初中数学易错题集锦及答案解析
初三数学易错题集锦及解析

初三数学易错题集锦及解析题目1:选择题:下列哪个数既是正数又是负数?A. 0B. 1C. -1D. √2题目2:填空题:计算下列表达式的值:2^3 - 3^2。
题目3:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目4:解答题:求解方程:x^2 - 4x + 3 = 0。
题目5:选择题:下列哪个数是绝对值最小的数?A. -1B. 1C. 0D. √2题目6:填空题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形的第三个内角是多少度?题目7:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目8:解答题:求解方程:x^2 - 4x + 3 = 0。
题目9:选择题:下列哪个数既是正数又是负数?A. 0B. 1C. -1D. √2题目10:填空题:计算下列表达式的值:2^3 - 3^2。
题目11:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目12:解答题:求解方程:x^2 - 4x + 3 = 0。
题目13:选择题:下列哪个数是绝对值最小的数?A. -1B. 1C. 0D. √2题目14:填空题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形的第三个内角是多少度?题目15:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目16:解答题:求解方程:x^2 - 4x + 3 = 0。
题目17:选择题:下列哪个数既是正数又是负数?A. 0B. 1C. -1D. √2题目18:填空题:计算下列表达式的值:2^3 - 3^2。
题目19:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(易错题精选)初中数学函数基础知识易错题汇编及解析(1)

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-的自变量x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦122723333-=-=-是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.3.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.4.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A .【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,2020D 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )A .B .C .D .【答案】A【解析】【分析】 火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;∵△APQ为直角三角形,∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=−14x2+32x整理得:y=−14(x−3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.10.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.11.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.12.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.13.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x xy x xx x⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C选项符合题意.故选:C.【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A .B .C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.17.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A 3B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG 的面积y 最小时和最大时分别对应的x 值,从而确定AB ,EG 的长度,求出等边三角形EFG 的最小面积.【详解】由图2可知,x =2时△EFG 的面积y 最大,此时E 与B 重合,所以AB =2,∴等边三角形ABC∴等边三角形ABC由图2可知,x =1时△EFG 的面积y 最小,此时AE =AG =CG =CF =BG =BE ,显然△EGF 是等边三角形且边长为1,所以△EGF 的面积为4, 故选A .【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.18.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE --=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+- 解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应。
九年级上册数学易错题目汇总,初三数学易错题集锦及答案解析

九年级上册数学易错题汇总1. 关于X 的方程¥+21-7〃 = 0有两个相等的实数根,则,〃的值是()A.m = 1 = - 1 = 2 D.〃,=-2【考点】根的判别式.【解答】由题意可知:△=4+4m = 0,in = - 1,故选:B.2. 下列关于X 的方程是一元二次方程的是()A./+1 =0B.x+1 = 1X (x+l ) (x-l ) *七€+1故本选项符合题意;C. ”+Z )x+f = O D.【考点】一元二次方程的定义.【解答】刀、是一元二次方程,不是一元二次方程,故本选项不符合题意;。
、不是一元二次方程,故本选项不符合题意;D 、 不是一元二次方程,故本选项不符合题意;故选:A.3.一个容器盛满纯药液63千克,第一次倒出一部分药液后加满水,第二次 又倒出同样多的药液,再加满水,此时容器内的纯药液剩下28千克,那么每次倒出的药液是()A.20千克 B.21千克 C.22千克 D.175千克【考点】一元二次方程的应用.【解答】设每次倒出药液x升,63-x依题意,得:士寻二1-咎63 63整理,得:一i26r+2205=0,解得:XI二21,.K2二105(不合题意,舍去).故选:B.4.已知关于x的一元二次方程(4 1)r—2x+2=0有两个不相等的实数根,则次的取值范围值是()A.k<旦B.k<2CA〈岂且《兴1DAW岂且上尹L2222[考点】一元二次方程的定义;的判别式.【解答】根据题意得:△二〃-4w=4・8(*1)=12.8左>0,且X-1产0,:上且左乂1./'JT得故选:C.5.—元二次方程寸一6x一1=0配方后可变形为()A.(X-3)2=8B.(x-3)2=10 c.(x+3)J8 D.(x+3)2 =10【考点】解一元二次方程•配方法.【解答】・.・*2-6*-1=0,•*-x2-6x=1,.•-(x-3)2=10,故选:8.6.某商品原售价为60元,4月份下降了20%,从5月份起售价开始增长,6月份售价为75元,设5、6月份每个月的平均增长率为.「则的值为()A.15% B.25% C.20% D.30%【考点】一元二次方程的应用.【解答】设5、6月份每个月的平均增长率为X,由题意,得60(1-20%)(1+x)2=755得X=0.25二25%(舍去负值)牧选:B.7.一元二次方程X2-5.X+1=。
初中数学有理数易错题汇编含解析

初中数学有理数易错题汇编含解析一、选择题1.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.3.已知235280x y x y +-+-+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.4.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0【答案】C【解析】【分析】根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】 解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.7.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.8.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的11.已知a 、b 、c 都是不等于0的数,求abcabca b c abc +++的所有可能的值有()个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.13.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数,则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3. 故选:A . 【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.。
(易错题精选)初中数学有理数难题汇编及解析

(易错题优选)初中数学有理数难题汇编及分析一、选择题1.已知a、b两数在数轴上的地点如下图,则化简代数式| a b | |1 a | | b 1| 的结果是()A.2b B.2a C. 2D.2a2【答案】 A【分析】【剖析】依据数轴判断出绝对值符号内式子的正负,而后去绝对值归并同类项即可.【详解】解:由数轴可得,b< - 1< 1< a,∴a- b> 0, 1-a < 0, b+1< 0,∴ | a b | |1 a | | b1| ,a b1ab 1 ,a b1a b1,2b,应选:A.【点睛】本题考察数轴,绝对值的性质,解答本题的重点是确立绝对值内部代数式的符号.2.若( x1)22y 1 0 ,则x+y的值为().1B.133A.C.2D.222【答案】 A【分析】解:由题意得: x-1=0, 2y+1=0,解得: x=1,y=1,∴ x+y=111.应选 A.222点睛:本题考察了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.在﹣ 3,﹣ 1, 1, 3 四个数中,比 2 大的数是()A3B1C1 D 3【答案】 D【分析】【剖析】依占有理数比较大小的方法解答即可.【详解】解:比 2 大的数是3.应选: D.【点睛】本题考察了有理数比较大小,掌握有理数比较大小的比较方法是解题的重点.4.1的绝对值是 ( )611A.﹣ 6B. 6C.﹣D.66【答案】 D【分析】【剖析】利用绝对值的定义解答即可.【详解】1的绝对值是1,66应选 D.【点睛】本题考察了绝对值得定义,理解定义是解题的重点.5.若︱2a︱=- 2a,则 a 必定是 ()A.正数B.负数C.正数或零D.负数或零【答案】 D【分析】试题剖析:依据绝对值的意义,一个正数的绝对值是自己,0 的绝对值是0,一个负数的绝对值是其相反数,可知 a 必定是一个负数或0.应选 D6.以下说法错误的选项是()22a 2 2 互为相反数A. a与 a 相等B与a .C.3a与3 a 互为相反数D.a与 a 互为相反数【答案】 D【分析】【剖析】依据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可获得答案 .【详解】解: A、a 2= a2,故 A 正确;B、22a2互为相反数,故 B 正确;a a2,则a与C、3a 与3 a 互为相反数,故 C 正确;D、a a ,故D说法错误;应选: D.【点睛】本题考察了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的重点是娴熟掌握所学的定义进行解题 .7.在有理数2, -1, 0,-5中,最大的数是()A.2B.C. 0D.【答案】A【分析】【剖析】正数都大于0,负数都小于0,正数大于全部负数,两个负数绝对值大的反而小,据此判断即可.【详解】依占有理数比较大小的方法可得:-5<-1<0<2,因此最大数是 2.应选 A.【点睛】本题主要考察了实数大小比较的方法,要娴熟掌握,解答本题的重点是要明确:正实数 >0>负实数,两个负实数绝对值大的反而小.8.以下各数中,最大的数是()11A.B.C.0D.-2 24【答案】 B【分析】【剖析】将四个数进行排序,从而确立出最大的数即可.【详解】1120,24则最大的数是1,4应选 B.【点睛】本题考察了有理数大小比较,娴熟掌握有理数大小比较的方法是解本题的重点.9.实数 a、 b 在数轴上的地点如下图用以下结论正确的选项是()A. a+b>a>b>a-b B.a>a+b>b>a-bC. a-b>a>b>a+b D. a-b>a>a+b>b【答案】 D【分析】【剖析】第一依据实数a,b 在数轴上的地点能够确立a、b 的取值范围,而后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b 两点的地点可知,∵b <0, a> 0, |b| < |a| ,设 a=6, b=-2,则 a+b=6-2=4, a-b=6+2=8,又∵ -2< 4<6< 8,∴a-b> a> a+b> b.应选: D.【点睛】本题主要考察了实数与数轴之间的对应关系,解答本题的重点是依据数轴上a, b 的地点估算其大小,再取特别值进行计算即可比较数的大小.10.假如| a | a ,以下建立的是()A.a 0B. a 0C.a 0D. a 0【答案】 D【分析】【剖析】绝对值的性质:正数的绝对值等于它自己,负数的绝对值等于它的相反数,0 的绝对值是0.【详解】假如 | a | a ,即一个数的绝对值等于它的相反数,则a0 .应选 D.本题考察绝对值,娴熟掌握绝对值的性质是解题重点.11. 以下命题中,真命题的个数有()① 带根号的数都是无理数; ② 立方根等于它自己的数有两个,是③ 0.01 是 0.1 的算术平方根;④ 有且只有一条直线与已知直线垂直0 和1;A .0 个B .1 个C .2 个【答案】 A【分析】【剖析】开方开不尽的数为无理数;立方根等于自己的有 ±1和平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数, ① 错误;立方根等于自己的有:±1和 0,② 错误;D .3 个0;算术平方根指的是正数;在同一12. 已知直角三角形两边长 x 、y 知足 x 24( y 2)21 0 ,则第三边长为 ( )A .B . 13C . 5或 13D .,5或13【答案】 D【分析】【剖析】【详解】解:∵ |x 2-4| ≥0, ( y 2)2 1 ≥0,∴ x 2-4=0, ( y 2) 2 1=0,∴ x =2 或 -2(舍去), y=2 或 3,分 3 种状况解答: ① 当两直角边是 2 时,三角形是直角三角形,则斜边的长为:2222 2 2;② 当2,3 均为直角边时,斜边为2232 13 ;③ 当 2 为向来角边, 3 为斜边时,则第三边是直角, 长是32225.应选 D .考点: 1.非负数的性质; 2.勾股定理.13. 如图,数轴上 A , B 两点分别对应实数 a , b ,则以下结论正确的选项是 ( )A . b >aB . ab > 0C . a > bD . | a| > | b|【答案】C【剖析】本题要先察看 a ,b 在数轴上的地点,得 b < -1< 0< a < 1,而后对四个选项逐个剖析.【详解】A 、∵ b <﹣ 1< 0< a < 1,∴ b < a ,应选项 A 错误;B 、∵ b <﹣ 1< 0< a < 1,∴ ab < 0,应选项 B 错误;C 、∵ b <﹣ 1< 0< a <1,∴ a > b ,应选项 C 正确;D 、∵ b <﹣ 1< 0< a < 1,∴ | b| > | a| ,即 | a| < | b| ,应选项 D 错误.应选 C .【点睛】本题考察了实数与数轴的对应关系,数轴上右侧的数老是大于左侧的数.14. 数轴上 A ,B , C 三点所表示的数分别是 a , b , c ,且知足 | c b || a b | | a c | ,则 A , B ,C 三点的地点可能是()A .B .C .D .【答案】 C【分析】【剖析】由 A 、 B 、C 在数轴上的地点判断出 a 、 b 、 c 的大小关系,依据绝对值性质去绝对值符号,判断左右两边能否相等即可 .【详解】当 a < c < b 时, | c b | | a b | b ca b ac, 180°-66?38=113?22′′,此选项错误;B 、当 a < b < c 时, | c b | | a b | c b a b c a 2b , 4 A-mB= 4 ,此项错误;C c a b 时, | c b | | a b | b c a b a c, | a c | a c ,此项正确 、当 < < D 、当 c < b < a 时, | cb | | a b | bc a bc a 2b , | a c | a c ,此选项错误;应选 C.【点睛】本题主要考察绝对值性质:正数绝对值等于自己,0 的绝对值是0,负数绝对值等于其相反数.15.若3 a 2 b0, 则a b的值是()A.2B、 1C、 0D、1【答案】 B【分析】试题剖析:由题意得,3﹣ a=0, 2+b=0,解得, a=3, b=﹣ 2, a+b=1,应选 B.考点: 1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.以下运算正确的选项是()A. 4 =-2B.| ﹣3|=3C. 4 = 2【答案】 B【分析】【剖析】A、依据算术平方根的定义即可判断;B、依据绝对值的定义即可判断;C、依据算术平方根的定义即可判断;D、依据立方根的定义即可判断.【详解】解: A、 C、4 2 ,应选项错误;B、 | ﹣ 3|=3 ,应选项正确;D、 9 开三次方不等于3,应选项错误.应选 B.【点睛】本题主要考察了实数的运算,注意,正数的算术平方根是正数.17.有理数a,b在数轴上的地点如下图,以下说法正确的选项是(A.a b 0B.a b 0C.ab0【答案】 D【分析】【剖析】由图可判断a、 b 的正负性, a、 b 的绝对值的大小,即可解答.【详解】依据数轴可知:-2<a< -1,0< b< 1,D.39=3)D.b a∴a+b< 0, |a| >|b| , ab<0, a-b< 0.因此只有选项 D 建立.应选: D.【点睛】本题考察了数轴的相关知识,利用数形联合思想,能够解决此类问题.数轴上,原点左侧的点表示的数是负数,原点右侧的点表示的数是正数.18.以下各数中,绝对值最大的数是()A.1B.﹣ 1C. 3.14D.π【答案】D【分析】剖析:先求出每个数的绝对值,再依据实数的大小比较法例比较即可.详解:∵ 1、 -1、 3.14、π的绝对值挨次为1、1、 3.14、π,∴绝对值最大的数是π,应选 D.点睛:本题考察了实数的大小比较和绝对值,能比较实数的大小是解本题的重点.19.小麦做这样一道题“计算 3 W”、此中“□”是被墨水污染看不清的一个数,他打开后面的答案,得悉该题计算结果是8,那么”□”表示的数是()A.5B. -5C. 11D.-5 或11【答案】D【分析】【剖析】依据绝对值的性质求得结果,采纳清除法判断正确选项.【详解】解:设”□”表示的数是x,则| ( -3) +x|=8 ,∴-3+x=-8 或-3+x=8,∴x=-5 或 11.应选:D.【点睛】本题考察了绝对值的运算 ,掌握 : 一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0.20.在数轴上,与原点的距离是 2 个单位长度的点所表示的数是()1A.2B.2C.2D.2【答案】 C【分析】【剖析】与原点距离是 2 的点有两个,是±2.【详解】解:与原点距离是 2 的点有两个,是±2.应选: C.【点睛】本题考察数轴的知识点,有两个答案.。
初一数学易错题讲解及答案

初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个. ⑼ 若0,a =则0ab=. ⑽绝对值等于本身的数是1. 二.填空题⑴若1a -=a -1,则a 的取值范围是: .⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________.⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻如果a <b <0,那么1a 1b. ⑼在数轴上表示数-113的点和表示152-的点之间的距离为: . ⑽11a b ⋅=-,则a 、b 的关系是________. ⑾若a b <0,bc<0,则ac 0.⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值. ①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分): ⑺比较4a 和-4a 的大小 ①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536; ②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097; ③已知3.412=11.63,那么(34.1)2=116300; ④近似数2.40×104精确到百分位,它的有效数字是2,4; ⑤已知5.4953=165.9,x 3=0.0001659,则x =0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y |>|x |,化简|x |-|y |-|x +y |.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值.⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦ ⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______; 此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a________-a ;a --是一个________数;(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________; 若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
(专题精选)初中数学概率易错题汇编含答案解析

(专题精选)初中数学概率易错题汇编含答案解析一、选择题1.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C 【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.7.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D . 【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.8.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .22π- B .24π- C .28π- D .216π-【答案】A 【解析】 【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【详解】解:如图,连接PA 、PB 、OP , 则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为( )A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.11.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则下列说法正确的是 ( )A.mn一定等于12B.mn一定不等于12C.mn一定大于12D.投掷的次数很多时,mn稳定在12附近【答案】D【解析】某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则投掷的次数很多时mn稳定在12附近,故选D.点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.13.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.14.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.15.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,226810+=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.16.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.110【答案】A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.18.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.19.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.20.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A 【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.。
数学九年级上册易错题

数学九年级上册易错题一、选择题(1 - 10题)1. 一元二次方程x^2-2x - 3 = 0的根的情况是()- A. 有两个相等的实数根。
- B. 有两个不相等的实数根。
- C. 没有实数根。
- D. 无法确定。
- 解析:对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
在方程x^2-2x - 3 = 0中,a = 1,b=-2,c=-3,则Δ=(-2)^2-4×1×(-3)=4 + 12=16>0。
当Δ>0时,方程有两个不相等的实数根,所以答案是B。
2. 若关于x的一元二次方程(m - 1)x^2+5x+m^2-3m + 2 = 0的常数项为0,则m的值等于()- A. 1.- B. 2.- C. 1或2。
- D. 0.- 解析:因为方程的常数项为0,所以m^2-3m + 2 = 0,即(m - 1)(m - 2)=0,解得m = 1或m = 2。
又因为方程是一元二次方程,二次项系数m - 1≠0,即m≠1,所以m = 2,答案是B。
3. 二次函数y = x^2-2x + 3的顶点坐标是()- A. (1,2)- B. (-1,2)- C. (1, - 2)- D. (-1,-2)- 解析:对于二次函数y=ax^2+bx + c(a≠0),其顶点坐标的横坐标x =-(b)/(2a),纵坐标y=frac{4ac - b^2}{4a}。
在y = x^2-2x + 3中,a = 1,b=-2,c = 3,x =-(-2)/(2×1)=1,y=frac{4×1×3-(-2)^2}{4×1}=(12 - 4)/(4)=2,所以顶点坐标是(1,2),答案是A。
4. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论中正确的是()- A. a>0- B. c<0- C. 3是方程ax^2+bx + c = 0的一个根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学易错题及答案(A )2 (B(C )2± (D)2,2的平方根为2.若|x|=x ,则x 一定是( ) A 、正数 B 、非负数 C 、负数 D 、非正数答案:B (不要漏掉0)3.当x_________时,|3-x|=x-3。
答案:x-3≥0,则x34.22___分数(填“是”或“不是”)答案:22是无理数,不是分数。
5.16的算术平方根是______。
答案:16=4,4的算术平方根=26.当m=______时,2m -有意义 答案:2m -≥0,并且2m ≥0,所以m=0 7分式4622--+x x x 的值为零,则x=__________。
答案: 226040x x x ⎧+-=⎪⎨-≠⎪⎩ ∴122,32x x x ==-⎧⎨≠±⎩∴3x =-8.关于x 的一元二次方程2(2)2(1)10k x k x k ---++=总有实数根.则K_______答案:[]2202(1)4(2)(1)0k k k k -≠⎧⎪⎨----+≥⎪⎩∴3k ≤且2k ≠ 9.不等式组2,.x x a >-⎧⎨>⎩的解集是x a >,则a 的取值范围是.(A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-. 答案:D10.关于x 的不234a≤<等式40x a -≤的正整数解是1和2;则a 的取值范围是_________。
答案:234a≤<11.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______. 答案:分式总有意义,即分母不为0,所以分母240x x c ++=无解,∴C 〉412.函数y 中,自变量x 的取值范围是_______________. 答案:1030x x -≥⎧⎨+≠⎩∴X ≥113.若二次函数2232y mx x m m =-+-的图像过原点,则m =______________.220m m m ≠⎧⎨-=⎩∴m =2 14.如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求此函数解析式________________________.答案:当26119x x y y =-=⎧⎧⎨⎨=-=⎩⎩时,解析式为:26911x x y y =-=⎧⎧⎨⎨==-⎩⎩时,解析式为 15.二次函数y=x 2-x+1的图象与坐标轴有______个交点。
答案:1个16.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元. 答案:6元17.直角三角形的两条边长分别为8和6,则最小角的正弦等于________.答案:3518.一个等腰三角形的周长为14,且一边长为4,则它的腰长是答案:4或519.已知一等腰三角形的一个内角为50度,则其它两角度数为 答案:50度,80度或65度,65度20.等腰三角形的一边长为10,面积为25,则该三角形的顶角等于________度 答案:90或30或15021.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为____ 答案:30或15022.若b c c a a b k abc+++===,则k =________.答案:-1或223.PA 、PB 是⊙O 的切线,A 、B 是切点,78APB ∠=︒,点C 是⊙O 上异于A 、B 的任意一点,那么ACB ∠= ______. 答案:51度或129度24. 半径为5cm 的圆内有两条平行弦,长度分别为6cm 和8cm ,则这两条弦的距离等于________ 答案:1cm 或7cm25.两相交圆的公共弦长为2,两圆的半径分别为、2,则这两圆的圆心距等于________.1126.若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________. 答案:3或527.在Rt ABC △中,90C ∠=︒,3AC =,5AB =,以C 为圆心,以r 为半径的圆,与斜边AB 只有一个交点,则r 的取值范围____________.答案:r=2.4或3<r ≤428.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为____________ 答案:2或829.在半径为1的⊙O 中,弦AB =,AC =,那么BAC ∠=________.答案:15度或75度30.两枚相同硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______. 答案:231.若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s 2 B 、x , s 2 C 、k x , ks 2 D 、k 2x , ks 2 答案:A32.若关于x 的分式方程113-=--x mx x 无解,则m 的值为( ) A.-2 B.-1 C.1 D.2 答案:A33.(2012年鸡西市)若关于x 的分式方程2+21=3m x x x--无解,则m 的值为( )A .-1.5B .1C .-1.5或2D .-0.5或-1.5解析:把原分式方程去分母,得(2m+x)x-x(x-3)=2(x-3),整理得(2m+1)x=-6.①可以分两种情况讨论:根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m 的值;当2m+1=0时,方程也无解,即可得出答案.解:方程两边都乘以x(x-3),得(2m+x)x-x(x-3)=2(x-3).整理,得(2m+1)x=-6.① (1)当2m+1=0时,此方程无解,此时m=-0.5;(2) 当2m+1≠0因为原分式方程无解,所以整式方程有增根,x-3=0或x=0,即x=3或x=0. 把x=3代入方程①中,得6m+3=-6.解得m=-1.5; 把x=0代入方程①中,此方程无解.综上所述,m 的值为-0.5或-1.5. 故选D.34.(2012年泰安市)一项工程,甲、乙两公司合作,12天可以完成,共需付工费102 000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲、乙公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?解析:(1)设甲公司单独完成此工程需x 天,则乙公司单独完成此项工程需1.5x 天.根据题意,得1111.512x x +=.解得x=20. 经检验,知x=20是方程的解,且符合题意,1.5x=30. 答:甲、乙两公司单独完成此工程各需要20天、30天.(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为(y-1500)元.根据题意,得12(y+y-1500)=102 000. 解得y=5000.甲公司单独完成此工程所需施工费:20×5000=100 000(元),乙公司单独完成此工程所需施工费:30×(5000-1500)=105 000(元),所以甲公司的施工费较少.35. (2012年达州市)为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天.如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,由题意列出的方程是( )A.141401101+=-+-x x x B.141401101-=+++x x xC.141401101-=+-+x x x D.401141101-=++-x x x 解析:工程问题通常将工程总量视为1,设规定的时间为x 天,则甲、乙单独完成分别需要(x+10)、(x+40)天,两队平均每天完成的工作量为110x +、140x +;甲、乙合作则只需要(x-14)天,两队合作平均每天完成的工作量为114x -,用工作量相等可列出方程得,141401101-=+++x x x .故选B.36.关于x 的分式方程3111m x x+=--的解为正数,求m 的取值范围. 错解:方程两边同乘x-1,得m-3=x-1.解得x=m-2. 因为方程的解为正数,所以m-2>0.所以m >2. 剖析:本题是一道由分式方程的解确定待定字母取值范围的题目,先求出分式方程的解,再由其解为正数构造一个不等式,从而确定m 的取值范围.错解疏忽了原分式方程成立的原始条件.所以还应满足x-1≠0,即m-3≠0,得m ≠3.正解:方程两边同乘x-1,得m-3=x-1.解得x=m-2. 因为方程的解为正数,所以m-2>0,得m >2. 又x-1≠0,即m-3≠0,得m ≠3.所以m 的取值范围是m >2且m ≠3.37.为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次通缉,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生? (2)将①的条形图补充完整.(3)计算出作业完成时间在0.5~1小时的部分对应的扇形圆心角. (4)完成作业时间的中位数在哪个时间段内?(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过1.5小时的有多少人?38. 如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率; (2)直接写出点(),x y 落在函数1y x=-图象上的概率.或根据题意,画表格39如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=的图像上,则菱形的面积为____________。
答案:440.(2011山东烟台,5,42(21)12a a -=-,则( )A .a <12B. a ≤12C. a >12D. a ≥12答案:B40. (2011山东烟台)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,,则这组数据的中位数和极差分别是( ) A.2.1,0.6 B. 1.6,1.2 C.1.8,1.2 D.1.7,1.2【答案】D【思路分析】将数据按顺序排列:1.0,1.3,1.6,1.8,2.0,2.2,易判断中位数为1.6 1.82+=1.7; 极差为2.2-1.0=1.2. 故选D. 41.(2012南充)方程x (x-2)+x-2=0的解是( ) A.2 B.-2,1 C.-1 D.2,-1解析:本题考查了运用因式分解法解一元二次方程的方法:先利用提公因式因式分解,再化为两个一元一次方程,解方程即可.x (x ﹣2)+(x-2)=0,∴(x-2)(x+1)=0,∴x-2=0,或x+1=0,∴x1=2,x2=-1.故选D .评注:利用因式分解时要注意不要漏解,直接把一个一元二次方程化为两个一元一次方程来进行解决即可.42.关于x 的方程0112)21(2=-+--x k x k 有两个不相等的实数根,求k的取值范围.错解:12211a k b k c =-=-+=-,,,224(21)4(12)(1)480b ac k k k -=-+--⋅-=-+∴.>∵原方程有两个不相等的实数根,∴,084 +-k ∴2k <.剖析:本例错在两个地方一是忽略了一元二次方程的二次项系数021≠-k 这个隐含条件;二是忽略了一次项系数2110k k -++≥中这个条件.正解:∵原方程有两个不相等的实数根,∴480k -+> ,∴2k <.又∵原方程中,021≠-k ,10k +≥,∴112k k -≠≥且.∴1122k k -≠≤且<.43. 增长率问题(2012娄底市)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A.289(1﹣x )2=256B.256(1﹣x )2=289C.289(1﹣2x )=256D.256(1﹣2x )=289解析:本题考查求平均变化率的方法.设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .设平均每次降价的百分率为x ,则第一降价售价为289(1﹣x ),则第二次降价为289(1﹣x )2,由题意得:289(1﹣x )2=256.故选A .评注:对于连续两次增长或降低的问题,可以直接套用式子.若初始数值为a ,连续两次增长或降低后的数值为b ,平均增产率或降低率相同,可建立方程:a(x ±1)2=b .44.(2012年内江市)如图2,四边形ABCD 是梯形,BD =AC 且BD ⊥AC.若AB =2,CD =4,则S 梯形ABCD = .解析:如图2,过点B 作BE ∥AC ,交DC 的延长线于点E ,过点B 作BF ⊥DC 于点F ,则AC =BE ,DE =DC +CE =DC +AB =6.因为BD =AC 且BD ⊥AC ,所以△BDE 是等腰直角三角形.所以BF =21DE =3,所以S 梯形ABCD =21(AB +CD )×BF =9.点评:作梯形的高,平移一条对角线是解决梯形问题经常用到的辅助线. 45 已知3a-22与2a-3都是实数m 的平方根,求m 的值. 答案:49或122546.已知114a b+=,则3227a ab b a b ab -+=+- . 答案:147.我市为了增强学生体质,开展了乒乓球比赛活动。