第4课时:分式乘除法

合集下载

15.2分式的运算(第4课时)课件ppt2013年新人教版八年级上

15.2分式的运算(第4课时)课件ppt2013年新人教版八年级上
所学知识解决“问题1” 和“问题2”吗?
运用分式的加减法法则
问题1 甲工程队完成一项工程需n 天,乙工程队要 比甲队多用3天才能完成这项工程,两队共同工作一天 完成这项工程的几分之几?
1 1 n+ 3 n + = + 解: n n+3 (n+3) (n+3) n n 2 n+ 3 = . (n+3) n
问题1 甲工程队完成一项工程需n 天,乙工程队要 比甲队多用3天才能完成这项工程,两队共同工作一天 完成这项工程的几分之几? (1)甲工程队一天完成这项工程的几分之几? (2)乙工程队一天完成这项工程的几分之几? (3)甲乙两队共同工作一天完成这项工程的几分之几?
感受学习分式加减法的必要性
问题2 2009年、2010年、2011年某地的森林面积 (单位:km2)分别是S1,S2,S3,2011年与2010年相 比,森林面积增长率提高了多少? (1)什么是增长率? (2)2010年、2011年的森林面积增长率分别是多少? (3)2011年与2010年相比,森林面积增长率提高了多 少?
2 2
运用分式的加减法法则
问题2 2009年、2010年、2011年某地的森林面积 (单位:km2)分别是S1,S2,S3,2011年与2010年相 比,森林面积增长率提高了多少?
解: 即2011年与2010年相比,森林面积增长率提
S1S3 -S 2 2 . 高了 S1S 2
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎么引出分式加减法法则的? (3)在进行分式的加减运算时要注意哪些问题?
布置作业
教科书习题15.2第4、5题.
例 计算: 5 x+ 3 y 2x () 2 2 - 2 2 ; 1 x -y x -y

中考数学一轮总复习 第4课时 分式(无答案) 苏科版

中考数学一轮总复习 第4课时 分式(无答案) 苏科版

第4课时:分式【课前预习】(一)知识梳理1、分式的有关概念:①定义;②分式有意义的条件;③分式的值为0的条件.2、分式的基本性质:①约分;②最简分式;③通分;④最简公分母.3、分式的运算:①分式的乘除;②分式的加减;③分式的混合运算.(二)课前练习1. 下列有理式: x 1,()12x y +,y x y x --22,π2,3-x x ,1394y x +,212-+x x 中,分式是____ _______________.2、当x 时,分式x x -2有意义,当x 为 时,分式3212-++x x x 的值为零. 3、不改变分式的值,把分式b a b a 212.031+-的分子和分母各项系数化为整数,结果是__ ______.4、约分:222axy y ax =_ ____ ,32)()(x y y x --=___ __, 11222-+-x x x =____ ___. 5、分式245a b c ,2310c a b 与252b ac -的最简公分母为_________;分式11,122-+x x x 的最简公分母为_________. 6、计算① xx x x x x x +-⋅-+÷+--111112122= ; ② 1111--+x x = .【解题指导】例1 计算: (1)112---x x x (2) x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+-- (3) )212(112a a a a a a +-+÷--例2 化简求值:①(x 2+4x -4)÷ x 2-4 x 2+2x ,其中x =-1, ②222(1)(1)(1)121x x x x x x x --÷+---+,其中210x x +-=.③先化简211()1122x x x x -÷-+-,1-中选取一个你认为合适..的数作为x 的值代入求值.例3、已知22)2(2)2(3-+-=-+x B x A x x ,则A= ,B= .【巩固练习】 1.要使分式212x x x -+-的值为零,则x 的取值为 ( ) A.x =1 B. x =-1 C. x ≠1且x ≠-2 D.无任何实数2.将分式y x xy -中的y x ,都扩大2倍,分式的值 ( ) A.扩大4倍 B.扩大2倍 C.不变 D.缩小23、计算:(1))3()42()(-62322b a b a ab -÷-⋅ (2)222+-+y y y (3))11(122b a b a b a -++÷-4、 先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中21=x【课后作业】 班级 姓名一、必做题: 1.要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >2.若分式33x x -+的值为零,则x 的值是( ) A .3 B .3- C .3± D .03.化简222a b a ab -+的结果为( )A .b a -B .a ba - C .a ba + D .b -4.化简22422b a a b b a +--的结果是( )A .2a b --B .2b a -C .2a b -D .2b a +5.计算22()ab a b -的结果是( )A .aB .bC .1D .-b6.分式111(1)a a a +++的计算结果是( )A .11a +B .1a a +C .1aD .1a a +7.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x xx x x x x x x x +-++-=-=-==++-+++.其中正确的是( )A .小明B .小亮C .小芳D .没有正确的8、当x 时,分式12x -无意义;若分式22221x x x x --++的值为0,则x 的值等于 .9、化简: 22a aa += ;=---b a bb a a _____________.10、计算:①(12-a )÷(1a 1-) ②2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭11、先化简aa a a a -+-÷--2244)111( ,再选取一个适当的a 的值代入求值.二.选做题:1、 a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 2、某单位全体员工在植树节义务植树240棵,原计划每小时植树a 棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).3、设0a b >>,2260a b ab +-=,则a b b a+-的值等于 . 4、(1)若3a b +=0,求22222124b a ab b a b a b ++⎛⎫-÷ ⎪+-⎝⎭; (2已知x 2-3x -1=0,求x 2+1x 2的值.5、观察下列格式:111122=-⨯,1112323=-⨯,1113434=-⨯,… (1)计算111111223344556++++=⨯⨯⨯⨯⨯__________; (2)探究()11111223341n n ++++=⨯⨯⨯+…__________;(用含有n 的式子表示) (3)若()()111117133557212135n n ++++=⨯⨯⨯-+…,求n 的值.。

第4课 分式及其运算

第4课 分式及其运算

x -3 -3 时,分式 (2)当x=________ 的值为0. x-3 解析:当|x|-3=0,|x|=3,x=±3,
而x-3≠0,x≠3,故x=-3. (3)若分式 A.1

x-2 的值为0,则x的值为( D ) 2 x -1 B.-1 C.±1 D.2
解析:当x-2=0,x=2时,x2-1≠0,故选D.
3.分式的运算法则:
(1)符号法则:分子、分母与分式本身的符号,改变其中 任何两个,分式的值不变. 用式子表示为:a =- a = -a =- -a , b -b -b b - a = a = -a . b -b b (2)分式的加减法: a b a± b ± = 同分母加减法: c c ; c b d bc± ad ± = 异分母加减法: a c ac .
x-2 的值为0. x+2 解析:当x-2=0,x=2时,分母x+2=4,分式的值是0.
2 时,分式 (2)(2011· 泉州)当x=_______
知能迁移1
x 有意义的x的取值范围是________. x≠2 2x-4 解析:当2x-4≠0,x≠2时,分式有意义,
(1)使分式
故x的取值范围是x≠2.
A.x=-2 C.x=1
2x-5 3 = 的解是( C ) 2-x x-2 B.x=2
D.x=1或x=2
1-5= -3=3, 解析:当x=1时,方程左边= 2× 1-2 -1 右边= 3 =3,∴x=1是原方程的解. 2-1
题型分类 深度剖析
题型一 分式的概念,求字母的取值范围 1 【例1】 (1)当x=_______ 时,分式 2 无意义; x-1 解析:当x-1=0,x=1时,分式无意义.
这种变形叫做分式的通分,通分的根据是分式的基本性

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

分式的乘除法教学设计课型:新授 教师姓名:教学目标: 1、理解分式的乘除运算法则2、会进行简单的分式的乘除法运算教学重点:分式的乘除法运算教学难点:1、分式的乘除法法则的理解2、分子与分母是多项式的分式乘除法运算一、复习回顾1、化简:(1)bc a ac 22142- (2)aa a 2422+- 设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。

2、计算:(1),10932⨯ (2)211075÷ 3、思考:(1)说出分数的乘除法的法则;分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)试一试计算:猜一猜:=⨯c d a b;=÷cd a b 你能总结分式乘除法的法则吗?与同伴交流。

c bd a c d b a ⨯⨯=⨯, db c a d c b a c d b a ⨯⨯=⨯=÷ 二、小组讨论与归纳通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。

三、例题学习,计算:例题1:(1)226283a y y a⋅ 例题2(1)x y xy 2262÷ 注意:计算结果一定要化为最简分式四、巩固练习,计算:化简:(1)2a b b a⋅ (2) )(x y y x x y -⋅÷ (3)xy xy 3232÷- (4))21()3(43x y x y x -⋅-÷ 5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: aa a a 21222+•-+ 尝试之后老师提问:1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?2、分子与分母能进行约分吗?3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?五、例题学习,计算:1、 bb a a b -+•-2239 2、41441222--÷+--a a a a a注意:当分式的分子与分母都是单项式时:(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②约分(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

分式的乘除法说课稿

分式的乘除法说课稿

课题:分式的乘除法一、教材结构分析:分式的乘除法是八年级数学第16章第2节第1课时的内容,是初中数学的重要内容之一。

一方面是在学生学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面又为学习分式加减法和分式方程等知识奠定了基础。

因此,本节课起着承前启后的作用。

二、学习目标设置:1.知道分式乘除法的运算法则。

2.会利用分式乘除法则进行运算。

三、教学目标设置1、理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,及分式的乘方运算,能解决一些与分式乘除有关的实际问题;2、让学生经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对特殊到一般及转化等数学思想的认识,培养学生的数感、符号意识,数学运算能力。

3、学生在主动探索、合作交流中渗透类比、转化的思想,使学生在学习知识的同时感受探索的乐趣和成功的体验。

四、学情分析:已有的知识水平:1、学生在小学阶段已经学习了分数的乘除法运算,理解了算理算法;2、本章的前一节已经学习了分式的基本性质,并会用分式的基本性质进行约分。

已有的方法经验:学生在前面的学习中已经积累了用类比的方法学习整式乘除法的经验。

五、四基三点:基础知识:1.分式乘除法的运算法则。

2.会利用分式乘除法则进行运算。

基本技能:能进行简单的分式乘除法运算。

基本思想:类比思想、转化思想、特殊到一般基本活动经验:让学生经历分式乘除法法则的探究过程,积累用类比的方法探究数学运算法则的经验。

重点:应用法则正确的进行分式乘除法运算。

难点:理解分式乘除法的法则和应用。

易错点:分子、分母是多项式的乘除法运算,由于对因式分解和分式的约分的前经验不足,造成运算错误。

六、重难点处理方法:本节课是运算课,理解算理是难点,掌握算法是重点。

采取以学生自主探究为主的学习方式,类比分数的乘除法运算,学习分式的乘除法运算,以问题导学,递进式展开,应用分式的乘法法则研究分式的乘方运算。

中考数学复习方案(苏科版)第4课时 分式

中考数学复习方案(苏科版)第4课时 分式
·江苏科技版
│ 归类示例 归类示例
► 类型之一 分式的有关概念
命题角度: 1.分式的概念 2.使分式有(无)意义、值为 0(正或负)的条件
1 (1)若分式 有意义,则实数 x 的取值范围是 x-5 ________ x≠5 . 3x2-27 (2)[2011· 内江] 如果分式 的值为 0, 则 x 的值应 x-3 -3 . 为_____运算 1.分式的加减
a b (1)同分母的分式相加减,分母不变,把分子相加减,即 ± = c c a± b ________. c (2)异分母的分式相加减,先通分,变为同分母的分式,然后相 bc ad a c ad± bc bd bd 加减,即 ± = ________± ________= . b d bd 2.分式的乘除 分式乘分式,用分子的积做积的分子,分母的积做积的分母;分 a c 式除以分式, 把除式的分子、 分母颠倒位置后, 与被除式相乘. 即 × b d d ac a a c ad c bd b = ________ , ÷ = ________ × ________= .(b≠ 0, c≠ 0, d≠ 0) b d bc
│ 分式
·江苏科技版
│ 考点聚焦 考点聚焦
考点1 分式
A 字母 , 分式的概念: 形如 (A、 B 是整式, 且 B 中含有________ B B≠ 0)的式子叫做分式. A [辨析] (1)分式 有意义的条件:___________. B≠0 B A (2)分式 的值为 0 的条件:__________________. A=0 且 B≠0 B
·江苏科技版
► 类型之二
分式的基本性质的运用
命题角度: 1.利用分式的基本性质进行通分 2.利用分式的基本性质进行约分

5.2分式的乘除法 课件 30张PPT 北师大版 八年级数学下册

5.2分式的乘除法 课件  30张PPT   北师大版 八年级数学下册

B.xy5

的结果是( A )
C.x2y5
D.x2y6
3.下列计算正确的是( B )

A.a÷ =1


C.a÷a·=a



B. · =

D.



��
=-a3b6
4.计算:

+
(1) · = −

(2) −






(1)







− 2

(2)(
)=


(3)


· =





基础巩固


1.计算 ÷ 的结果是(


A.


B.

D)
C.2xy

D.



2.(2023·河北)化简x3·

A.xy6

·

(1)解:原式=- =- .
·



(2)
· .
−+
· + −
(2)解:原式=
− ·
+
= .

例2
计算:

(1) ÷ ;



·

(1)解:原式= · =
+
答:甲的单价是乙的单价的 倍.

).
− + = ,
= −,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【学习课题】第4课时 分式乘除法
【学习目标】1、类比分数乘除法的运算法则.探索分式乘除法的运算法则;
2、会进行分式的乘除法的运算;
【学习重点】掌握分式乘除法的法则及其应用。

【学习难点】分子、分母是多项式的分式的乘除法的运算。

【学习过程】 学习准备: 1. 阅读教材74—76。

2. 计算
(1)
627
5

= (2)
411______22
3

= (3)
53_____9
10
÷
= (4)
42______9
3
÷
=
新知探究 3.思考:
a
b ×
c
d =?
a
b ÷
c
d =?与同伴交流总结并完成填空:
两个分式相乘,把____________作为积的分子,把_____________作为积的分母,用字母表示_____________;
两个分式相除,把_____________________________后再与____________,用字母表示_________________。

例1计算
(1)y x 34·3
2x y
; (2)2
63y xy x ÷ (3)4
2
232934m n n m ⎛⎫⎛⎫ ⎪ ⎪⎝⎭
⎝⎭ 解:
43x y
·
3
2y x
(两个分式相乘) 解:2
63y xy x
÷
解:4
2
232938m n n m ⎛⎫⎛⎫ ⎪
⎪⎝
⎭⎝⎭ =
3
234x
y y x ⋅⋅(分子相乘,分母相乘) =2
2
36x xy y

(将除变为乘) =
8
212
2
16818164m n
n m

=
2
3222x
xy xy ⋅⋅(提公因式) =
2
263y
x xy ⋅ =610
4m n
=
2
32x
(约分) =
2
12
x
注意:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.
即时练习:计算(1)2a b b a ⋅ (2)2
233b
b a a ⎛⎫
÷- ⎪⎝⎭ (3)3
2
223b a a b ⎛⎫⎛⎫ ⎪ ⎪⎝
⎭⎝⎭
4.分子分母出现多项式的运算 根据已学可知:
a
b ×
c
d =
ac
bd ;
a
b ÷
c
d =
a
b ×
d
c =
ad
bc .
这里字母a,b,c,d 可以代表整式,但a,c,d 不为零. 例2、观察书上例题,用分式乘除法法则计算: ()2
2
3
199
b
a a
b +⋅
-- ()
()2
21
a a
a a -÷
-
由上题可知:进行分式乘法运算,当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,使运算简化。

即时练习:()
2
2
2
4
3
34332
a a a a a a --⋅
-+++ ()
2
2
114x x y
y
-+÷
反思小结
1、两个分式相乘(或相除),如果分子和分母都是单项式,可以_________________________________进行计算;如果分子
和分母都是多项式,那么先将分子和分母_______________,然后再运用分式的乘法(或除法)法则进行计算。

2、如果整式与分式相乘(或相除),可以把整式看作________________的式子进行计算,当整式是多项式时,同样要先
________________。

3、对于1a b b
÷⨯,小明是这样计算的:11a b a a b
÷⨯
=÷=,他的计算过程是正确的吗?为什么?
【达标测评】
计算下列各式:
()
42
2
4491158a b x x
a b ⋅ ()2
21222a a a a +⋅-+ ()2
2211
3444a a a a a --÷-+- 2
3
22(4)y x x y ⎛⎫
⎛⎫ ⎪ ⎪⎝⎭⎝⎭
【能力提升】
已知a 2
+3a +1=0,求 (1)a +a
1; (2)a 2+
2
1a
; (3)a 3+
3
1a
; (4)a 4+
4
1a。

相关文档
最新文档