2012年云南省中考数学试题

合集下载

2024年云南省中考数学真题卷含答案解析

2024年云南省中考数学真题卷含答案解析

机密★考试结束前2024年云南省初中学业水平考试数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A. 100米 B. 100-米C. 200米D. 200-米2. 某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为( )A. 45.7810⨯ B. 357.810⨯ C. 257810⨯ D.578010⨯3. 下列计算正确是( )A. 33456x x x += B. 635x x x ÷= C. ()327a a = D.()333ab a b =4.x 的取值范围是( )A. 0x > B. 0x ≥ C. 0x < D. 0x ≤5. 某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )的A. 正方体B. 圆柱C. 圆锥D. 长方体6. 一个七边形的内角和等于( )A. 540︒B. 900︒C. 980︒D. 1080︒7. 甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x (单位:环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A. 甲 B. 乙C. 丙D. 丁8. 已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为( )A.32B. 2C. 3D.729. 两年前生产1千克甲种药品成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A. ()280160x -= B. ()280160x -=C ()80160x -= D. ()801260x -=10. 按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是( )A. 2nx B. ()1nn x- C. 1n nx + D.()1nn x +11. 中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )的.A 爱B. 国C. 敬D. 业12. 在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为( )A.45B.35C.43D.3413. 如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=( )A. 9B. 18C. 36oD. 4514. 分解因式:39a a -=( )A. ()()33a a a -+ B. ()29a a + C. ()()33a a -+ D.()29a a -15. 某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为( )A. 700π平方厘米 B. 900π平方厘米C. 1200π平方厘米D. 1600π平方厘米二、填空题(本大题共4小题,每小题2分,共8分)16. 若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是______.17. 已知点()2,P n 在反比例函数10y x=的图象上,则n =__________.18. 如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=__________..19. 某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有______人.三、解答题(本大题共8小题,共62分)20. 计算:12117sin3062-⎛⎫++--- ⎪⎝⎭.21. 如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.22. 某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D型车的平均速度.23. 为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24. 如图,在四边形ABCD中,点E、F、G、H分别是各边的中点,且AB CD∥,AD BC∥,四边形EFGH是矩形.(1)求证:四边形ABCD是菱形;(2)若矩形EFGH的周长为22,四边形ABCD的面积为10,求AB的长.25. A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26. 已知抛物线21y x bx =+-的对称轴是直线32x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M的大小.27. 如图,AB 是O 直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.的机密★考试结束前2024年云南省初中学业水平考试数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A. 100米 B. 100-米C. 200米D. 200-米【答案】B 【解析】【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2. 某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为( )A. 45.7810⨯ B. 357.810⨯ C. 257810⨯ D.578010⨯【答案】A【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3. 下列计算正确的是( )A. 33456x x x += B. 635x x x ÷= C. ()327a a = D.()333ab a b =【答案】D 【解析】【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4. x 的取值范围是( )A. 0x > B. 0x ≥ C. 0x < D. 0x ≤【答案】B 【解析】【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.在实数范围内有意义,∴x 的取值范围是0x ≥.故选:B5. 某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A. 正方体B. 圆柱C. 圆锥D. 长方体【答案】D 【解析】【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6. 一个七边形的内角和等于( )A. 540︒ B. 900︒C. 980︒D. 1080︒【答案】B 【解析】【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7. 甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x (单位:环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s0.090.650.16 2.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A.8. 已知AF是等腰ABC底边BC上的高,若点F到直线AB的距离为3,则点F到直线AC的距离为()A. 32B. 2C. 3D.72【答案】C【解析】【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF平分BAC∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF是等腰ABC底边BC上的高,∴AF平分BAC∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9. 两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A. ()280160x -= B. ()280160x -=C. ()80160x -= D. ()801260x -=【答案】B 【解析】【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10. 按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是( )A. 2nx B. ()1nn x- C. 1n nx + D.()1nn x +【答案】D 【解析】【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,故选:D .11. 中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A. 爱 B. 国C. 敬D. 业【答案】D 【解析】【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不轴对称图形,不符合题意;B 、图形不轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12. 在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为( )A.45B.35C.43D.34【答案】C 【解析】【分析】根据三角函数的定义求解即可.【详解】解:∵90B Ð=°, 34AB BC ==,,∴tan A =43BC AB =,故选:C .【点睛】本题考查了三角函数的求法,解题关键是理解三角函数的意义,明确是直角三角形中哪两条边的比.13. 如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=( )是是A. 9B. 18C. 36oD. 45【答案】B 【解析】【分析】本题考查了弧弦圆心角的关系,圆周角定理,连接OB ,由 AC BC =可得36BOC AOC ∠=∠=︒,进而由圆周角定理即可求解,掌握圆的有关性质是解题的关键.【详解】解:连接OB ,∵ AC BC=,∴36BOC AOC ∠=∠=︒,∴1182D BOC ∠=∠=︒,故选:B .14. 分解因式:39a a -=( )A. ()()33a a a -+ B. ()29a a + C. ()()33a a -+ D.()29a a -【答案】A 【解析】【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15. 某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为( )A. 700π平方厘米 B. 900π平方厘米C. 1200π平方厘米 D. 1600π平方厘米【答案】C 【解析】【分析】本题考查了圆锥侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公式计算即可求解,掌握圆锥侧面积计算公式是解题的关键.【详解】解:圆锥的底面圆周长为2π3060π⨯=厘米,∴圆锥的侧面积为160π401200π2⨯⨯=平方厘米,故选:C .二、填空题(本大题共4小题,每小题2分,共8分)16. 若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是______.【答案】1c >##1c <【解析】【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17. 已知点()2,P n 在反比例函数10y x=的图象上,则n =__________.【答案】5【解析】的【分析】本题考查反比例函数图象上点的坐标特征,将点()2,P n 代入10y x=求值,即可解题.【详解】解: 点()2,P n 在反比例函数10y x=的图象上,1052n ∴==,故答案为:5.18. 如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=__________.【答案】12##0.5【解析】【分析】本题考查相似三角形的判定和性质,证明ACO BDO △∽△,根据相似三角形周长之比等于相似比,即可解题.【详解】解: AC BD ∥,ACO BDO ∴ ∽,∴AC BD=12OA OC AC OB OD BD ++=++,故答案为:12.19. 某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有______人.【答案】120【解析】【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题(本大题共8小题,共62分)20. 计算:12117sin3062-⎛⎫++--- ⎪⎝⎭.【答案】2【解析】【分析】本题考查了实数的混合运算,掌握零指数幂,负整指数幂,特殊角的三角函数值,二次根式的性质,绝对值化简是解题的关键.根据相关运算法则分别进行计算,再进行加减运算,即可解题.【详解】解:12117sin3062-⎛⎫++--- ⎪⎝⎭,1116522=++--,2=.21. 如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【解析】【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22. 某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h 【解析】【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度是3km /h x ,根据“乘坐C 型车比乘坐D 型车少用2小时,”建立方程求解,并检验,即可解题.【详解】解:设D 型车的平均速度为km /h x ,则C 型车的平均速度是3km /h x ,根据题意可得,30030023x x-=,整理得,6600x =,解得100x =,经检验100x =是该方程的解,答:D型车的平均速度为100km/h.23. 为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.【答案】(1)见解析(2)2 3【解析】【分析】本题考查利用列表法或画树状图求概率,解题的关键在于根据题意列表或画树状图.(1)根据题意列出表格(或画出树状图)即可解题;(2)根据概率=所求情况数与总情况数之比.由表格(或树状图),得到共有6个等可能的结果,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,再由概率公式求解即可.【小问1详解】解:由题意可列表如下:a ba(),a a(),b ab(),a b(),b bc(),a c(),b c由表格可知,(),x y所有可能出现的结果总数为以上6种;【小问2详解】解:由表格可知,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,∴P (七年级年级组、八年级年级组选择研学基地互不相同)4263==.24. 如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长.【答案】(1)见解析 (2【解析】【分析】(1)连接BD ,AC ,证明四边形ABCD 是平行四边形,再利用三角形中位线定理得到GF BD ∥,HG AC ∥,利用矩形的性质得到BD AC ⊥,即可证明四边形ABCD 是菱形;(2)利用三角形中位线定理和菱形性质得到111122BD AC OA OB +=+=,利用lx 面积公式得到210OA OB ⋅=,再利用完全平方公式结合勾股定理进行变形求解即可得到AB .【小问1详解】解:连接BD ,AC ,AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,GF BD ∴∥,HG AC ∥,四边形EFGH 是矩形,HG GF ∴⊥,的∴BD AC ⊥,∴四边形ABCD 是菱形;【小问2详解】解: 四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,12GF EH BD ∴==,12HG EF AC ==, 矩形EFGH 的周长为22,∴22BD AC +=,四边形ABCD 是菱形,即111122BD AC OA OB +=+=, 四边形ABCD 的面积为10,1102BD AC ∴⋅=,即210OA OB ⋅=,()2222121OA OB OA OA OB OB +=+⋅+= ,∴2212110111OA OB +=-=,∴AB ==.【点睛】本题考查了平行四边形性质和判定,矩形的性质和判定,三角形中位线定理,菱形的性质和判定,菱形面积公式,勾股定理,完全平方公式,熟练掌握相关性质是解题的关键.25. A 、B 两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A 、B 两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A 型号35aB 型号42b若顾客在该超市购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元.(1)求a 、b 的值;(2)若某公司计划从该超市购买A 、B 两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,又不超过B 种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y 元,求y 的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.【答案】(1)4050a b =⎧⎨=⎩(2)564【解析】【分析】本题考查了一次函数、一元一次不等式、二元一次方程组的应用,根据题意正确列出方程和函数解析式是解题的关键.(1)根据“购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元”建立二元一次方程组求解,即可解题;(2)根据“且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,又不超过B 种型号吉祥物数量的2倍.”建立不等式求解,得到360607x ≤≤,再根据总利润=A 种型号吉祥物利润+B 种型号吉祥物利润建立关系式,最后根据一次函数的性质即可得到y 的最大值.【小问1详解】解:由题知,8767045410a b a b +=⎧⎨+=⎩,解得4050a b =⎧⎨=⎩;【小问2详解】解: 购买A 种型号吉祥物的数量x 个,则购买B 种型号吉祥物的数量()90x -个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,∴()4903x x ≥-,解得3607x ≥, A 种型号吉祥物的数量又不超过B 种型号吉祥物数量的2倍.∴()290x x ≤-,解得60x ≤,即360607x ≤≤,由题知,()()()4035504290y x x =-+--,整理得3720y x =-+,y 随x 的增大而减小,∴当52x =时,y 的最大值为352720564y =-⨯+=.26. 已知抛物线21y x bx =+-的对称轴是直线32x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 值;(2)比较M的大小.【答案】(1)3b =-(2)当M =时,M >;当M =时, M <.【解析】【分析】(1)由对称轴为直线2b x a=-直接求解;(2)当M =时,M >;当M =时, M <.【小问1详解】解:∵抛物线21y x bx =+-的对称轴是直线32x =,∴3212b -=⨯,∴3b =-;【小问2详解】解:∵m 是抛物线21y x bx =+-与x 轴交点的横坐标,∴2310m m --=,的∴213m m -=,∴422219m m m -+=,∴42111m m =-,而231m m =+代入得:()41131123310m m m =+-==+,∴()()5423310331033311010933m m m m m m m m m m =⋅=+=+=++=+,∴5331093333109109m m M m -+-===,∵2310m m --=,解得:m =,当M m ==302M -==>∴M >当M m ==时,0M ==<,∴M <.【点睛】本题考查了二次函数的对称轴公式,与x 轴交点问题,解一元二次方程,无理数的大小比较,解题的关键是对5m 进行降次处理.27. 如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析【解析】【分析】(1)直接利用直径所对的圆周角是直角,即可得出结果;(2)证明ABM AMN ∽,得到MAN MAB ∠=∠,根据平角的定义,得到90MAN MAB ∠=∠=︒,即可得证;(3)连接,,OA OD BD ,连接OC 交AD 于点G ,易得OC AD ⊥,圆周角定理得到90ADB ∠=︒,推出OG BD ∥,进而得到AOC ABD ∠=∠,根据三角函数推出HBE ABC ∠=∠,得到,,B E C 三点共线,即可得出结果.【小问1详解】解:∵AB 是O 的直径,点F 是O 上异于A 、B 的点,∴90AFB ∠=︒;【小问2详解】证明:∵AM BM AB MN ⋅=⋅,∴AM MN AB BM=,又∵AMN ABM ∠∠=,∴ABM AMN ∽,∴AMB N ∠=∠,MAN MAB ∠=∠,∵180MAN MAB ∠+∠=︒,∴90MAN MAB ∠=∠=︒,∴OA CA ⊥,∵OA 是半径,∴直线CM 与O 相切;【小问3详解】我认为:CE EB CB +=正确,理由如下:连接,,OA OD BD ,连接OC 交AD 于点G ,如图,则:OA OD =,∴点O 在线段AD 的中垂线上,∵CA CD =,∴点C 在线段AD 的中垂线上,∴OC AD ⊥,∴90OGA ∠=︒,∵AB 是O 的直径,∴90ADB ∠=︒,∴OGA ADB ∠=∠,∴OG BD ∥,∴AOC ABD ∠=∠,∵90AHD ∠=︒,∴90DHB ∠=︒,∴tan DHHBD BH ∠=,tan EHHBE BH ∠=,∵E 为DH 的中点,∴11tan tan 22EHDH HBE HBD BH BH ∠==⋅=∠,∵tan ,tan AC AC AOC ABC AO AB∠=∠=,且12AO AB =,∴11tan tan 22AC ABC AOC OA ∠=⋅=∠,∵AOC ABD ∠=∠,∴tan tan HBE ABC ∠=∠,∴HBE ABC ∠=∠,∴,,B E C 三点共线,∴CE EB CB +=.【点睛】本题考查圆周角定理,切线的判定,相似三角形的判定和性质,解直角三角形,熟练掌握相关知识点,并灵活运用,是解题的关键.。

【中考真题】2024年云南省中考数学试卷(附答案)

【中考真题】2024年云南省中考数学试卷(附答案)

2024年云南省中考数学试题学校:姓名:班级:考号:一、单选题1. 中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作+100米,则向南运动100米可记作()A. 100米B. -100米C. 200米D. -200米2. 某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A. 5.78x104B. 57.8x103C. 578x1023. 下列计算正确的是()A. x3+5x3=6x4B. x6+x3=x5C. a丁=a74.式子心在实数范围内有意义,则X的取值范围是()A. x>OB. x�OC. x<OD. 5780xl0 D. (ab)3 = a3 b3 D. x:::::::。

5. 某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()ID主视图左视图俯视图A. 正方体B. 圆柱6. 一个七边形的内角和等千()A. 540°B. 900°C. 圆锥D. 长方体C. 980° D. 1080°7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数了(单位:环)和方差s2如下表所示:甲乙丙丁X 9.9 9.5 8.2 8.5s 20.09 0.65 0.16 2.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁8. 已知AF是等腰A BC 底边B C 上的高,若点F到直线A B的距离为3,则点F到直线AC 的距离为()3l2 . A B. 2 C.3 7-2 D 9. 两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A. so 1—x 2)=60 C. 80(1—x ) =60 B. 80(1-xf = 60 D. 80(1-2x ) =60 10. 按一定规律排列的代数式:2x , 3x 2 , 4x 3 , 5x 4 ,6x', L , 第n 个代数式是() A. 2x" B. (n -l)x n C. nx n+ID. (n +l )x n 11. 中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. 爱B. 国C. 敬D. 业12. 在RtDA BC 中,?B 90?, 已知AB =3,B C =4, 则t an A 的值为() 4 3 4 3 A. 一 B. - C. — D. -5 5 3 413. 如图,C D是0的直径,点A、B 在0上.若A C=BC ,乙4.0C=36, 则LD =( )A . 9B . 18 C. 36° D. 4514. 分解因式:a 3—9a= ( )A. a (a —3)(a +3)B. a(a 2+9)C. (a —3)(a +3)D. a 2a —9)15. 某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A. 700兀平方厘米C. 1200兀平方厘米 B. 900n平方厘米D. 1600rc平方厘米二、填空题16. 若关千x 的一元二次方程x 2-2x+c=O 无实数根,则c 的取值范围是10 17. 已知点P (2,n)在反比例函数y =—的图象上,则n =.X 18. 如图,A B与C D交千点O,且AC II BD. 若OA +OC +AC 1 A C =-,则——=O B +OD +B D 2 BDDB 19. 某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:`I I I--•-------------r II '·l n注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.三、解答题20. 计算:70 +(勹-I 十—丿位)2—sin 306 221. 如图,在A B C 和A从少中,A B=心;,4汃E =乙CAD ,AC=AD.求证:L::::,.AB C竺L::::,.AE D./:22. 某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D 型车的平均速度.23. 为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活".某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆叭植物园扒科技馆C三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a'选择植物园b为b,选择科技馆C为C'记七年级年级组的选择为x,八年级年级组的选择为Y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形A B CD中,点E、F、G、H分别是各边的中点,且A B II CD, A D I I B C, 四边形E FGH是矩形.H DB F(1)求证:四边形A BCD是菱形;(2)若矩形E FGH的周长为22,四边形A B CD的面积为10,求A B的长.25. A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35 a三42 b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求0、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的4数量x(单位:个)不少千B种型号吉祥物数量的—,又不超过B种型号吉祥物数量的2倍.设3该超市销售这90个吉祥物获得的总利润为Y元,求Y的最大值.注:该超市销售每个吉祥物获得的利润等千每个吉祥物的销售价格与每个吉祥物的成本的差.326. 已知抛物线y= x2 +b x-I的对称轴是直线x=—.设m是抛物线y= x2 +b x-I与X轴交2点的横坐标,记M=矿-33109(1)求b的值;汇(2)比较M与——的大小.227. 如图,A B是0的直径,点D、F是0上异千A、B的点点C在0外,CA=CD,延长BF与C A的延长线交千点M,点N在B A的延长线上,乙AMN=乙A B M,A M-B M=A B·MN. 点H在直径A B上,LAHD=90,点E是线段DH的中点.(1)求乙吓B的度数;(2)求证:直线CM与0相切:(3)看一看,想一想,证一证:以下与线段C E、线段EB、线段C B有关的三个结论:CE+EB<CB, CE+EB=CB, CE+EB>C B, 你认为哪个正确?请说明理由.参考答案:1. B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键【详解】解:若向北运动100米记作+100米,则向南运动100米可记作—100米,故选:B.2. A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为axio n的形式,其中1 ::::; l a l< 10, n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为axIo n的形式,其中1::::; a < 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值习10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:57800=5.78x l04,故选:A.3.D【分析】本题考查了合并同类项、幕的乘方、积的乘方、同底数幕的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幕的乘方运算法则、同底数幕的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A、x3+5x3 = 6x3, 选项计算错误,不符合题意;B、x6--;-X3 = x3'选项计算错误,不符合题意;C、(a丁=a6'选项计算错误,不符合题意;D、(ab)3= a3扩,选项计算正确,符合题意;故选:D.4. B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:?式子心飞E实数范围内有意义,: •X的取值范围是x习0.故选:B5. D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D.6. B【分析】本题考查多边形的内角和,根据n边形的内角和为(n—2)180°求解,即可解题.【详解】解:一个七边形的内角和等千(7-2)x180°=900°,故选:B.7. A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,...中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A.8. C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形”三线合一“得到AF平分乙B A C,再角平分线的性质定理即可求解.【详解】解:如图,ABl门\CF·: AF是等腰A BC底边B C上的高,: • AF平分乙B AC,:.点F到直线A B,AC的距离相等,点F到直线AB的距离为3,:.点F到直线AC的距离为3.故选: C.9. B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x,利用现在生产1千克甲种药品的成本=两年前生产l千克甲种药品的成本年x(l—平均下降率)2' 即可得出关千的一元二次方程.【详解】解:甲种药品成本的年平均下降率为x,根据题意可得80(1—x)2=60,故选: B.10. D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:?按一定规律排列的代数式:2x , 3x2 , 4x3 , 5x4 , 6x', L ,:.第n个代数式是(n+l)x n,故选: D.11. D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A、图形不是轴对称图形,不符合题意;B、图形不是轴对称图形,不符合题意;C、图形不是轴对称图形,不符合题意;D、图形是轴对称图形,符合题意;故选: D.12. C【分析】根据三角函数的定义求解即可.【详解】解:..? B 90?, A B=3, B C=4,B C 4:t an A=—=-,AB 3故选: C.【点睛】本题考查了三角函数的求法,解题关键是理解三角函数的意义,明确是直角三角形中哪两条边的比.13. B【分析】本题考查了弧弦圆心角的关系,圆周角定理,连接O B,由AC=B C可得乙BOC=LAOC =36°, 进而由圆周角定理即可求解,掌握圆的有关性质是解题的关键.【详解】解:连接OB,·:A C=B C,:乙BOC=乙AOC=36°,1:乙D=—乙BOC=l8°,2故选:B.夕.·,..('14. A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将a3—9a先提取公因式,再运用平方差公式分解即可.【详解】解:a3-9a=a忨-9)=a(a+3)(a-3),故选:A.15. C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公式计算即可求解,掌握圆锥侧面积计算公式是解题的关键.【详解】解:圆锥的底面圆周长为2兀x30=6伽厘米,1:.圆锥的侧面积为—x60兀x40= 120伽平方厘米,2故选:c.16. c >l ll<c【分析】利用判别式的意义得到L1=(-2) 2-4c<O , 然后解不等式即可.【详解】解:根据题意得L1=(-2) 2-4c<O ,解得c >l.故答案为:c>l .【点睛】本题考查了根的判别式,一元二次方程a x 2+b x+c =O (ai-0)的根与L1=b 2-4ac 有如下关系:当L1>0时,方程有两个不相等的实数根;当L1=0时,方程有两个相等的实数根;当L1<0时,方程无实数根.17. 510 【分析】本题考查反比例函数图象上点的坐标特征,将点P(2,n)代入y =—求值,即可解X题.【详解】解:10 10 点P(2,n)在反比例函数y =—的图象上,X :. n =—=5, 2故答案为:5.1 18. —/0.5 2【分析】本题考查相似三角形的判定和性质,证明DACQc.nD.BDO, 根据相似三角形周长之比等千相似比,即可解题.【详解】解:AC II BD, :. ACCJ_n BDO ,. AC OA +OC +AC 1 ==- .. BD O B +OD +BD 2' 故答案为:—2·19. 120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有1000x12%= 120人,故答案为:120.20. 2【分析】本题考查了实数的混合运算,掌握零指数幕,负整指数幕,特殊角的三角函数值,二次根式的性质,绝对值化简是解题的关键.根据相关运算法则分别进行计算,再进行加减运算,即可解题.【详解】解:70 +尸)+ _ _!_ -(匐-sin30,6 21 1=1+6+——5——=2.2 221. 见解析,【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用"S AS"证明6.ABC竺6.AED,即可解决问题.【详解】证明:LBAE=八CAD,:. LBAE+LEAC=乙CAD+LEAC,即LBAC=LEAD,在A BC和6AED中,』�!;:�乙EAD,AC=A D:. A BC竺AED(S AS).22. D型车的平均速度为l OOkm/h【分析】本题考查分式方程的应用,设D型车的平均速度为xkm/h,则C型车的平均速度是3xkm/h,根据'乘坐C型车比乘坐D型车少用2小时,”建立方程求解,并检验,即可解题.【详解】解:设D型车的平均速度为xkm/h,则C型车的平均速度是3xkm/h,根据题意可俨300 300如——-——=2,X 3x整理得,6x=600,解得x=lOO,经检验x=lOO是该方程的解,答:D型车的平均速度为lOOkm/h.23. (1)见解析2-3 )2 ( 【分析】本题考查利用列表法或画树状图求概率,解题的关键在千根据题意列表或画树状图.(1)根据题意列出表格(或画出树状图)即可解题;(2)根据概率=所求情况数与总情况数之比.山表格(或树状图),得到共有6个等可能的结果,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,再由概率公式求解即可.【详解】(1)解:由题意可列表如下:ab a (a,a )(b ,a ) b (a ,b) (b ,b ) C(a,c) (b ,c) 由表格可知,(x ,y)所有可能出现的结果总数为以上6种;(2)解:由表格可知,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,:. p (七年级年级组、八年级年级组选择的研学基地互不相同)=—=—.4 2 6 324. (1)见解析(2)吓【分析】(1)连接BD ,AC, 证明四边形AB CD 是平行四边形,再利用三角形中位线定理得到G FI I BD , HG /I AC, 利用矩形的性质得到BD ..l AC,即可证明四边形A BCD 是菱形;11 (2)利用三角形中位线定理和菱形性质得到—BD+—AC=O A +O B=ll ,利用lx 面积公式2 2 得到20A-O B=10,再利用完全平方公式结合勾股定理进行变形求解即可得到A B .【详解】(1)解:连接BD,AC,HBA B I I CD, A D I I B C, F...四边形A B CD是平行四边形,四边形AB CD中,点E、F、G、H分别是各边的中点,:.GF I I BD, HG/I AC,四边形EF GH是矩形,:.HG上GF,:. BD上AC,...四边形A B CD是菱形;(2)解:四边形A B CD中,点E、F、G、H分别是各边的中点,1 1:.GF=EH=—BD, HG=EF=-AC,2 2矩形EFGH的周长为22,:. BD+AC=22,四边形A B CD是菱形,1 1即-BD+-AC=OA+OB=l l,2 2四边形A B CD的面积为10,1:. —BD-AC=lO, 即20A-OB=l0,2(OA+OB)2 = OA2 +20A-OB+OB2 =121,:. OA2 + OB2 = 121—10=111,:. AB=✓O矿+OB2=吓·【点睛】本题考查了平行四边形性质和判定,矩形的性质和判定,三角形中位线定理,菱形的性质和判定,菱形面积公式,勾股定理,完全平方公式,熟练掌握相关性质是解题的关键.25. (l)t�40b=50(2)564【分析】本题考查了一次函数、一元一次不等式、二元一次方程组的应用,根据题意正确列出方程和函数解析式是解题的关键.(1)根据'购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元”建立二元一次方程组求解,即可解题;4 (2)根据“且购买A 种型号吉祥物的数量X (单位:个)不少千B 种型号吉祥物数量的—,3360 又不超过B 种型号吉祥物数量的2倍.“建立不等式求解,得到—-:<:::;x :<:::;60,再根据总利润=A 种型号吉祥物利润+B 种型号吉祥物利润建立关系式,最后根据一次函数的性质即可得到Y的最大值.【详解】(I )解:由题知,{8a +7b =670 4a +5b =410a =40 解得{b �so'(2)解:购买A 种型号吉祥物的数量X 个,则购买B 种型号吉祥物的数量(90-x)个,4 且购买A 种型号吉祥物的数量X(单位:个)不少千B 种型号吉祥物数量的-,34 .'. X 2—(90-x), 3解得X 2360 7 A 种型号吉祥物的数量又不超过B 种型号吉祥物数量的2倍..'. X :s; 2(90—x ),解得x �60,即360 �x �60,由题知,y =(40-35)x+(50-42)(90-x ),整理得y =—3x +720,Y随X 的增大而减小,.'.当x =52时,Y的最大值为y =—3x52+720 = 564.26. (l )b =-33+汇而(2)当M=时,M>; 当M=3—而2 2 2时,b【分析】(1)由对称轴为直线x=-—直接求解;2a M<而3+而扣(2)当M=时,M>当M=3-扣扣—;时,M<—·2 2 2 23 【详解】(1)解:?抛物线y= x2 +b x-l的对称轴是直线x=—,2. .. b 32x l 2:. b=-3;,(2)解:·:m是抛物线y= x2 +bx-l与X轴交点的横坐标,• 2..m -3m-I=O,• 2..m—I=3m,• 4 2 2• • m -2m +I=9m ,• 4 2• • m =l lm -I,而矿=3m+l代入得:m4 =11(3m+l)-1=2=33m+10,:.戒=m-m4 = (33m+ I O)m=33m2 + lOm= 33(3m+ 1)+ lOm= 109m+33, :. M = 旷-33109m+33-33= =m,109 109·: m2-3m-1= 0,解得:m=3士J百2'当M=m=3+扣2时,:. M > ;2当M=m=3-而2时,:. M < 扣2M-=而3+而扣3-=—>0M-2 2 2 2扣3-扣扣3-2而= -= <0,2 2 2 2【点睛】本题考查了二次函数的对称轴公式,与x轴交点问题,解一元二次方程,无理数的大小比较,解题的关键是对旷进行降次处理.27. (1)90°(2)见解析(3)CE+EB=CB, 理由见解析【分析】(1)直接利用直径所对的圆周角是直角,即可得出结果;(2)证明A BM(/)AMN, 得到4从N=L ll从B,根据平角的定义,得到LMAN = L MAB = 90°, 即可得证;(3)连接O A,O D,BD,连接oc交A D千点G,易得O D, 圆周角定理得到LA DB=90°,推出O G II BD, 进而得到LAOC=LABD,根据三角函数推出LH B E=LABC,得到B,E,C 三点共线,即可得出结果.【详解】(1)解:·:AB是0的直径,点F是0上异千A、B的点,:. 虚B=90°;(2)证明:·;A M·BM=A B·MN,. AM M N..A B B M又?乙AMN=乙A B M,:. AB M(/) AMN,:. 乙A M B=乙N,LMAN=L.A, 衄·.·LMAN+LMAB=l80°,.·.LMAN = L MA B = 90°,:.O A.l_C A,·: O A是半径,:.直线C M与0相切;(3)我认为:CE+EB=C B正确,理由如下:连接O A,O D,BD,连接oc交A D千点G,如图,则:OA=O D,:. 点0在线段AD的中垂线上,·: CA= CD,:.点C在线段AD的中垂线上,:. OC .l_AD,:. LOG A=90°,·: AB是0的直径,.·. LADB=90°,:.乙OGA=乙ADB,:. OG II BD,:. 乙AOC=组v,• : 乙AHD=90°,:. 乙DHB=90°,DH EH: .tan乙HBD=, tan乙HBE=BH BH'·: E为DH的中点,EH I DH I: .tan乙HBE=—=—·—=—tan乙HBD,BH 2 BH 2AC AC I·; tan乙AOC=—,tan乙ABC=—且AO=—AB,AO AB' 2I AC I:. tan乙ABC=—·—=—tan LAOC,2 OA 2• : 乙AOC=缰V,: • tan乙HBE=tan乙ABC,:.乙HBE=乙ABC,:. B,E,C三点共线,:. C E+E B=C B.【点睛】本题考查圆周角定理,切线的判定,相似三角形的判定和性质,解直角三角形,熟练掌握相关知识点,并灵活运用,是解题的关键.。

2024年云南省中考数学试卷(含详细解析)

2024年云南省中考数学试卷(含详细解析)

2024年云南省中考数学试卷一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.(2分)(2024•云南)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作+100米,则向南运动100米可记作()A.100米B.﹣100米C.200米D.﹣200米2.(2分)(2024•云南)某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A.5.78×104B.57.8×103C.578×102D.5780×103.(2分)(2024•云南)下列计算正确的是()A.x3+5x3=6x4B.x6÷x3=x5C.(a2)3=a7D.(ab)3=a3b34.(2分)(2024•云南)若在实数范围内有意义,则实数x的取值值围为()A.x≥0B.x≤0C.x>0D.x<05.(2分)(2024•云南)某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.正方体B.圆柱C.圆锥D.长方体6.(2分)(2024•云南)一个七边形的内角和等于()A.540°B.900°C.980°D.1080°7.(2分)(2024•云南)甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数(单位:环)和方差s2如下表所示:甲乙丙丁9.99.58.28.5s20.090.650.16 2.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.(2分)(2024•云南)已知AF是等腰△ABC底边BC上的高,若点F到直线AB的距离为3,则点F到直线AC的距离为()A.B.2C.3D.9.(2分)(2024•云南)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x,根据题意,下列方程正确的是()A.80(1﹣x2)=60B.80(1﹣x)2=60C.80(1﹣x)=60D.80(1﹣2x)=6010.(2分)(2024•云南)按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,第n个代数式是()A.2x n B.(n﹣1)x n C.nx n+1D.(n+1)x n11.(2分)(2024•云南)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.12.(2分)(2024•云南)如图,在△ABC中,若∠B=90°,AB=3,BC=4,则tan A=()A.B.C.D.13.(2分)(2024•云南)如图,CD是⊙O的直径,点A,B在⊙O上.若=,∠AOC=36°,则∠D=()A.9°B.18°C.36°D.45°14.(2分)(2024•云南)分解因式:a3﹣9a=()A.a(a﹣3)(a+3)B.a(a2+9)C.(a﹣3)(a+3)D.a2(a﹣9)15.(2分)(2024•云南)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米二、填空题(本大题共4小题,每小题2分,共8分)16.(2分)(2024•云南)若一元二次方程x2﹣2x+c=0无实数根,则实数c的取值范围为.17.(2分)(2024•云南)已知点P(2,n)在反比例函数y=的图象上,则n=.18.(2分)(2024•云南)如图,AB与CD交于点O,且AC∥BD.若=,则=.19.(2分)(2024•云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.三、解答题(本大题共8小题,共62分)20.(7分)(2024•云南)计算:70+()﹣1+|﹣|﹣()2﹣sin30°.21.(6分)(2024•云南)如图,在△ABC和△AED中,AB=AE,∠BAE=∠CAD,AC=AD.求证:△ABC≌△AED.22.(7分)(2024•云南)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.23.(6分)(2024•云南)为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c 为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.(8分)(2024•云南)如图,在四边形ABCD中,点E、F、G、H分别是各边的中点,且AB∥CD,AD∥BC,四边形EFGH是矩形.(1)求证:四边形ABCD是菱形;(2)若矩形EFGH的周长为22,四边形ABCD的面积为10,求AB的长.25.(8分)(2024•云南)A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A 型号35aB 型号42b若顾客在该超市购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元.(1)求a 、b 的值;(2)若某公司计划从该超市购买A 、B 两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的,又不超过B 种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y 元,求y 的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.(8分)(2024•云南)已知抛物线y =x2+bx ﹣1的对称轴是直线x =.设m 是抛物线y =x 2+bx ﹣1与x 轴交点的横坐标,记M =.(1)求b 的值;(2)比较M 与的大小.27.(12分)(2024•云南)如图,AB 是⊙O 的直径,点D 、F 是⊙O 上异于A 、B 的点.点C 在⊙O 外,CA =CD ,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,∠AMN =∠ABM ,AM •BM =AB •MN .点H 在直径AB 上,∠AHD =90°,点E 是线段DH 的中点.(1)求∠AFB 的度数;(2)求证:直线CM 与⊙O 相切;(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE +EB <CB ,CE +EB =CB ,CE +EB >CB ,你认为哪个正确?请说明理由.2024年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.【解答】解:∵向北运动100米记作+100米,∴向南运动100米可记作﹣100米,故选:B.2.【解答】解:57800用科学记数法可以表示为5.78×104,故选:A.3.【解答】解:A、x3+5x3=6x3,故A选项错误;B、x6÷x3=x3,故B选项错误;C、(a2)3=a6,故C选项错误;D、(ab)3=a3b3,故D选项正确;故选:D.4.【解答】解:∵在实数范围内有意义,∴x≥0,故选:A.5.【解答】解:∵主视图、俯视图、左视图都是矩形,∴这个几何体是长方体.故选:D.6.【解答】解:一个七边形的内角和为:(7﹣2)×180°=5×180°=900°,故选:B.7.【解答】解:由表知甲、乙的平均数较大,∴从甲、乙中选择一人参加比赛,∵甲的方差较小,∴选择甲参加比赛,故选:A.8.【解答】解:∵AF是等腰△ABC底边BC上的高,∴AF是顶角∠BAC的平分线,∵点F到直线AB的距离为3,∴点F到直线AC的距离为3,故选:C.9.【解答】解:根据题意得:80(1﹣x)2=60.故选:B.10.【解答】解:∵按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,∴第n个代数式为(n+1)x n,故选:D.11.【解答】解:A、B、C中,图形不是轴对称图形,不符合题意;D中,图形是轴对称图形,符合题意.故选:D.12.【解答】解:∵在△ABC中,若∠B=90°,AB=3,BC=4,∴tan A==,故选:C.13.【解答】解:连接AD,∵,∴∠ADC=∠BDC=,故选:B.14.【解答】解:原式=a(a2﹣9)=a(a﹣3)(a+3),故选:A.15.【解答】解:圆锥的侧面积=×2π×30×40=1200π(平方厘米).故选:C.二、填空题(本大题共4小题,每小题2分,共8分)16.【解答】解:∵一元二次方程x2﹣2x+c=0无实数根,∴Δ=(﹣2)2﹣4c<0,∴c>1,故答案为:c>1.17.【解答】解:将点P(2,n)代入y=,∴,∴n=5,故答案为:5.18.【解答】解:∵AC∥BD.∴△AOC∽△BOD,∴=,∵=,∴=,故答案为:.19.【解答】解:根据题意得:1000×12%=120(人),答:该校喜欢跳绳的学生大约有120人.故答案为:120.三、解答题(本大题共8小题,共62分)20.【解答】解:70+()﹣1+|﹣|﹣()2﹣sin30°=1+6+﹣5﹣=2.21.【解答】证明:∵∠BAE=∠CAD,∴∠BAE+∠CAE=∠CAD+∠CAE,即∠BAC=∠EAD,在△ABC与△AED中,,∴△ABC≌△AED(SAS).22.【解答】解:设D型车的平均速度是x千米/小时,则C型车的平均速度是3x千米/小时,根据题意得:﹣=2,解得:x=100,经检验,x=100是所列方程的解,且符合题意.答:D型车的平均速度是100千米/小时.23.【解答】解:(1)根据题意列表如下:a b ca(a,a)(a,b)(a,c)b(b,a)(b,b)(b,c)c(c,a)(c,b)(c,c)共有9种等可能的情况数;(2)∵共有6种等可能的情况数,其中七年级年级组、八年级年级组选择的研学基地互不相同的有4种,∴该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P==.24.【解答】(1)证明:连接AC,BD交于点O,交FG于点N,交HG于点M,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵四边形EFGH是矩形,∴∠HGF=90°,∵H、G分别是AD、DC的中点,∴HG∥AC,HG=AC,∴∠HGF=∠GNC,∴∠GNC=90°,∵G,F分别是DC、BC的中点,∴GF∥BD,GF=BD,∴∠GNC=∠MOC=90°,∴BD⊥AC,∴四边形ABCD是菱形;(2)解:∵矩形EFGH的周长为22,∴HG+FG=11,∴AC+BD=22,∵,∴AC×BD=20,∵(AC+BD)2=AC2+2×AC×BD+BD2,∴AC2+BD2=444,∴,∴AO2+BO2=111,∴AB2=AO2+BO2=111,∴AB=.25.【解答】解:(1)根据题意,得,解得,∴a的值是40,b的值是50.(2)购买B种型号吉祥物的数量为(90﹣x)个.根据题意,得,解得≤x≤60;y=(40﹣35)x+(50﹣42)(90﹣x)=﹣3x+720,∵﹣3<0,∴y随x的减小而增大,∵≤x≤60且x为整数,=﹣3×52+720=564,∴当x=52时,y的值最大,y最大∴y的最大值是564元.26.【解答】解:(1)∵抛物线y=x2+bx﹣1的对称轴是直线x=.∴﹣=.解得b=﹣3;(2)由(1)知:b=﹣3,∴抛物线y=x2﹣3x﹣1,当y=0时,0=x2﹣3x﹣1,解得x=,∵m是抛物线y=x2+bx﹣1与x轴交点的横坐标,∴m=,方法一:直接计算化简,当m=时,M===,∴﹣=>0,即M>;当m=时,M==<0,∴M<;由上可得,当m=时,M>;当m=时,M<.方法二:∵m是抛物线y=x2﹣3x﹣1与x轴交点的横坐标,∴0=m2﹣3m﹣1,∴m2=3m+1,∴m5=(m2)2•m=(3m+1)2•m=(9m2+6m+1)•m=[9(3m+1)+6m+1]•m=(27m+9+6m+1)•m+1=(33m+10)•m=33m2+10m=33(3m+1)+10m=99m+33+10m=109m+33,∴M===m,由0=m2﹣3m﹣1,可得m=,当m=时,M﹣=m﹣=﹣=>0,此时M>;当m=时,M﹣=m﹣=﹣=<0,此时M<.27.【解答】(1)解:∵AB是⊙O的直径,∴∠AFB=90°;(2)证明:∵AM•BM=AB•MN,∴,∵∠AMN=∠ABM,∴△AMN∽△ABM,∴∠NAM=∠MAB.∵∠NAM+∠MAB=180°,∴∠NAM=∠MAB=90°,∴OA⊥CM.∵OA为⊙O的半径,∴直线CM与⊙O相切;(3)解:正确的结论为:CE+EB=CB,理由:连接OC,OD,过点B作⊙O的切线,交CD的延长线于点K,设BC与DH交于点G,如图,在△OAC和△ODC中,,∴△OAC≌△ODC(SSS),∴∠OAC=∠ODC.由(2)知:OA⊥CM,∴∠OAC=∠ODC=90°,∴OD⊥CD.∵OD为⊙O的半径,∴CK为⊙O的切线.∵BK为⊙O的切线,∴DK=BK,BK⊥AB.∵DH⊥AB,CA⊥AB,∴AC∥DH∥BK,∴△BHG∽△BAC,△CDG∽△CKB,.∴,,∴,,∴.∵CA=CD,∴GH=GD,∴点G是线段DH的中点,∵点E是线段DH的中点,∴点G与点E重合.∴线段BC经过点E,∴CE+EB=CB.。

2023年云南省中考数学真题(原卷版和解析版)

2023年云南省中考数学真题(原卷版和解析版)

2023年云南省初中学业水平考试数学(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试

题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.

一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)

1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60米,则向西走80米可记

作()A.80米B.0米C.80米D.140米2.云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.434010B.53410C.53.410D.60.3410

3.如图,直线c与直线ab、都相交.若,135ab∥,则2()

A.145B.65C.55D.354.某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()

A.球B.圆柱C.长方体D.圆锥5.下列计算正确的是()A.236aaaB.22(3)6aaC.632aaaD.22232aaa6.为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学迸行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65B.60C.75D.807.中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()

A.B.C.D.8.若点1,3A是反比例函数(0)kyk

x图象上一点,则常数k的值为()

A.3B.3C.32D.32

9.按一定规律排列的单项式:2345,2,3,4,5,aaaaa,第n个单项式是()

云南省中考数学压轴题及答案

云南省中考数学压轴题及答案

题目篇(2014年昆明) 23. (本小题9分)如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C 。

(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动。

其中一个点到达终点时,另一个点也停止运动。

当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最多面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S PBQ CBK =△△:S ,求K 点坐标。

(2013年昆明)23.(本小题9点A 在x 轴的正半轴上,点C 在y 在BC 边上,且抛物线经过O 、A (1)求抛物线的解析式; (2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x (2012年昆明)23.(本小题9分)如图,在平面直角坐标系中,直线123y x =-+交x 轴于点P ,交y 轴于点A ,抛物线212y x bx c =-++的图象过点(1,0)E -,并与直线相交于A 、B 两点.⑴ 求抛物线的解析式(关系式);⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;⑶除点C外,在坐标轴上是否存在点M,使得MAB∆是直角三角形?若存在,请求出点M的坐标,若不存在,请说明理由.(2011年昆明)25、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.(2010年昆明)25.(12分)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,233-)三点.(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)(云南省2010年)24.(本小题12分)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°242FPED-4-2-1A BC4y xO(1)求点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的解析式;(3)直线l ⊥x 轴,若直线l 由点A 开始沿x 轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t (0≤t≤5)秒,运动过程中直线l 在△ABC 中所扫(云南省2013年)23.(9分)如图,四边形ABCD 是等腰梯形,下底AB 在x 轴上,点D 在y 轴上,直线AC 与y 轴交于点E (0,1),点C 的坐标为(2,3).(1)求A 、D 两点的坐标;(2)求经过A 、D 、C 三点的抛物线的函数关系式; (3)在y 轴上是否在点P ,使△ACP 是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(云南省2014年)23.(9分)在平面直角坐标系中,点O 为坐标原点,矩形ABCO 的顶点分别为A (3,0)、B (3,4)、C (0,4),点D 在y 轴上,且点D 的坐标为(0,-5),点P 是直线AC 上的一个动点。

云南省近五年中考考点分析表

云南省近五年中考考点分析表
24-(2)
统计与概率
16
19
24-(1) 6
22-(2) 24-(3)
14、18
18
24-(2)
5
17
7
22-(1)
20
21
24
24
2010年
2010年 填空题 解答题
8
16 18 9
其他
选择题
11 10
2011年 填空题 解答题
1
4 23
其他
7 12
14 9
10
15
11 19
12
13
6、20(2)
1
9
模块三
数据的代表
3
5
10
模块一
因式分解及乘法公式
3
14
11
模块一
科学记数法
3
6
12
模块一
无理数ห้องสมุดไป่ตู้
1
13
模块一
函数自变量的取值范围
3
12
14
模块二
弧长或扇形面积公式
3
15
模块一 数字(图形)规律探索、列代数式
3
16
模块二
圆锥侧面展开图分析
3
8
17
模块一
分式化简与求值
3
18
模块一
分式方程求解与应用
3
19
14
24(2)(3)
15 17
24-(1)
21 20 22 23
24
7
3 6
8
17
16
23
24-(1)
24-(2) 23-(2) 2
5
18
20
15

近五年云南省中考数学真题及答案

近五年云南省中考数学真题及答案

2022年云南中考数学试题及答案《全卷三个大题,共24个小题,共8页∶满分120分,考试用时120分钟》注意事项∶1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在 试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共12小题.每小题只有一个正确选项,每小题4分,共48分)1.赤道长约为40000 000m ,用科学记数法可以把数字40000 000表示为()A .4×107 B.40×106 C . 400×105 C. 4000×1032.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家。

若零上10℃记作 +10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃3.如图,已知直线c 与直线a 、b 都相交.若a// b ,∠1=85°,则∠2=()A. 110°B.105°C.100°D. 95°4.反比例函数y=x 6的图象分别位于() A.第一、第三象限 B.第一、第四象限C.第二、第三象限D.第二、第四象限5.如图,在∆ABC 中,D 、E 分别为线段BC 、BA 的中点,设∆ABC 的面积为S 1,∆EBD 的面积为S 2.则21s s = () 87.43.41.B 21.A D C 6.为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采” 为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2 评委3 评委4 评委5 9.9 9.7 9.6 10 9.8数据9.9,9.7,9.6,10, 9.8的中位数是()A.9.6B.9.7C.9.8D.9.97. 下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三校柱B.三棱锥C.四柱D. 圆锥俯视图8.按一定规律排列的单项式∶x,3x²,5x³,7x 4,9x 5,……,第n 个单项式是()A.(2n-1)n xB.(2n+1)n xC.(n-1)n xD.(n+1)n x9.如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD.重足为E.著AB=26,CD=24,则∠OCE 的余弦值为()1213.D 127.C 1312.B 137.A 10.下列运算正确的是()()236330a a a .D a 8a 2.C 03.B 532.A =÷-=-==+11.如图,OB 平分∠AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使∆DOE ≅∆FOE ,你认为要添加的那个条件是()A. OD=OEB. OE=OFC.∠ODE = ∠OEDD. ∠ODE=∠OFE12.某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始 后、实际每天比原计划每天多植树50棵,实际植树 400棵所需时间与原计划植树300 棵所需时间相同。

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析) 2020年云南省中考数学试卷一、选择题(本大题共8小题,共32.0分)1.根据题意可知,科学记数法表示为1.5×106,故选C。

2.根据主视图的定义可知,主视图是几何体在某一方向上的投影,投影是一个平面图形,故主视图是长方形的几何体只有长方体和正方体,故选A。

3.根据运算法则可知,√4=2,(−3a)3=−27a3,故选B。

4.根据指数的运算法则可知,(2)−1=1/2,a6÷a3=a3(a≠0),故选BD。

5.根据平行四边形对角线的性质可知,△aaa与△aaa的面积的比等于1:3,故选C。

6.根据题意可知,第n个单项式是(−2)a−1a,故选A。

7.根据扇形面积公式可知,扇形DAE的面积为4π/3,根据圆锥的侧面展开图可知,扇形DAE的弧长为底面圆的周长,即4√2,故底面圆的半径为2√2/π,故选D。

二、填空题(本大题共6小题,共18.0分)1.根据题意可知,采用抽样调查的目的是为了解三名学生的视力情况,故填“目的”。

2.根据三角形内角和定理可知,任意画一个三角形,其内角和是180°,不是必然事件,故填“不是”。

3.根据题意可知,甲的成绩比乙的稳定,即方差小,故填“甲的成绩比乙的稳定”。

4.根据中奖概率的定义可知,中奖概率为1/20,故填“1/20”。

5.根据题意可知,整数a使关于x的不等式组{2a−a>a+1,4a−a<a+1}有且只有45个整数解,且使关于y的方程2a+a+2/(a+1)+1/a=1的解为非正数,故填“45”。

6.根据题意可知,按一定规律排列的单项式为a,−2a,4a,−8a,16a,−32a,…,故填“-64a”。

了不同的旅游线路,甲家庭选择了A、B、C三个景点,乙家庭选择了B、C、D三个景点.已知甲家庭在A、B、C三个景点的花费分别为300元、400元、500元,乙家庭在B、C、D三个景点的花费分别为350元、450元、550元.1)甲、乙两个家庭在B、C两个景点的总花费相同,求B、C两个景点的平均花费;2)若甲、乙两个家庭的总花费相同,求甲家庭和乙家庭的平均花费;3)若甲家庭和乙家庭的总花费相差不超过200元,问哪个家庭的总花费更高?20.某校初三年级有600名学生,其中男生占总数的40%,女生占总数的60%.初三(1)班有40名学生,其中男生占总数的45%.1)初三年级男生人数是多少?2)初三(1)班女生人数是多少?3)初三年级女生人数是多少?4)初三年级女生人数比初三(1)班女生人数多多少?解析】根据题意可得:begin{aligned}P(\text{甲、乙两家选择同一城市}) &= P(\text{甲家选择城市}) \times P(\text{乙家选择城市}) \\frac{1}{3} \times \frac{1}{3} \\frac{1}{9}end{aligned}因此,甲家选择到大理旅游的概率为$\dfrac{1}{3}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年云南省中考数学试题一、选择题1.(2012•乌鲁木齐)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a 的值为()A.-1 B.0 C.1 D.-1或11.A1.解:把x=0代入方程得:|a|-1=0,∴a=±1,∵a-1≠0,∴a=-1.故选A.2.(2012•荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=162.A3.(2012•宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+43.B.4.(2012•莆田)方程(x-1)(x+2)=0的两根分别为()A.x1=-1,x2=2 B.x1=1,x2=2C.x1=-1,x2=-2 D.x1=1,x2=-24.D5.(2012•淮安)方程x2-3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=-3 D.x1=0,x2=35.D6.(2012•南昌)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.1 B.-1 C.D.-6.B.7.(2012•常德)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤-1 B.m≤1 C.m≤4 D.m≤7.B8.(2012•泰州)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1-x)2=36-25 B.36(1-2x)=25C.36(1-x)2=25 D.36(1-x2)=258.C.9.(2012•河池)一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.无实数根考点:根的判别式。

分析:求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.解答:解:x2+2x+2=0,这里a=1,b=2,c=2,∵b2﹣4ac=22﹣4×1×2=﹣4<0,∴方程无实数根,故选D.点评:本题考查的知识点是根与系数的关系,当b2﹣4ac>0时,一元二次方程有两个不相等的实数根;当b2﹣4ac=0时,一元二次方程有两个相等的实数根;当b2﹣4ac<0时,一元二次方程无实数根.11.(2012•泸州)若关于x的一元二次方程x2﹣4x+2k=0有两个实数根,则k的取值范围是()A.k≥2 B. k≤2 C. k>﹣2 D. k<﹣2考点:根的判别式。

专题:计算题。

分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义可得到△≥0,即(﹣4)2﹣4×1×2k≥0,然后解不等式即可得到k的取值范围.解答:解:∵关于x的一元二次方程x2﹣4x+2k=0有两个实数根,∴△≥0,即(﹣4)2﹣4×1×2k≥0,解得k≤2.∴k的取值范围是k≤2.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.12.(2012•娄底)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289C.289(1﹣2x)= 256 D.256(1﹣2x)=289考点:由实际问题抽象出一元二次方程。

专题:增长率问题。

分析:设平均每次的降价率为x ,则经过两次降价后的价格是289(1﹣x)2,根据关键语句“连续两次降价后为256元,”可得方程289(1﹣x)2=256.解答:解:设平均每次降价的百分率为x,则第一降价售价为289(1﹣x),则第二次降价为289(1﹣x)2,由题意得:289(1﹣x)2=256.故选:A.点评:此题主要考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.二、填空题13.(2012•吉林)若方程x2-x=0的两根为x1,x2(x1<x2),则x2-x1= .13.114.(2012•上海)如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实根,那么c的取值范围是.14.c>915.(2012•广州)已知关于x的一元二次方程x2-2 x+k=0有两个相等的实数根,则k值为.15.316.(2012•包头)关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a=.考点:解一元二次方程-因式分解法;分式方程的解。

分析:首先解出一元二次方程x2﹣x﹣2=0的解,根据两个方程x2﹣x﹣2=0与解相同,把x的值代入第二个方程中,解出a即可.解答:解:x2﹣x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,x1=2,x2=﹣1,∵x+1≠0,∴x≠﹣1,把x=2代入= 中得:= ,解得:a=4,故答案为:4.点评:此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,注意分式方程要注意分母有意义,还要检验.17.(2012•鄂州)设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a=.考点:根与系数的关系。

专题:计算题。

分析:利用根与系数的关系求出两根之和与两根之积,将已知的等式整理后,把求出的两根之和与两根之积代入列出关于a的方程,求出方程的解即可得到a的值.解答:解:∵x1、x2是一元二次方程x2+5x﹣3=0的两个实根,∴x1+x2=﹣5,x1x2=﹣3,x22+5x2=3,又∵2x1(x22+6x2﹣3)+a=2x1(x22+5x2+x2﹣3)+a=2x1(3+x2﹣3)+a=2x1x2+a=4,∴﹣10+a=4,解得:a=14.故答案为:14.点评:此题考查了一元二次方程根的判别式,以及根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程没有实数根.18.(2012•丹东)美丽的丹东吸引了许多外商投资,某外商向丹东连续投资3年,2010年初投资2亿元,2012年初投资3亿元.设每年投资的平均增长率为x,则列出关于x的方程为.考点:由实际问题抽象出一元二次方程。

专题:增长率问题。

分析:由于某外商向丹东连续投资3年,2010年初投资2亿元,2012年初投资3亿元.设每年投资的平均增长率为x,那么2011年初投资2(1+x),2012年初投资2(1+x)2,由2012年初投资的金额不变即可列出方程.解答:解:设每年投资的平均增长率为x,由题意,有2(1+x)2=3.故答案为2(1+x)2=3.点评:此题主要考查了由实际问题抽象出一元二次方程,解题的关键是掌握增长率问题中的一般公式为a(1+x)n=b,其中n为共增长了几年,a为第一年的原始数据,x是增长率,b是增长了n年后的数据.三、解答题19.(2012•温州)解方程:x2-2x=5.19.解:配方得(x-1)2=6∴x-1=±∴x1=1+ ,x2=1- .20.(2012•无锡)解方程:x2-4x+2=020.解:△=42-4×1×2=8,∴,∴x1= 2+ ,x2= 2- 。

21.(2012•巴中)解方程:2(x-3)=3x(x-3).21.解:2(x-3)=3x(x-3)移项得:2(x-3)-3x(x-3)=0整理得:(x-3)(2-3x)=0x-3=0或2-3x=0解得:x1=3或x2=22.(2012•孝感)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根:(2)若x1,x2是原方程的两根,且|x1-x2|=2 ,求m的值,并求出此时方程的两根.22.解:(1)证明:∵△=(m+3)2-4(m+1)…1分=(m+1)2+4,∵无论m取何值,(m+1)2+4恒大于0∴原方程总有两个不相等的实数根。

(2)∵x1,x2是原方程的两根,∴x1+x2=-(m+3),x1•x2=m+1,∵|x1-x2|=2 ,∴(x1-x2)2=(2 )2,∴(x1+x2)2-4x1x2 =8。

∴[-(m+3)]2-4(m+1)=8∴m2+2m-3=0。

解得:m1=-3,m2=1。

当m=-3时,原方程化为:x2-2=0,解得:x1= ,x2=- .当m=1时,原方程化为:x2+4x+2=0,解得:x1=-2+ ,x2=-2- .24.(2012•徐州)为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?考点:一元二次方程的应用;分段函数。

专题:应用题。

分析:(1)由题意知,3月份电量超过了a千瓦,可列等式20+ (80﹣a)=35,解一元二次方程求出a的值即可;(2)设月用电量为x千瓦时,交电费y元.根据题意列出分段函数,然后求出5月份的电量.解答:解:(1)根据3月份用电80千瓦时,交电费35元,得,,即a2﹣80a+1500=0.解得a=30或a=50.由4月份用电45千瓦时,交电费20元,得,a≥45.∴a=50.(2)设月用电量为x千瓦时,交电费y元.则∵5月份交电费45元,∴5月份用电量超过50千瓦时.∴45=20+0.5(x﹣50),解得x=100.答:若该宿舍5月份交电费45元,那么该宿舍当月用电量为100千瓦时.点评:本题主要考查一元二次函数的应用和分段函数的知识点,解答本题的关键是理解题意,列出一元二次方程,此题难度一般.25.(2012•襄阳)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)考点:一元二次方程的应用。

相关文档
最新文档