地下管线探测仪原理
管线探测仪探测原理讲解

三、探棒定位测深原理
1、间接测深方法: 所有管线定位仪都支持该种方法
三、探棒定位测深原理
2、深度直接测量:
RD8000、RD7000都支持探头深度数据的直接显示。地面探测定点采 用十字交叉的方法。
四、电流方向测量原理
电流方向测量 (CD)目的: ----可直观的区分其它管线与直连目标管线。因为直连法时,其它管线上
大的特定的信号。
Aerial cable form
六、接收机和发射机的方向性
1、发射机的方向性:(感应法) a.当管线方向与发射机发射线圈轴线平行
时,发射机无法给此管线施加感应信号。 b.当发射机线圈轴线与待测管线垂直相交时,
发射机无法给此管线施加感应信号。 c.当发射机线圈轴线与待测管线垂直并且不相
二、深度及电流测量原理
1、管线深度及电流测量原理:
二、深度及电流测量原理
2、测量准确性条件:
管线磁场尽量呈现同心园形。
当用峰值法确定管线位置时,通过判断管线两侧仪器响应的对 称情况即可知道管线磁场的变形程度。
二、深度及电流测量原理
3、70﹪法测量深度: 这个方法在磁场变形严重, 旁侧管线影响比较大时使用。
直连法可以采用的具体措施: ① 给接地棒浇水,这样可以大幅度降低 R*。 ② 红色导联线连接管道处,应该仔细打磨,保证接触良好, 对于通信光缆和对地绝缘良好的其它线缆,不要使用低频, 尽量使用高频,靠导线与大地之间的等效电容降低 R**,为信 号提供一个回路。 ③ 如果有条件,对绝缘良好的导线进行末段接地 。 ④ 增加发射机输出功率
2.POWER 与RADIO 信号强弱影响因素: a) 管线材质,导电性越好,信号越强。 b) 管线长度,长度越长,越容易产生信号。 c) 周围环境,离发电厂,输电线,长波电台越近,越容易产生信
地下管线探测

地下管线探测
地下管线探测是指利用专业的仪器和技术手段来检测地下的各种管线,以确定其具体位置、深度和走向等信息。
地下管线包括供水管线、排水管线、燃气管线、电力电缆、通信光缆等。
探测地下管线的目的是为了避免在施工、钻孔、挖掘等过程中对管线造成损害,保护地下管线的安全运行。
地下管线探测常用的方法包括:
1.地下雷达:利用电磁波在地下反射的原理,通过发送和接收器接收信号来确定管线位置和深度。
2.地磁法:利用地下管线产生的磁场变化来确定其位置和深度。
3.电磁感应法:利用电磁感应原理,通过发送电磁信号并测量感应电流的大小来确定管线位置。
4.全球定位系统(GPS):通过卫星定位系统,确定探测设备的位置,从而计算出管线的位置。
此外,地下管线探测还可以通过地下探测设备的视觉检测、声音检测或压力检测等方式进行。
需要注意的是,在进行地下管线探测时,需要事先获得相
关地下管线的布置图,以及对相关管线进行标记和记录,
避免因探测误差或其他原因造成管线损坏。
对于一些复杂
或高压的管线,可能需要借助专业的探测公司或工程师进行。
地下管线探测仪定位与定深方法

地下管线探测仪定位与定深方法地下管线探测仪是自来水公司、煤气公司、铁道通信、工矿、基建单位改造、维修、普查地下管线的必备仪器之一,它能在不破坏地面覆土的情况下,快速准确地探测出地下自来水管道、金属管道、电缆等的位置、走向、深度及钢制管道防腐层破损点的位置和大小。
地下管线大多数都是金属材料,可以感应传递电磁波,基于这一原理,英国雷迪公司设计开发了一款能够通过检测管线上所发射的电磁波智能检测管线位置的仪器——新型RD8100智能管线探测仪。
该地下管线探测仪以其优越的性能,灵活方便的检测方法,在电力、电信、供水、热力、燃气、石油、化工、城市公用事业等领域拥有广大的用户群体。
地下管线仪定位方法:先了解探测仪器的工作原理,管线仪工作原理就是遵循电磁定律,这里以RD8100为例,接收机电路板包括一个垂直线圈、两个水平线圈。
谷值法:谷值法又称极小值法,是利用管线仪垂直线圈测量电磁场的磁通量,当管线仪移动到管线正上方时,电磁场的垂直分量为0,根据极小值点位来确定管线的平面位置。
该方法的特点是:原理简单,仪器显示直观,定位灵敏度高,缺点是易受附近信号影响,当测量的管线附近有其他同等或较强信号时,管线探测仪线圈接收其他的磁通量从而影响管线定位的准确性。
谷值法只适用于简单条件下,无邻近干扰或距离干扰物的信号极弱时,快速追踪管线走向。
峰值法:峰值法与谷值法相反,是利用管线仪水平线圈测量电磁场的磁通量,峰值法分为宽峰值法和窄峰值法两种。
宽峰值法是利用下水平线圈检测,当管线仪移动到管线的正上方时,电磁场的水平分量为最大,以此来确定管线的平面位置。
该方法的特点是:不如估值法更直观,管线正上方磁通量变化小,因而灵敏度较低。
窄峰值法与宽峰值法类似,只不过不同的是利用上水平线圈和下水平线圈同时检测。
地下管线定深方法:1、直读法管线仪利用上下两个水平线圈测量电磁场的梯度,而电磁场梯度与埋深有光,按下接收机测深按钮,在数字式表头直接读出地下管线的埋深。
管道检测设备介绍及检测方案范本

管道检测设备介绍及检测方案管道检测是管道安全管理的重要组成部分,对于保护管道的安全性以及预防事故起到了举足轻重的作用。
随着科技的发展,越来越多的高效、精准的管道检测设备得到了广泛应用。
本文将介绍一些常见的管道检测设备以及相应的检测方案。
1. 管线探测仪管线探测仪是一种用于检测地下管线的设备。
它具有快速、高效、精准的特点,可以精确地检测到管线的位置、深度以及管道报警器的状态等信息。
其工作原理是利用地磁、电磁波或者声波等信号对管线进行定位和探测。
使用管线探测仪进行管道检测时,需要事先制定相关的检测计划,并对管线进行标记和分类。
在实际检测过程中,需要配备专业的检测人员进行操作,并对检测结果进行数据分析和统计。
管线探测仪的应用范围非常广泛,主要用于城市地下管网、石油化工行业、金属管道等领域。
2. 超声波检测仪超声波检测仪是一种利用声波进行检测的设备,主要用于检测管道的缺陷、泄漏、裂纹等问题。
超声波检测仪工作原理是向被测体发送超声波信号,然后通过接收探测器接收反射波,从而分析出管道内部是否存在缺陷。
在实际使用中,超声波检测仪具有快速、无损、灵敏度高等优点,被广泛应用于建筑工程、航空航天行业、机械制造等领域,以及在一些特殊的管道检测领域中具有独特的优势。
3. 管道内窥镜设备管道内窥镜设备是一种可穿越管道内部进行检测的设备,主要用于检测管道是否存在裂纹、腐蚀、碰撞、连接是否牢固等问题。
管道内窥镜设备分为硬性内窥镜和软性内窥镜两种类型,工作原理是通过显微镜头组成的探头进行管道检测。
在实际应用中,管道内窥镜设备十分灵活且精准,因此被广泛应用于建筑工程、石油化工行业、电力系统等领域。
4. 管道流量计管道流量计是一种用于测量管道内液体或气体流量的设备。
主要根据热量、压差、超声波、质量等原理进行测量。
管道流量计可以测量管道内部的流速、密度、压力、温度等参数,从而精准地计量管道的流量,并提供可靠的流量计量数据。
在实际应用中,管道流量计主要用于化工、石油、天然气、水务、供热等领域,以及工业生产和民用建筑等行业。
管线探测仪的原理应用

管线探测仪的原理应用引言管线探测仪是一种用于检测和定位埋藏地下的各种管道、管线和隧道的设备。
它通过使用射频信号和电磁波来探测地下管线,然后将结果进行分析和展示。
管线探测仪在城市规划、土地开发、水利建设等领域有着广泛的应用。
管线探测仪的原理管线探测仪基于电磁波传播和反射原理工作。
它通过发射电磁信号穿透地下,并根据反射信号的强度和时间来确定管道的位置、深度和方向等信息。
管线探测仪主要由以下几个部分组成: - 发射器:发射器产生电磁信号并将其发送到地下。
- 接收器:接收器接收来自地下管线的反射信号,并将其转换成电信号。
- 处理单元:处理单元对接收到的信号进行分析和处理,并生成相应的管线信息,如位置、深度和方向等。
- 显示器:显示器将处理单元生成的管线信息进行展示,供用户观察和分析。
管线探测仪的应用管线探测仪在以下领域有广泛的应用:1. 城市规划在城市规划过程中,为了避免对已有地下管线的损坏或破坏,使用管线探测仪可以准确地检测和定位地下管线。
这样可以在规划和施工过程中避免潜在的问题,并确保城市基础设施的稳定运行。
2. 土地开发在进行土地开发之前,使用管线探测仪可以快速准确地了解地下管线的布局和走向。
这有助于规划和设计工程,并在施工过程中避免不必要的风险和延误。
3. 水利建设在进行水利建设项目时,如水管、下水道和排水设施的设计和施工,使用管线探测仪可以帮助工程师准确地了解地下管线的情况,快速找到合适的敷设位置,并避免对现有管线的损坏。
4. 管道维护在管道维护过程中,使用管线探测仪可以快速准确地定位问题所在,并帮助维修人员快速采取相应的维护措施。
这样可以减少维护时间和成本,并提高管道维修的效率。
5. 隧道建设在隧道建设过程中,使用管线探测仪可以帮助工程师准确地了解地下管线的布局,避免隧道施工对现有管线的破坏。
这样可以提高隧道建设的效率和质量。
结论管线探测仪在城市规划、土地开发、水利建设和管道维护等领域有着广泛的应用。
管线探测仪工作原理

管线探测仪工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII管线探测仪工作原理:是利用电磁感应的原理来探测地下电缆的精确走向、深度以及定位电缆的开路、短路及外皮故障点,GH-6600B管线探测仪的智能化全汉字、图形操作指示及声音调频指示。
发射机内置欧姆表可自动测量环路电阻及连续的自动输出阻抗匹配,以保证输出最佳的匹配信号。
对于电缆故障的测试,本仪器可应用跨步电压法,用直埋电缆故障测试配件(“A”字架)来判断直埋电缆的对地绝缘电阻小于2M欧的电缆对地故障及电缆外皮故障的定位;也可以用信号强弱法判断电缆开路、短路故障。
应用耦合夹钳,可以查找带电电缆的路径,利用接收机的50Hz探测功能,还可以对运行电缆发出的50Hz工频信号进行跟踪。
其基本工作原理是:由发射机产生电磁信号,通过不同的发射连接方式将信号传送到地下被测电缆上,地下电缆感应到电磁信号后,在电缆上产生感应电流,感应电流沿着电缆向远处传播,在电流的传播过程中,通过该地下电缆向地面辐射出电磁波,这样当管线定位仪接收机在地面探测时,就会在电缆上方的地面上接收到电磁波信号,通过接收到的信号强弱变化来判别地下电缆的位置、走向和故障发射机的工作原理及方法1.发射机的信号发送连接方式:直连法、耦合法、感应法2.直连法是最佳的探测方法,发射机输出线红色端直接连接到管线的裸露金属部分切勿将其接入带电运行线路中,另一端接地。
此种方法产生的信号最强,传播距离最远,适用于低频、射频两种工作状态3.耦合法当不能与待测管线直接相连时,可以采用耦合夹钳用耦合法探测。
此种方法可以根据现场的实际情况来选择发射频率:低频、射频。
当地下管线的近端和远端都接地良好并形成回路,这时就使用低频频率;如果两端接地不良好,回路电阻过大,或者低频信号耦合不上,那就改用射频来测试。
选择频率没有固定不变的原则,下面给出了频率选择的基本原则:对于高阻的管线(如:通信电缆,带防腐层的管道和铸铁管)使用射频率。
地下管线测量和定位的方法和工具

地下管线测量和定位的方法和工具一、引言地下管线系统是现代城市基础设施的重要组成部分,包括供水、排水、天然气、电力、通信等。
在城市建设和维护过程中,了解地下管线的准确位置至关重要,以避免无意间损坏管线,造成不必要的耗费和安全隐患。
本文将探讨地下管线测量和定位的方法和工具,以帮助读者理解并合理应用相关技术。
二、非破坏性检测方法非破坏性检测方法是目前常用的一种测量和定位地下管线的技术手段。
它通过利用电磁、声波、地质雷达等原理,对地下管线的位置进行识别和测量,而无需进行地面开挖。
其中最常用的非破坏性检测方法包括地质雷达、电磁探测仪和声纳探测仪。
1. 地质雷达地质雷达是利用高频雷达信号对地下物体进行探测的仪器。
它能够检测到地下的金属、非金属管线以及其他物体的存在,并通过分析信号反射的特征,确定管线的位置。
地质雷达具有较高的定位精度,可以识别管线的走向、深度和材质,但在复杂地质环境下的应用较受限制。
2. 电磁探测仪电磁探测仪利用电磁信号对地下金属管线进行定位。
它通过发射电磁波来诱发管线产生感应电流,从而识别出管线的位置。
电磁探测仪的优点是操作简便、反应速度快,适用于较大范围的地下管线检测,但在非金属管线的定位上有一定的局限性。
3. 声纳探测仪声纳探测仪是一种利用声波对地下管线进行检测的设备。
它通过发射声音信号,利用声波在地下的传播速度和特性,确定管线的存在和位置。
声纳探测仪适用于各类管线的探测,但在城市环境中,由于大量噪音的干扰,其精度和稳定性可能受到影响。
三、全站仪测量方法除了非破坏性检测方法,全站仪也被广泛应用于地下管线的测量和定位。
全站仪是一种综合了测角、测距和测高等功能的仪器,通过测量地面上不同点与目标的坐标和高程,来计算出地下管线的位置。
全站仪的测量方法相对比较复杂,需要在地表上设置多个控制点,并利用全站仪测量这些控制点的坐标和高程数据,再根据地下管线与控制点之间的位置关系,进行计算和推断,从而确定地下管线的位置。
RDRD地下管线探测仪使用技巧

RD400、RD4000地下管线探测仪使用技巧雷迪公司北京办事处一、管线仪简介RD400、RD4000管线探测仪均为由一台发射机和一台接收机组成,用于地下金属管线路由的精确定位、深度测量和长距离管线的追踪。
它采用了雷迪公司独创的双水平线圈和垂直线圈电磁专利技术,并且增加了测量目标管线电流强度和电流方向的功能,提高了管线仪定位的精度和对目标管线的识别能力,在管线密集复杂的区域也能准确地对目标管线进行追踪和定位。
RD400、RD4000地下管线探测仪还有许多可选配件,从而扩展了它们的用途和应用范围。
不但可以对直埋管线的对地绝缘故障点进行准确的定位,也可以对非金属下水管道、污水管等的进行探测,还可以使用特殊夹钳(或听诊器)从很多根管线中识别单一的目标管线。
另外,雷迪公司还提供了探测深度更大的双深度天线及专门用于水下工作的水下双深度天线等配件。
二、管线仪的探测原理及方法1、原理RD400、RD4000地下管线探测仪使用的是电磁感应法。
用管线仪的发射机在地下管线上施加一个交变的电流信号I。
这个电流信号在管线中向前传输的过程中,会在管线周围产生一个交变的磁场。
其大小为I=K*I/R,方向为等势圆周上的切线方向。
将这个磁场分解为一个水平方向的磁场分量和一个垂直方向的磁场分量。
通过矢量分解可知,在目标管线的正上方时水平分量为最大,垂直分量为最小,而且它们的大小都与管线的位置和深度呈一定的比例关系。
因此,用管线仪接收机里的双水平天线和垂直天线分别测量其水平分量和垂直分量的大小,就能准确地对地下管线进行定位和测深。
2、方法RD400、RD4000地下管线探测仪都有无源工作方式和有源工作方式等两种方式。
无源工作方式用来搜索一个区域内未知的电力电缆及其它一些能主动向外幅射信号的管线。
不需要发射机对目标管线施加信号。
有电力(Power)和无线电(Radio)两种模式。
将接收机调到这两种工作模式,调节灵敏度,得到合适的读数,提着接收机在区域内进行网格搜索,并使机身面与移动方向成直线且尽可能与通过的管线呈90°,接收机有响应显示时,则表示有管线存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下管线探测仪是利用电磁信号的原理来探测地下金属管道的精确走向和深度以及管线外皮故障点,其基本工作原理是:由发射机产生电、磁波并通过不同的发射连接方式将发送信号传送到地下被探测金属管线上,地下金属管线感应到电磁波后,在地下金属管线表面产生感应电流,感应电流就会沿着金属管线向远处传播,在电流的传播过程中,又会通过该地下金属管线向地面辐射出电磁波,这样当地下管线探测仪接收机在地面探测时,就会在地下金属管线正上方的地面接收到电磁波信号,通过接收到的信号强弱变化就能判别地下金属管线的位置和走向。
发射机向金属管线发送信号,所发送信号沿地下金属管线传播并产生电磁场,在施加信号管线的远端所施加信号通过大地返回到发射机接地端,从而形成回路。
这时拿着接收机沿管线方向行走,便能接收到发射机施加在管线内信号产生的电磁场。
发射机的信号发送连接方式有三种方法,分别为:直连法、耦合法、感应法。
(1)直连法是最佳的探测方法,发射机输出线红色端直接连接到管线的裸露金属部分,另一端接地。
此种方法产生的信号最强,传播距离最远、适用于音频和射频工作状态。
(2)当不能与待测管线直接相连时,可以采用耦合夹钳进行耦合法探测。
此种方法可根据现场的实际情况来选择发射频率,音频频率和射频频率。
当地下管线的近端和远端都接地以形成回路,这时就使用音频频率;如果两端接地不良好,回路电阻过大,或者音频信号耦合不上,那就改用射频来测试。
(3)在某些情况下,操作者不可能接近管道或电缆来进行直接连接或使用耦合夹钳,此时可使用发射机内置的感应天线来发射输出(射频)信号,将信号感应到被测地下管线上来进行定位探测。
首先,将发射机放置于管道或电缆的地面正上方,发射机放置方向应使发射机面板上的指示线与管线路径方向相一致。
然后使用接收机在管线地面上方就能探测出地下管线位置。
这种方法只能使用射频频率而不能用音频,同时被测管线的两端都必须有良好的接地即被测管线要具有良好的回路。
接收机的三种工作方式分别为波峰法、波谷法、跨步电压法。
(1)波峰法是用水平线圈接收电磁场水平分量的强度。
对无干扰的管线进行峰值探测在管道正上方时,当接收机的正面与管线走向垂直时磁场响应强度最大,这不仅因为线圈离管线最近,线圈所在的磁场强,还因为此时磁场的磁力线通过接收线圈的磁通量最大。
(2)波谷法用垂直线圈测量电磁场的垂直分量,探测目标管线上的磁场是无数个与管线同心的圆型磁力线组成的,接收机在管线正上方信号响应最小,两侧各有一个高峰。
这是由于这些磁力线在管线正上方穿过接收机垂直接受线圈的垂直分量为零,此时通过接收机的垂直线圈的磁通量为零,信号响应有一个最小值(零值或极小值);当接收机在管线两侧移动时,仪器的响应会随着接收机远离管线而逐渐增大,这是因为,此时的磁力线方向与接收机垂直线圈平面已形成一定的角度,通过接收机垂直线圈的磁通量逐渐变大。
(3)跨步电压法通过选配“A”字架附件可以探测出直埋电缆的对地故障及地下管线外皮破损故障。
将“A”字架连接到接收机,接收机通过接收“A”字架探测到发射机发出的由故障点溢出的泄漏信号,可很方便的定位直埋电缆对地及外皮破损故障。