初中数学60个命题陷阱+经典易错题集锦
数学坑人小题目

数学坑人小题目中学时期,你是否也曾经遇到过被数学坑到的情况?那些看上去简单,实际上却让人头疼的小题目,是否让你也曾深感数学的神秘和魅力。
下面,让我们一起来回顾一下那些曾经坑人的小题目。
1. 时间问题假设现在是上午10点15分,那么3小时25分后是几点呢?看似简单的问题,但是你有没有想到,小时和分钟是两个不同的单位,需要将其转换成同样的单位才能进行计算。
2. 相似三角形在中学数学中,相似三角形是比较常见的一个问题。
但是有时候,题目会出现特殊的相似三角形,例如存在一条平行于底边的直线将三角形分成两个相似三角形,那么该如何求解呢?3. 平方根问题计算平方根也是经常出现的问题,但是当给定一个不是完全平方数的数时,该如何计算其平方根?这就需要用到牛顿迭代等高级方法了。
4. 随机事件概率随机事件概率也是中学数学中比较困难的一个问题,需要对概率、全集、事件等概念有很好的理解。
而有些问题中还需要考虑独立事件、联合概率等因素,更加考验学生的数学思维能力。
5. 函数图像问题函数图像问题是中学数学中相对简单的一个方面,但是有时候会出现一些复杂的函数图像,例如阶梯函数、绝对值函数等,需要学生注意观察和分析。
6. 极值问题极值问题同样是中学数学中经常出现的一个问题,需要学生能够熟练地运用导数的相关知识。
而有些问题中还需要考虑约束条件等因素,更加考验学生的数学能力。
7. 计算器问题虽然现在中学生可以使用计算器辅助计算,但是有时候计算器也会成为一个坑人的问题源。
例如计算器上没有特定的按钮,需要将大问题转化为小问题逐步计算。
此时,学生需要遵循计算规则,且需要认真核对结果。
以上就是中学数学中常见的坑人小题目,虽然这些问题看似简单,但是如果不注意细节和原则,就很容易出错。
而这也正是数学能够锻炼我们逻辑思维和细心的重要原因之一。
11-初一丢分陷阱

北大学霸总结初中数学考试的 6 大丢分陷阱,看到就是赚到洋葱数学2017-11-22陷阱1:时针分针夹角问题问:如果现在时间是 3 点 30 分,钟表上时针和分针的夹角是几度?答案是 90 度?不对!正确答案是 75 度,你有没有掉坑里呢?解题思路在这里:知道了解题思路,你还可能会有新的问题:分针毕竟比时针走得快呀,那分针和时针之间的夹角,什么时候是 90 度呢?这个推荐你去看“洋葱数学”视频,在“几何图形初步”那章里有个知识点,叫做“钟表上的角度问题”,里面讲得很清楚啦。
陷阱2:“负负得正”问题问:已知四个数:2,-3,-4,5,任取其中两个数相乘,所得积的最大值是多少?四个数中只有 2,5 是正数,那最大乘积就是 10?不对!答案不是 2*5=10,而是 -3*-4=12,又是一个坑吧?陷阱3:次数问题问:两个四次多项式和的次数,一定是 0 或者 4,对吗?两个四次多项式的和,要么是被消除了次数是 0,要么是未被消除次数还是 4,感觉没问题啊?但又错了!因为还是少考虑了一种情况,比如:陷阱4:多项式问题问:一个四次多项式与一个五次多项式的和,一定是五次多项式么?嗯?前面刚说了多项式次数问题,但是这个问题中的五次项不可能被四次项消掉啊!所以应该是对的...吧?又被坑啦!不过,这次的坑不在次数上,而是在多项式上,这可真是防不胜防啊:陷阱5:数轴距离问题问:已知点 M 在数轴上距原点 4 个单位长度,若将 M 向右移动 2 个单位长度至 N 点,则点 N 表示的是什么数?看到这个题,一般人就会想:“点 M 距离原点 4 个单位长度,M 就是 4 ,再向右移动 2 个单位长度至 N,那么很明显 N 就是 6 嘛!”但是,M 一定是 4 么?那只是它在原点右侧的情况啊!M 还可能是 -4,所以 N 还有可能是 -2!所以,大家一旦遇到谁距谁几个单位长度,但是没有给方向的题目,就一定要格外注意,八九不离十就要分类讨论了。
初中必背陷阱题库及答案

初中必背陷阱题库及答案初中数学陷阱题库及答案1. 题目:一个数的平方根是正数还是负数?答案:一个正数有两个平方根,一个是正数,一个是负数。
0的平方根是0,负数没有实数平方根。
2. 题目:若a < 0,求-a的绝对值。
答案:若a < 0,则-a > 0,所以|-a| = -a。
3. 题目:若x^2 = 4,求x的值。
答案:x^2 = 4,所以x = ±2。
4. 题目:一个数的立方根是它本身,这个数有几个?答案:有三个数的立方根是它本身,分别是1,-1,0。
5. 题目:若a + b = 0,求a和b的关系。
答案:若a + b = 0,则a和b互为相反数。
6. 题目:若a^2 - b^2 = (a + b)(a - b),求a和b的关系。
答案:这是一个差平方公式,a和b可以是任意实数。
7. 题目:若x^2 - 5x + 6 = 0,求x的值。
答案:这是一个二次方程,可以通过因式分解解得x = 2 或 x = 3。
8. 题目:若一个三角形的内角和为180°,求这个三角形的三个内角。
答案:三角形的三个内角和为180°,但具体每个角的度数需要根据三角形的类型或其他条件来确定。
9. 题目:若一个数的倒数是1/2,求这个数。
答案:若一个数的倒数是1/2,那么这个数是2。
10. 题目:若一个圆的半径为r,求这个圆的面积。
答案:圆的面积公式为A = πr^2。
11. 题目:若一个数的平方等于81,求这个数。
答案:一个数的平方等于81,这个数可以是9或-9。
12. 题目:若一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边的长度为5。
13. 题目:若一个数的立方等于-27,求这个数。
答案:一个数的立方等于-27,这个数是-3。
14. 题目:若一个数的绝对值是5,求这个数。
答案:若一个数的绝对值是5,这个数可以是5或-5。
15. 题目:若一个数的平方加2倍这个数加1等于0,求这个数。
常见陷阱题锦集

专题20:常见陷阱题锦集班级 姓名一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身. 2._________的倒数是它本身;_________的立方是它本身.3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围是_________. 4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________.5.若()2211a a a +--=,则a =_________.6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________. 8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________. 9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线. 10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数. 12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.14.等腰三角形的腰长为a ,一腰上的高与另一腰的夹角为30︒,则此等腰三角形底边上的高为_______. 15.矩形ABCD 的对角线交于点O .一条边长为1,OAB △是正三角形,则这个矩形的周长为______. 16.梯形ABCD 中,AD BC ∥,90A ∠=︒,AB =7cm ,BC =3cm ,试在AB 边上确定P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.AP =_____17.已知线段AB =10cm ,端点A 、B 到直线l 的距离分别为6cm 和4cm ,则符合条件的直线有___条. 18.过直线l 外的两点A 、B ,且圆心在直线l 的上圆共有_____个.19.在Rt ABC △中,90C ∠=︒,3AC =,5AB =,以C 为圆心,以r 为半径的圆,与斜边AB 只有一个交点,求r 的取值范围是__________20.直角坐标系中,已知(1,1)P ,在x 轴上找点A ,使AOP △为等腰三角形,这样的点P 共有______个.21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)22.圆的半径为5cm ,两条平行弦的长分别为8cm 和6cm ,则两平行弦间的距离为 _______. 23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于______. 24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为_____. 25.PA 切⊙O 于点A ,AB 是⊙O 的弦,若⊙O 的半径为1,AB ,则PA 的长为____.26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.27.在半径为1的⊙O中,弦ABAC BAC ∠=________. 二、容易多解的题28.已知()()22222215x y x y +++=,则22x y +=_______.29.在函数y =中,自变量的取值范围为_______. 30.已知445x x -+=,则22x x -+=________.31.当m 为_________时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根. 32.当m 为______时,函数2(1)350m my m xx -=++-=是二次函数.33.若22022(43)x x x x --=-+,则x =___________.34.关于x的方程2210x k +-=有实数解,则k 的取值范围__________. 35.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______.36.在ABC △中,90A ∠=︒,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形能作出_________个37.在⊙O 中,弦AB =8cm ,P 为弦AB 上一点,且AP =2cm ,则经过点P 的最短弦长为________. 38.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______. 39.当x =________时,分式222---x x x 的值为零。
初中数学命题老师最爱出的32个陷阱

初中数学命题老师最爱出的32个陷阱函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
陷阱5:在关于二次函数的应用题中,常见陷阱是当y取得最值时,自变量x不在其范围内。
陷阱6:根据反比例函数性质比较大小时,要注意看两点是否在同一分支上,若不在同一分支上,则直接利用正负情况比较大小;若在同一分支上,则利用增减性判断;若末明确点所在象限,要分类讨论。
4三角形陷阱1:三角形三边之间的不等关系,注意其中的“任何两边”。
最短距离的方法。
陷阱2:在论证三角形全等、三角形相似等问题时,对应点或者对应边容易出错。
注意边边角(SSA)不能证两个三角形全等。
陷阱3:关于等腰三角形的陷阱比较多,并且几乎每年必考,如在解决仅告诉某三角形是等腰三角形,而没有具体说明哪两条边是腰、那两个角是底角的计算与证明问题时,注意需分类讨论。
陷阱4:运用勾股定理及其逆定理计算线段的长、证明线段的数量关系、解决与面积有关的问题以及简单的实际问题时,注意先确定直角或者斜边,如不能确定,需分类讨论。
陷阱5:涉及三角形面积时,确定底边对应的高容易出错(特别拿钝角三角形为陷阱诱导考生出错)。
5四边形陷阱1:平行四边形的性质和判定,如何灵活、恰当地应用。
如利用性质“一组对边平行且相等的四边形是平行四边形”时,注意“同一组对边”这个关键词。
中考数学陷阱题汇总

中考数学陷阱题汇总中考数学陷阱题汇总如下:1.陷阱题1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
2.陷阱题2:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
3.陷阱题3:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
4.陷阱题4:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
5.陷阱题5:关于函数自变量的取值范围埋设陷阱。
6.陷阱题6:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
7.陷阱题7:二次函数y=ax2+bx+c的图象位置和参数a、b、c的关系。
常在选择题中的压轴题来考查。
8.陷阱题8:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,注意其中的不变与变化。
9.陷阱题9:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
10.陷阱题10:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,许多人容易忽视其中的一种情况。
1/ 211.陷阱题11:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,如在轴对称和旋转中角的大小不变,线段的长短不变。
12.陷阱题12:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
13.陷阱题13:判断是否公平的方法是判断概率是否相等,注意频率与概率的联系与区别。
2/ 2。
初中数学常考32陷阱

初中数学常考32陷阱题汇总1.数学式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
2方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图象求不等式的解集和方程的解时,注意端点处的取值。
3函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图象位置和参数a,b,c的关系。
常在选择题中的压轴题来考查。
陷阱4:在有些函数或方程的表述形式上埋设陷阱,如表述为“函数y=ax2+bx+c”,这里因为没有特别注明是二次函数,所以一定要注意当a=0的情况,如表述为“方程ax2+bx+c=0”,则该方程不一定为一元二次方程,故还要考虑当a=0的情况。
初中数学60个命题陷阱+经典易错题集锦

初中数学60个命题陷阱+经典易错题集锦数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
这个上海还没有考过,知道就好!易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带X公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学60个命题陷阱+经典易错题集锦数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
这个上海还没有考过,知道就好!易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带X公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
函数易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:与坐标轴交点坐标一定要会求。
面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。
函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
三角形易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。
最短距离的方法。
易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。
易错点4:全等形,全等三角形及其性质,三角形全等判定。
着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。
边边角两个三角形不一定全等易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。
易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。
易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。
易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。
易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。
四边形易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。
三角形的稳定性与四边形不稳定性。
易错点2:平行四边形注意与三角形面积求法的区分。
平行四边形与特殊平行四边形之间的转化关系。
易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。
对角线将四边形分成面积相等的四部分。
易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。
易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。
矩形与正方形的折叠。
易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。
易错点7:梯形问题的主要做辅助线的方法圆易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。
易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况。
(25题分类讨论)易错点5:与圆有关的位置关系把握好d与R和R+r,R-r之间的关系以及应用上述的方法求解。
易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。
直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点7:几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
对称图形易错点1:轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。
(2014第五题)易错点2:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。
易错点3:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
统计与概率易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。
易错点2:在从统计图获取信息时,一定要先判断统计图的准确性。
不规则的统计图往往使人产生错觉,得到不准确的信息。
易错点3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。
易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。
易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率。
易错点6:平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。
加权平均数的权可以是数据、比分、百分数还可以是概率(或频率)易错点7:求概率的方法:(1)简单事件(2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值。
(3)复杂事件求概率的方法运用频率估算概率。
易错点8:判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
初中数学经典易错题集锦一、选择题1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是-----------------------------()A、互为相反数B、绝对值相等C、是符号不同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是--------------------()bA、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------()A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有---------------------------------------------------------()A、1个B、3个C、4个D、无数个5、下列说法错误的是-------------------------------------------------------------------()A. 两点确定一条直线B、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6.函数y=(m 2-1)x 2-(3m -1)x+2的图象与x 轴的交点情况是---------------------------------- ( )A.当m ≠3时,有一个交点 B 、1±≠m 时,有两个交C 、当1±=m 时,有一个交点D 、不论m 为何值,均无交点7.如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d -r)2=R 2,则两圆的位置关系是---------( )A 、内切B 、外切C 、内切或外切D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是---------( )A B C D9、有理数中,绝对值最小的数是---------------------------------------------------------( )A 、-1B 、1C 、0D 、不存在 10、21的倒数的相反数是A C--------------------------------------------------------------- ( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是------------------------------------------------------------- ( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为------------------- ( )A 、互为相反数B 、互为倒数C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为------------------------------------ ( )A 、2xB 、2(x -2)C 、x -4D 、2·(x -2)/214、“比x 的相反数大3的数”可表示为------------- ----------------------------------- ( )A 、-x -3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是-----------V -------------------------------------- ( )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是----------------------------------------------------------------------------------- ( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为---------- ( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是--------------------------------------------------------------------( )A 、21+B 、12-C 、21--D 、12+- 19、方程x(x -1)(x -2)=x 的根是-------------------------------------------------------------- ( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1,x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 时,若设y x x =+1,则原方程可化为--------------- ( )A 、3y 2+5y -4=0B 、3y 2+5y -10=0C 、3y 2+5y -2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有----------------------------------------------------------------------- ( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根22、一次函数y=2(x -4)在y 轴上的截距为----------------------------------------------------- ( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>a x a x ,正确的结论是----------------------------------------------- ( )A 、无解B 、解为全体实数C 、当a>0时无解 D 、当a<0时无解24、反比例函数x y 2=,当x ≤3时,y 的取值范围是------------------------------------------- ( )A 、y ≤32B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤32 25、0.4的算术平方根是--------------------------------------------------------------------( )A 、0.2B 、±0.2C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是------------------------------------------- ( )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-a x x 有解,则a 的取值范围是---------------------------------------- ( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±1 O O O O29、下列图形中既是中心对称图形,又是轴对称图形的是----------------------------------------- ( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知d c b a =,下列各式中不成立的是------------------------------------------------------- ( ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd a c b a 23++= D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于--------------------------------------- ( )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是--------------------------------- ( )A 、三角形的外心B 、三角形的重心C 、三角形的内心 D 、三角形的垂心33、下列三角形中是直角三角形的个数有----------------------------------------------------- ( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为---- O BA------------------------------------ ( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm35、平行四边形的一边长为5cm ,则它的两条对角线长可以是----------------------------------- ( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD的大小关系是------------ ( )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是------------------( )A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是----------------------------------------- ( )A 、AB=2CDB 、AB>2CDC 、AB<2CDD 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为-----------( )C EA、300B、600C、1500D、300或150040、△ABC的三边a、b、c满足a≤b≤c,△ABC的周长为18,则------------()A、a≤6B、b<6C、c>6D、a、b、c中有一个等于641、如图,在△ABC中,∠ACB=900,AC=1,BC=2,则下列说法正确的是------()A、∠B=300B、斜边上的中线长为1C、斜边上的高线长为552D、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B的直线BE (BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得到等腰三角形EBA,那么下列结论中(1)∠A=300(2)点C与AB的中点重合(3)点E到AB的距离等于CE的长,正确的个数是-------------()A、0B、1C、2D、343、不等式6322+>+xx的解是----------------------------------------------------()A、x>2B、x>-2C、x<2D、x<-2EA B44、已知一元二次方程(m -1)x 2-4mx+4m -2=0有实数根,则m 的取值范围是----------------------( )A 、m ≤1B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤145、函数y=kx+b(b>0)和y=x k -(k ≠0),在同一坐标系中的图象可能是------------------------------( )A B C D46、在一次函数y=2x -1的图象上,到两坐标轴距离相等的点有----------------------------------------( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是------------------------------------------------------------------------( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 248、下列根式是最简二次根式的是-----------------------------------------------------------------( )A 、a 8B 、22b a +C 、x 1.0D 、5a49、下列计算哪个是正确的-----------------------------------------------------------------------( )A 、523=+ B 、5252=+ C 、b a b a +=+22 D 、212221221+=- 50、把a a 1--(a 不限定为正数)化简,结果为----------------------------------------------------( )A 、aB 、a - C 、-a D 、-a - 51、若a+|a|=0,则22)2(a a +-等于------------------------------------------------------------( )A 、2-2aB 、2a -2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值------------------------------------------------( )A 、1B 、±21C 、21D 、-21 53、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于------------------------------------------( ) A 、18 B 、6 C 、23 D 、±2354、下列命题中,正确的个数是---------------------------------------------------------------------( )①等边三角形都相似 ②直角三角形都相似③等腰三角形都相似④锐角三角形都相似⑤等腰三角形都全等⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似⑧全等三角形相似A、2个B、3个C、4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是________。