数a = ________.14.(2013·重庆卷)函数y =1log 2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)【高考押题】1.下列函数中,与函数y =13x定义域相同的函数为( ).A .y =1sin xB .y =ln x xC .y =x e xD .y =sin xx2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有 ( ).A .1个B .2个C .3个D .4个3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ).4.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是 ( ).A .(1,10)B .(5,6)C .(10,12)D .(20,24)5.对实数a 和b ,定义运算 “⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎪⎫-1,-34C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )7.已知函数f (x ),g (x )分别由下表给出,则f [g (1)]的值为________,满足f [g (x )]>g [f (x )]的x 的值是________.8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.9.已知函数f(x)的图象如图所示,则函数g(x)=的定义域是______.10.设函数f (x )=⎩⎪⎨⎪⎧1,1≤x ≤2,x -1,2<x ≤3,g (x )=f (x )-ax ,x ∈[1,3],其中a ∈R ,记函数g (x )的最大值与最小值的差为h (a ).(1)求函数h (a )的解析式;(2)画出函数y =h (x )的图象并指出h (x )的最小值.11.求下列函数的定义域: (1)f (x )=lg4-xx -3;(2)y =25-x 2-lg cos x ; (3)y =lg(x -1)+lg x +1x -1+19-x.12. 设x≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)=()()3f x 1f x 22---(x >0),试写出y=g(x)的解析式,并画出其图象.13.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.:。

2016高考文科试题分类分类汇编及详解--集合、函数、导数

2016高考文科试题分类分类汇编及详解--集合、函数、导数

一、集合与常用逻辑用语一、集合1、(2016年北京高考)(1)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B = (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或 【答案】C2、(2016年江苏省高考)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________. 【答案】{}1,2-3、(2016年山东高考)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð= (A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}【答案】A4、(2016年四川高考)学科网设集合A={x |1≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是(A)6 (B) 5 (C)4 (D)3 【答案】B5、(2016年天津高考)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B =( )(A )}3,1{ (B )}2,1{(C )}3,2{(D )}3,2,1{【答案】A6、(2016年全国I 卷高考)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = (A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B7、(2016年全国II 卷高考)已知集合{123}A =,,,2{|9}B x x =<,则A B = ( ) (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D8、(2016年全国III 卷高考)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C9、(2016年浙江高考)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ ()ð=( ) A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}【答案】C二、常用逻辑用语1、(2016年山东高考)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A2、(2016年上海高考)设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A3、(2016年上海高考)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ) A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D4、(2016年四川高考)设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的(A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件【答案】A5、(2016年天津高考)设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件【答案】C6、(2016年浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】A二、函数一、选择题1、(2016年北京高考)下列函数中,在区间(1,1)- 上为减函数的是 (A )11y x=- (B )cos y x = (C )ln(1)y x =+ (D )2x y -= 【答案】D2、(2016年山东高考)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1 (C )0 (D )2 【答案】D3、(2016年四川高考)某公司为激励创新,计划逐年加大研发奖金投入。

2016年高考数学提纲汇总

2016年高考数学提纲汇总

高三数学冲刺复习---提纲汇总数学采用智能驱动战略---重事实找规律求方法。

2016全国新课程Ⅰ卷试卷特点---考查考生对数学本质的理解,考查考生的数学素养和学习潜能,没有出现偏、难、怪的试题,但考生想拿140以上的高分也不容易。

突出了计算方法、数形结合思想和转化思想、三角的工具作用。

彰显了不等式的工具作用。

在解答题中考查了三角恒等变换和解三角形、立体几何、解析几何、概率统计、函数求导,选修4等内容,均是高中数学的重点知识,做到了“重点内容重点考查”,层次要求恰当,试题均可用常规常法和通性通法来解决,淡化特殊技巧,但是考生要完整准确地解答,则需要有扎实的双基和良好的数学素养.另外,解答题中对数学思想方法的考查如绵绵细雨,贯穿始终,而又不露声色.特别强化了函数与方程和分类讨论的数学思想、数形结合思想以及转化化归思想的考查,以及计算能力的考查,这是对学生从基础到综合创新能力的重点考查。

客观题知识点清楚明确,不堆砌组合。

重视课本知识的考查,三种题型中体现出明显的层次感,选择题、填空题、解答题,层层递进。

试卷入口题和每种题型入口题都较好的把握了难度,突出了选拔性。

试卷结构:12个选择题,全部为必考内容,每题5分,共60分。

试卷基本特点变化:(1)注重基础知识的考查、试题难度有所降低.(2)重视对新增内容的考查,在新课程标准中新增的内容有了一定体现.(3)突出数学知识应用能力的考查,弘扬了新课标理念.(4)对数学能力的考查体现全面性.(5)注意适度延展,严格控制超纲问题的出现.(6)创新性试题的进一步延伸,丰富了新课程的高考知识结构,对试题情景的创设体现时代性. (7)综合性试题、主干知识新交汇点中的新题型不断涌现.(8)设置有选做试题,体现了对考生的个性化发展.解答题的题型主要集中在三角、数列、立体几何、解析几何、概率统计的应用、函数与导数、系列四选修内容。

解题过程分为四个部分:“审题,转换,实施,反思”.1、要解好题必须先审好题,审题是解题的第一步.一切解题的思路、方法、技巧都来源于认真审题.审题是解题者对题目提供信息的发现、辨认和转译,并对信息作有序提炼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高频考点解读】1.了解集合的含义,体会元素与集合的从属关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.【热点题型】题型一集合的基本概念例1、已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⊆A,求实数m 的取值范围.【提分秘籍】(1)判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.(2)已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn图帮助分析.【举一反三】设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是( )A.M=P B.P ⊈MC.M ⊈P D.(∁U M)∩P=∅解析:对集合P:由x2>1,知x>1或x<-1,借助数轴,故M ⊈P,选C.答案:C题型二集合的基本运算(例2、(1)(设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( )A.(0,2] B.(1,2) C.[1,2) D.(1,4)(2)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.(0,1) C.(0,1] D.[0,1)解析(1)由已知可得A={x|0<x<2},又∵B={x|1≤x≤4},∴A∩B={x|1≤x<2}.(2)由于M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|-1<x<1},所以M∩N={x|0≤x<1}=[0,1).答案(1)C (2)D【提分秘籍】在进行集合运算时要尽可能地借助韦恩(Venn)图、数轴和坐标平面等工具,使抽象问题直观化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素为连续实数时用数轴表示,用数轴表示时注意端点值的取舍.【举一反三】若集合M={x|x2+x-6=0},N={x|ax+2=0,a∈R},且M∩N=N,求实数a的取值集合.题型三集合的创新性问题例3.设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A 的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,且集合M中的两个元素都是“酷元”,那么这样的集合M有( )A .3个B .4个C .5个D .6个解析:由题意,知S 为函数y =lg(36-x 2)的定义域内的自然数集,由36-x 2>0,解得-6<x <6,又因为x ∈N,所以S ={0,1,2,3,4,5}.依题意,可知若k 是集合M 的“酷元”是指k 2与k 都不属于集合M .显然若k =0,则k 2=k =0,若k =1,则k 2=k =1,所以0,1,都不是“酷元”.若k =2,则k 2=4;若k =4,则k =2.所以2与4不能同时在集合M 中,才能称为“酷元”.显然3与5都是集合S 中的“酷元”.综上,若集合M 中所含的两个元素都是“酷元”,则这两个元素的选择可分为两类: (1)只选3与5,即M ={3,5};(2)从3与5中任选一个,从2与4中任选一个,即M ={3,2}或{3,4}或{5,2}或{5,4}.所以满足条件的集合M 共有5个.故选C.答案:C 【提分秘籍】以集合为背景的创新性问题是命题的一个热点,这类题目常以问题为核心,考查考生探究,发现的能力,常见的命题形式有:新定义、新运算与性质等.(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质. (2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决. (3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解. 【举一反三】设集合A ={1,2,3},B ={2,3,4,5},定义A ⊙B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A ⊙B 中元素的个数是( )A .7B .10C .25D .52解析:A ∩B ={2,3},A ∪B ={1,2,3,4,5},由列举法可知A ⊙B ={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.答案:B 【高考风向标】1.【2015高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合AB 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D.2.【2015高考重庆,文1】已知集合{1,2,3},B {1,3}A ,则A B =( ) (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C【解析】由已知及交集的定义得A B ={1,3},故选C.3.【2015高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3-【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =,故选A.4.【2015高考天津,文1】已知全集{1,2,3,4,5,6}U,集合{2,3,5}A ,集合{1,3,4,6}B ,则集合A U B ()( )(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B【解析】{2,3,5}A ,{2,5}UB ,则A 2,5U B (),故选B.5.【2015高考四川,文1】设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3} 【答案】A【解析】由已知,集合A =(-1,2),B =(1,3),故A ∪B =(-1,3),选A 6.【2015高考山东,文1】 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C .7.【2015高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤, 所以[0,1]MN =,故答案选A .8.【2015高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U AC B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U A C B ={}1,∴选B .9.【2015高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C . {}1D .{}1,1-【答案】C 【解析】{}1MN =,故选C .1.(2014·北京卷) 若集合A ={0,1,2,4},B ={1,2,3},则A∩B=( ) A .{0,1,2,3,4} B .{0,4} C .{1,2} D .{3} 【答案】C【解析】A∩B={0,1,2,4}∩{1,2,3}={1,2}.2.(2014·福建卷) 若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于( )A.{x|3≤x<4} B.{x|3<x<4}C.{x|2≤x<3} D.{x|2≤x≤3}【答案】A【解析】把集合P={x|2≤x<4}与Q={x|x≥3}在数轴上表示出来,得P∩Q={x|3≤x<4},故选A.3.(2014·福建卷) 已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a+10b+c等于________.【答案】2014.(2014·广东卷) 已知集合M={2,3,4},N={0,2,3,5},则M∩N=( ) A.{0,2} B.{2,3}C.{3,4} D.{3,5}【答案】B【解析】∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3}.5.(2014·湖北卷) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=( )A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}【答案】C【解析】由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁U A={2,4,7}.故选C.6.(2014·湖南卷) 已知集合A={x|x>2},B={x|1<x<3},则A∩B=( )A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}【答案】C【解析】由集合运算可知A∩B={x|2<x<3}.7.(2014·重庆卷) 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B =________.【答案】{3,5,13}【解析】由集合交集的定义知,A∩B={3,5,13}.8.(2014·江苏卷) 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.【答案】{-1,3}【解析】由题意可得A∩B={-1,3}.9.(2014·江西卷) 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=( )A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)【答案】C【解析】∵A=(-3,3),∁RB=(-∞,-1]∪(5,+∞),∴A∩(∁RB)=(-3,-1].10.(2014·辽宁卷) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【答案】D【解析】由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)=x|0<x<1}.11.(2014·全国卷) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为( )A.2 B.3C.5 D.7【答案】B【解析】根据题意知M∩N={1,2,4,6,8}∩{1,2,3,5,6,7}={1,2,6},所以M∩N中元素的个数是3.12.(2014·新课标全国卷Ⅱ)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B =( )A.∅ B.{2}C.{0} D.{-2}【答案】B【解析】因为B={-1,2},所以A∩B={2}.13.(2014·全国新课标卷Ⅰ)已知集合M={x|-1<x<3},N={-2<x<1},则M∩N =( )A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)【答案】B【解析】利用数轴可知M∩N={x|-1<x<1}.14.(2014·山东卷) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( ) A.(0,2] B.(1,2)C.[1,2) D.(1,4)【答案】C【解析】因为集合A={x|0<x<2},B={x|1≤x≤4},所以A∩B={x|1≤x<2},故选C.15.(2014·陕西卷) 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.(0,1) C.(0,1] D.[0,1)【答案】D【解析】由M={x|x≥0},N={x|x2<1}={x|-1<x<1},得M∩N=[0,1).16.(2014·四川卷) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B =( )A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}【答案】D【解析】由题意可知,集合A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},所以A∩B={-1,0,1,2}.故选D.17.(2014·天津卷) 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【解析】(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.18.(2014·浙江卷) 设集合S={x|x≥2},T={x|x≤5},则S∩T=( )A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]【答案】D【解析】依题意,易得S∩T=[2,5] ,故选D.19.(2013·福建卷) 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为( )A.2 B.3C.4 D.16【答案】C 【解析】A∩B={1,3},子集共有22=4个,故选C.20.(2013·北京卷) 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( ) A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}【答案】B 【解析】∵-1∈B,0∈B,1B,∴A∩B={-1,0},故选B.21.(2013·安徽卷) 已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=( ) A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【答案】A 【解析】因为A={x|x>-1},所以∁RA={x|x≤-1},所以(∁RA)∩B={-2,-1}.22.(2013·天津卷) 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=( ) A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【答案】D 【解析】A∩B={x∈R|-2≤x≤2}∩{x∈R|x≤1}={x∈R|-2≤x≤1}.23.(2013·陕西卷) 设全集为R,函数f(x)=1-x的定义域为M,则∁RM为( ) A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【答案】B 【解析】M={x|1-x≥0}={x|x≤1},故∁RM= (1,+∞).24.(2013·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( )A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【答案】C 【解析】M∩N={-2,-1,0}.故选C.25.(2013·辽宁卷) 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( ) A.{0} B.{0,1}C.{0,2} D.{0,1,2}【答案】B【解析】由题意可知,|x|<2,得-2<x<2,从而B={x|-2<x<2},A∩B={0,1},故选B.26.(2013·江苏卷) 集合{-1,0,1}共有________个子集.【答案】8 【解析】集合{-1,0,1}共有3个元素,故子集的个数为8.27.(2013·湖南卷) 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则 (∁U A)∩B =________.【答案】{6,8}【解析】由已知得∁U A={6,8},又B={2,6,8},所以(∁U A)∩B={6,8}.28.(2013·湖北卷) 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁U A)=( )A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B 【解析】∁U A={3,4,5},B∩(∁U A)={3,4}.29.(2013·广东卷) 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T =( )A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}【答案】A 【解析】S={-2,0},T={0,2},S∩T={0},故选A.30.(2013·广东卷) 设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T =( )A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}【答案】A 【解析】S={-2,0},T={0,2},S∩T={0},故选A.31.(2013·新课标全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )A.{1,4} B.{2,3}C.{9, 16} D.{1,2}【答案】A 【解析】集合B={1,4,9,16},所以A∩B={1,4}.32.(2013·浙江卷) 设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=( ) A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]【答案】D 【解析】从数轴可知,S∩T=(-2,1].所以选择D.33.(2013·重庆卷) 已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A ∪B)=( )A.{1,3,4} B.{3,4}C.{3} D.{4}【答案】D 【解析】因为A∪B={1,2,3} ,所以∁U(A∪B)={4},故选D.【高考押题】1.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}答案 B2.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N等于( )A.{1}B.{2}C.{0,1}D.{1,2}答案 D解析由x2-3x+2=(x-1)(x-2)≤0,解得1≤x≤2,故N={x|1≤x≤2},∴M∩N={1,2}.3.已知全集S ={1,2,a 2-2a +3},A ={1,a },∁S A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2 D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个 答案 B解析 ∵M ={0,1,2,3,4},N ={1,3,5}, ∴M ∩N ={1,3}.∴M ∩N 的子集共有22=4个.5.已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B 等于( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2] 答案 D解析 A ={x |1<x <4},B ={x |x ≤2}, ∴A ∩B ={x |1<x ≤2}.6.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则右图中阴影部分表示的集合的真子集的个数为( )A .3B .4C .7D .8 答案 C解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6}, 由题意知,图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.7.已知集合A={x|x>1},B={x|x2-2x<0},则A∪B等于( )A.{x|x>0} B.{x|x>1}C.{x|1<x<2} D.{x|0<x<2}答案 A解析由x2-2x<0,得0<x<2,∴B={x|0<x<2},故A∪B={x|x>0}.8.已知集合A={x|-1<x<0},B={x|x≤a},若A⊆B,则a的取值范围为( )A.(-∞,0] B.[0,+∞)C.(-∞,0) D.(0,+∞)答案 B解析用数轴表示集合A,B(如图)由A⊆B得a≥0.9.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.答案{7,9}解析U={1,2,3,4,5,6,7,8,9,10},画出Venn图,如图所示,阴影部分就是所要求的集合,即(∁U A)∩B={7,9}.10.已知全集U=R,集合A={x∈Z|y=x-3},B={x|x>5},则A∩(∁U B)=________.答案{3,4,5}解析∵A={x∈Z|x≥3},∁U B={x|x≤5},∴A∩(∁U B)={3,4,5}.11.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A ∩B =__________.答案 {(0,1),(-1,2)}解析 A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.12.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围是________.答案 (-∞,-1]解析 因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.综上,a 的取值范围是(-∞,-1].13.设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( )A .57B .56C .49D .8 答案 B解析 集合S 的个数为26-23=64-8=56.14.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为( )A .2B .3C .4D .6答案 B解析 集合B 中所满足条件的元素有(1,1),(1,2),(2,1),共3个.15.若集合A ={x |x 2-9x <0,x ∈N *},B ={y |4y∈N *},则A ∩B 中元素个数为( )A .0B .1C .2D .3答案 D解析 由A 得x 2-9x <0,x ∈N *,所以0<x <9,且x ∈N *,得A ={1,2,3,4,5,6,7,8},由B 得4y∈N *,即y =1、2、4,得B ={1,2,4},故A ∩B ={1,2,4}.16.已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P =________.答案 ⎣⎢⎡⎭⎪⎫12,+∞ 解析 ∵U ={y |y =log 2x ,x >1}={y |y >0},P ={y |y =1x ,x >2}={y |0<y <12}, ∴∁U P ={y |y ≥12}=⎣⎢⎡⎭⎪⎫12,+∞.17.若x ,y ∈R ,A ={(x ,y )|(x +1)2+y 2=2},B ={(x ,y )|x +y +a =0},当A ∩B ≠∅时,则实数a 的取值范围是________;当A ∩B =∅时,则实数a 的取值范围是__________________.答案 [-1,3] (-∞,-1)∪(3,+∞)18.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x+1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x+1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).。

相关文档
最新文档